FUNCTIONS WITH MANY LOCAL EXTREMA

STEFAN GESCHKE

Abstract

Answering a question addressed by Dirk Werner we show that the set of local extrema of a nowhere constant continuous function $f:[0,1] \rightarrow \mathbb{R}$ is always meager but possibly of full measure．The set of local extrema of a nowhere constant C^{∞}－function from $[0,1]$ to \mathbb{R} can be of arbitrarily large measure below 1 ．

1．INTRODUCTION

In［1］，Behrends，Natkaniec and the author studied the question whether a con－ tinuous function f from a topological space X into the real line can have a local extremum at every point of X without being constant．Among other things it was observed that if X is a connected space of weight $<|\mathbb{R}|$ ，then every continuous function $f: X \rightarrow \mathbb{R}$ that has a local extremum at every point of X is constant． Also，if X is a connected linear order in which every family of pairwise disjoint open intervals is of size $<|\mathbb{R}|$ and $f: X \rightarrow \mathbb{R}$ is continuous and has a local extremum at every point of X ，then f is constant．

The proof of the latter fact given in［1］shows that if X is a connected linear order and $f: X \rightarrow \mathbb{R}$ is continuous and has a local extremum at every point of X ，then f is constant on a nonempty open interval．In fact，the collection of open intervals on which f is constant has a dense union．

Recently，the results mentioned above have been improved by Fedeli and Le Donne（see［2］），who showed that if X is a connected space in which every family of pairwise disjoint open sets is of size $<|\mathbb{R}|$ ，then every continuous function $f: X \rightarrow \mathbb{R}$ that has a local extremum at every point is constant．

In this note we answer a question addressed by Dirk Werner，namely how many local extrema a non－constant continuous function，say from the unit interval，into the reals can actually have．

It is relatively easy to construct a continuous function $f:[0,1] \rightarrow \mathbb{R}$ that is not constant and whose set of local minima is open and dense．Just choose a closed nowhere dense set $A \subseteq[0,1]$ of positive measure（see Lemma 1）and let $f(x)$ be the measure of $A \cap[0, x]$ ．Then clearly，f is continuous，not constant and constant

[^0]on every open interval disjoint from A. In particular, f has a local minimum and maximum at every point of $X \backslash A$.

This example shows that we should consider functions that are not constant on any nonempty open interval.

2. Measure

The following lemma is well known.
Lemma 1. Let $\varepsilon>0$. Then there is a closed nowhere dense set $A \subseteq[0,1]$ of measure at least $1-\varepsilon$.

Proof. Let $\left\{\left(a_{n}, b_{n}\right): n \in \mathbb{N}\right\}$ be the collection of all open subintervals of $[0,1]$ with rational endpoints. For each $n \in \mathbb{N}$ let $\left(c_{n}, d_{n}\right) \subseteq\left(a_{n}, b_{n}\right)$ be an open interval of length at most $2^{-n} \cdot \varepsilon$. Now $B=\bigcup_{n \in \mathbb{N}}\left(c_{n}, d_{n}\right)$ is a dense open set of measure at most ε. Hence, the set $A=[0,1] \backslash B$ is closed, nowhere dense and of measure at least $1-\varepsilon$.

By removing a suitable open interval from A we can actually assume that A is exactly of measure $1-\varepsilon$.

Lemma 2. Let $a, b \in \mathbb{R}$ be such that $a<b$. Let $A \subseteq[a, b]$ be closed and nowhere dense. Then the function $f_{a, b}^{A}:[a, b] \rightarrow \mathbb{R}$ that assigns to every point x its distance from A is continuous and has local minima exactly at the points of A. Moreover, whenever $I \subseteq[a, b]$ is a maximal open interval disjoint from A, then $f_{\text {a.b }}^{A} \upharpoonright \operatorname{cl}(I)$ is piecewise linear and in fact consists of two linear (in the sense of affine linear) pieces, one of slope 1 and one of slope -1 .

Theorem 3. There is a continuous function $g:[0,1] \rightarrow \mathbb{R}$ such that g is not constant on any non-empty open interval and the set of local minima of g is of measure 1. In particular, the set of local minima of g is dense in. $[0,1]$.

Proof. Let $a, b \in[0,1]$ be such that $a<b$. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is linear (in the sense of affine linear) with $f(a)=c$ and $f(b)=d$. Let $c=a+\frac{1}{8}(b-a)$ and $d=b-\frac{1}{8}(b-a)$. Let A be a closed nowhere dense subset of $[c, d]$ of measure $\frac{1}{2}(b-a)$. We may assume $c, d \in A$.

Now let $f^{*}:[a, b] \rightarrow \mathbb{R}$ be defined as follows. For each $x \in[a, b]$ let

$$
f(x)= \begin{cases}4 \frac{f(b)-f(a)}{b-a}(x-a)+f(a), & x \leq c \\ f_{c, d}^{A}(x)+\frac{1}{2}(f(a)+f(b)), & c \leq x \leq d \\ 4 \frac{f(b)-f(a)}{b-a}(x-b)+f(b), & x \geq d\end{cases}
$$

In other words, f^{*} is a continuous function whose graph starts and ends at the same points as the graph of f, but f^{*} has local minima at every point of A, except
possibly the first and last points of A, i.e., c and d. In particular, the set of local minima of f^{*} is of measure at least $\frac{1}{2}(b-a)$. We observe that

$$
\sup \left\{\left|f^{*}(x)-f(x)\right|: x \in[a, b]\right\} \leq \max (b-a,|f(b)-f(a)|) .
$$

Given a function $f:[0,1] \rightarrow \mathbb{R}$, we define $f^{*}:[0,1] \rightarrow \mathbb{R}$ as follows. If $I \subseteq[0,1]$ is a maximal open interval such that f is linear in I, we let $f^{*} \mid \operatorname{cl} I=(f \mid \operatorname{cl} I)^{*}$. If $x \in[0,1]$ is not contained in a maximal open interval on which f is linear, we let $f^{*}(x)=f(x)$. From our construction it follows that f^{*} is continuous if f is.

Now choose $A \subseteq[0,1]$ closed, nowhere dense, and of measure $\frac{1}{2}$. Let $f_{0}=f_{0,1}^{A}$. For every $n>0$ let $f_{n}=f_{n-1}^{*}$. The sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ is a sequence of continuous functions. By our observation above, the sequence converges uniformly. It follows that the limit g of this sequence is a continuous function from $[0,1]$ to \mathbb{R}.

It is easily checked that g is nowhere constant. Also, the set of local minima of g is the union of the sets of local minima of the f_{n}. By induction it follows that the measure of the set of local minima of f_{n} is at least $\sum_{k=1}^{n+1} \frac{1}{2^{k}}$. Hence the measure of the set of local minima of g is 1 .

Clearly, if $f:[0,1] \rightarrow \mathbb{R}$ is continuously differentiable and has a dense set of local extrema, then f has to be constant. In particular, a nowhere constant, continuously differentiable function on the unit interval cannot have a set of local extrema of full measure. However, nowhere constant C^{∞}-functions can have sets of local extrema of large measure.

Theorem 4. For every $\varepsilon>0$ there is an infinitely often differentiable function $f:[0,1] \rightarrow \mathbb{R}$ such that f is not constant on any non-empty open interval and the set of local minima of f is of measure at least $1-\varepsilon$.

Proof. We start the proof with a preliminary remark.
Claim 5. For all $a, b \in[0,1]$ with $a<b$ there is a C^{∞}-function $h:[0,1] \rightarrow \mathbb{R}$ such that h vanishes outside (a, b) and is positive and nowhere constant on (a, b).

For the proof of the claim we define $g: \mathbb{R} \rightarrow \mathbb{R}$ as follows: For all $x \in \mathbb{R}$ let

$$
g(x)= \begin{cases}e^{-(x-1)^{-2}} \cdot e^{-(x+1)^{-2}} & x \in(-1,1) \\ 0 & x \notin(-1,1)\end{cases}
$$

It is well known that g is infinitely often differentiable. Clearly, g is nowhere constant and positive on the set $(-1,1)$. The claim is witnessed by translations of scaled versions of g.

Now let $A \subseteq[0,1]$ be as in Lemma 1 and choose a maximal family \mathcal{G} of nonnegative C^{∞}-functions on $[0,1]$ with the following properties:
(1) For every $g \in \mathcal{G}$ the set $g^{-1}[(0, \infty)]$ is a non-empty open interval $I_{g} \subseteq$ $[0,1] \backslash A$.
(2) For $g, h \in \mathcal{G}$ with $g \neq h$ the intervals I_{g} and I_{h} are disjoint.

Such a family \mathcal{G} exists by Zorn's Lemma. Since $\left\{I_{g}: g \in \mathcal{G}\right\}$ is a disjoint family of non-empty open intervals, it is countable. It follows that \mathcal{G} is countable.

By the claim, $\bigcup\left\{I_{g}: g \in \mathcal{G}\right\}$ is a dense subset of $[0,1] \backslash A$. Since A is nowhere dense and yet of positive measure, $[0,1] \backslash A$ is not the union of finitely many open intervals and hence \mathcal{G} is infinite. Let $\left(g_{n}\right)_{n \in \omega}$ be an enumeration of \mathcal{G} without repetition.

For every $n \in \omega$ choose $\varepsilon_{n}>0$ such that for all $m \leq n$ we have

$$
\varepsilon_{n} \cdot \sup \left\{\left|g_{n}^{(m)}(x)\right|: x \in[0,1]\right\}<2^{-n}
$$

Here $g_{n}^{(m)}$ denotes the m-th derivative of g_{n}.
For every $n \in \omega$ let $f_{n}=\sum_{m=0}^{n} \varepsilon_{m} g_{m}$. Since the $I_{g_{m}}, m \in \omega$, are pairwise disjoint and by the choice of the ε_{m}, the sequence $\left(f_{n}\right)_{n \in \omega}$ converges uniformly in every derivative and hence converges to a C^{∞}-function $f:[0,1] \rightarrow \mathbb{R}$.

Clearly, $B=f^{-1}(0)=[0,1] \backslash \bigcup\left\{I_{g}: g \in \mathcal{G}\right\}$ and B is a closed nowhere dense superset of A. Moreover, f is not constant on any open interval disjoint from B. Since B is nowhere dense, this implies that f is nowhere constant. Clearly, every point of B, and hence of A, is a local minimum of f.

Let us point out that the use of Zorn's Lemma in the proof of Lemma 4 can be easily avoided and that for any given ε a suitable function f can be defined explicitly using a closed, but lengthy, formula.

3. Category

We point out that the analog of Theorem 3 for category fails badly.
Theorem 6. If $f:[0,1] \rightarrow \mathbb{R}$ is continuous and not constant on any non-empty open interval, then the set of local minima of f is meager.

The proof of this theorem uses the following lemma.
Lemma 7. The set of local minima of a continuous function $f:[0,1] \rightarrow \mathbb{R}$ is F_{σ}.
Proof. For $a, b, c, d \in[0,1] \cap \mathbb{Q}$ with $a<b<c<d$ consider the set

$$
M_{a, b, c, d}=\{x \in[b, c]: f(x)=\min (f[(a, d)])\}
$$

Clearly, $M_{\text {a.b.c.d }}$ is closed and every element of $M_{\text {a.b.c.d }}$ is a local minimum of f. On the other hand, if x is a local minimum of f, then there are $a, b, c, d \in[0,1] \cap \mathbb{Q}$ such that $a<b<c<d$ and $x \in M_{a, b . c . d}$. It follows that the set of local minima of
f is equal to

$$
\bigcup\left\{M_{a, b, c, d}: a, b, c, d \in[0,1] \cap \mathbb{Q} \wedge a<b<c<d\right\}
$$

which is clearly F_{σ}.
Proof of Theorem 6. By Lemma 7, the set M of local minima of f can be written as $\bigcup_{n \in \mathbb{N}} M_{n}$ where each M_{n} is closed. Assume that M is not meager. Then for some $n \in \mathbb{N}, M_{n}$ is somewhere dense. Since M_{n} is closed, M_{n} actually contains a nonempty open interval (a, b). But a continuous function that has a local minimum at each point of a nonempty interval is constant on that interval. A contradiction.

Corollary 8. If $f:[0,1] \rightarrow \mathbb{R}$ is not constant on any non-empty open interval, then the set of local extrema of f is meager. However, even the set of local minima can be of measure 1 .

References

[1] E. Behrends, S. Geschke, T. Natkaniec, Functions for which all points are a local minimum or maximum, to appear in Real Analysis Exchange
[2] A. Le Donne, On metric spaces and local extrema, abstract accepted in the section Settheoretical Topology, VII Iberoamerican Conference on Topology and its Applications, June 25-28, 2008, Valencia, Spain

Department of Mathematics, Boise State University, 1910 University Drive, Boise, ID $83725 \cdot 1555$, USA

E-mail address: geschke@math.boisestate.edu

[^0]: Date：November 29， 2008.
 2000 Mathematics Subject Classification．26A15，54C30．
 Key words and phrases．local extremum，continuous function，measure，category．

