
FUNCTIONS WITH MANY LOCAL EXTREMA

STEFAN GESCHKE

ABSTRACT. Answering a question addressed by Dirk Werner we show that the
set of local extrema of a nowhere constant continuous function $f$ : $[0,1]arrow \mathbb{R}$

is always meager but possibly of full measure. The set of local extrema of
a nowhere constant $c\infty$ -function from $[0,1]$ to $\mathbb{R}$ can be of arbitrarily large
measure below 1.

1. INTRODUCTION

In [1], Behrends, Natkaniec and the author studied the question whether a con-
tinuous function $f$ from a topological space $X$ into the real line can have a local
extremum at every point of $X$ without being constant. Among other things it was
observed that if $X$ is a connected space of weight $<|\mathbb{R}|$ , then every continuous
function $f$ : $Xarrow \mathbb{R}$ that has a local extremum at every point of $X$ is constant.
Also, if $X$ is a connected linear order in which every family of pairwise disjoint open
intervals is of size $<|\mathbb{R}|$ and $f$ : $Xarrow \mathbb{R}$ is continuous and has a local extremum at
every point of $X$ , then $f$ is constant.

The proof of the latter fact given in [1] shows that if $X$ is a connected linear
order and $f$ : $Xarrow \mathbb{R}$ is continuous aiid has a local extremum at every point of
$X$ , then $f$ is constant on a nonempty open interval. In fact, the collection of open
intervals on which $f$ is constant has a dense union.

Recently, the results mentioned above have been improved by Fedeli and Le
Donne (see [2]), who showed that if $X$ is a connected space in which every family of
pairwise disjoint open sets is of size $<|\mathbb{R}|$ , then every continuous function $f$ : $Xarrow \mathbb{R}$

that has a local extremum at every point is constant.
In this note we answer a question addressed by Dirk Werner, namely how many

local extrema a non-constant continuous function, say from the unit interval, lnto
the reals can actually have.

It is relatively easy to construct a continuous function $f$ : $[0.1]arrow \mathbb{R}$ that is not
constant and whose set of local miniina is open and dense. Just choose a closed
nowhere dense set $A\subseteq[0,1]$ of positive measure (see Lemma 1) and let $f(x)$ be
the measure of $A\cap[0, x]$ . Then clearly, $f$ is continuous, not constant and constant
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on every open interval disjoint from $A$ . In particular, $f$ has a local minimum and
maximum at every point of $X\backslash A$ .

This example shows that we should consider functions that are not constant on
any nonempty open interval.

2. MEASURE

The following lemma is well known.

Lemma 1. Let $\epsilon>0$ . Then there is a closed nowhere dense set $\mathcal{A}\subseteq[0,1]$ of
measure at least $1-\epsilon$ .

Proof. Let $\{(a_{n}, b_{n}) : n\in \mathbb{N}\}$ be the collection of all open subintervals of $[0,1]$ with
rational endpoints. For each $n\in N$ let $(c_{n}, d_{n})\subseteq(a_{n}, b_{n})$ be an open interval of
length at most $2^{-n}\cdot\epsilon$ . Now $B= \bigcup_{n\in N}(c_{n}.d_{n})$ is a dense open set of measure at
most $\epsilon$ . Hence, the set $\mathcal{A}=[0,1]\backslash B$ is closed, nowhere dense and of measure at
least $1-\epsilon$ . $\square$

By removing a suitable open interval from $A$ we can actually assume that $\mathcal{A}$ is
exactly of measure $1-\epsilon$ .

Lemma 2. Let $a,$ $b\in \mathbb{R}$ be such that $a<b$ . Let $A\subseteq[a, b]$ be closed and nowhere
dense. Then the function $f_{a,b}^{A}:[a.b]arrow \mathbb{R}$ that assigns to every point $x$ its distance

from $A$ is continuous and has local minima exactly at the points of A. Moreover,

whenever $I\subseteq[a, b]$ is a maximal open inte $7^{\vee}ual$ disjoint from A. then $f_{a.b}^{A}($ cl(I)

is piecewise tinear and in fact consists of two linear (in the sense of affine linear)

pieces, one of slope 1 and one of slope $-1$ .

Theorem 3. There is a continuous function $g:[0.1]arrow \mathbb{R}$ such that $g$ is not
constant on any non-empty open interval and the set of local minima of $g$ is of
measure 1. In particular, the set of local minima of $g$ is dense in $[0,1]$ .

Proof. Let $a,$ $b\in[0,1]$ be such that $a<b$ . Suppose that $f$ : $[0.b]arrow \mathbb{R}$ is linear
(in the sense of affine linear) with $f(a)=c$ and $f(b)=d$ . Let $c=a+ \frac{1}{8}(b-a)$

and $d=b- \frac{1}{8}(b-a)$ . Let $A$ be a closed nowhere dense subset of $|c.d]$ of measure
$\frac{1}{2}(b-a)$ . We may assume $c,$ $d\in \mathcal{A}$ .

Now let $f^{*}:[a, b]arrow \mathbb{R}$ be defined as follows. For each,$x\in[a, b]$ let

$f(x)=\{\begin{array}{ll}4\frac{f(b)-f(a)}{b-0}(x-a)+f(a), x\leq cf_{c,d}^{A}(x)+\frac{1}{2}(f(a)+f(b)), c\leq x\leq d4\frac{\int(b)-f(0)}{b-a}(x-b)+f(b)_{s} x\geq d\end{array}$

In other words, $f^{*}$ is a continuous function whose graph starts and ends at the

same points as the graph of $f$ , but $f^{*}$ has local minima at every point of $A$ , except
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possibly the first and last points of $A$ , i.e., $c$ and $d$ . In particular, the set of local
minima of $f^{*}$ is of measure at least - $(b-a)$ . We observe that

$\sup\{|f^{*}(x)-f(x)| : x\in[a, b]\}\leq\max(b-a, |f(b)-f(a)|)$ .

Given a function $f$ : $[0,1]arrow \mathbb{R}$ , we define $f^{*}:[0,1]arrow \mathbb{R}$ as follows. If $I\subseteq[0,1]$

is a maximal open interval such that $f$ is linear in $I$ , we let $f^{*}|$ cl $I=$ $(fr cl I)^{*}$ .
If $x\in[0,1]$ is not contained in a maximal open interval on which $f$ is linear, we let
$f^{*}(x)=f(x)$ . From our construction it follows that $f^{*}$ is continuous if $f$ is.

Now choose $A\subseteq[0,1]$ closed, nowhere dense, and of measure $\frac{1}{2}$ . Let $f_{0}=f_{0,1}^{A}$ .
For every $n>0$ let $f_{n}=f_{n-1}^{*}$ . The sequence $(f_{n})_{n\in N}$ is a sequence of continuous
functions. By our observation above, the sequence converges uniformly. It follows
that the limit $g$ of this sequence is a continuous function from $[0,1]$ to $\mathbb{R}$ .

It is easily checked that $g$ is nowhere constant, Also, the set of local minima of $g$

is the union of the sets of local minima of the $f_{n}$ . By induction $\ddagger t$ follows that the
measure of the set of local minima of $f_{n}$ is at least $\sum_{k=2}^{n+:}\pi^{1}$ . Hence the measure
of the set of local minima of $g$ is 1. $\square$

Clearly, if $f$ : $[0,1]arrow \mathbb{R}$ is continuously differentiable and has a dense set of local
extrema, then $f$ has to be constant. In particular, a nowhere constant, continuously
differentiable function on the unit interval cannot have a set of locaJ extrema of full
measure. However, nowhere constant $C^{\infty}$ -functions can have sets of local extrema
of large measure.

Theorem 4. For every $\epsilon>0$ there is an infinitely often differentiable function
$f:[0,1]arrow \mathbb{R}$ such that $f$ is not constant on any non-empty open interval and the
set of local minima of $f$ is of measure at least $1-\epsilon$ .

Proof. We start the proof with a preliminary remark.

Claim 5. For all $a,$ $b\in[0,1]$ with $a<b$ there is a $C^{\infty}$ -function $h:[0,1]arrow \mathbb{R}$ such
that $h$ vanishes outside $(a, b)$ and is positive and nowhere constant on $(a, b)$ .

For the proof of the claim we define $g$ : $\mathbb{R}arrow \mathbb{R}$ as follows: For all $x\in \mathbb{R}$ let

$g(x)=\{\begin{array}{ll}e^{-(x-1)^{-2}}\cdot e^{-(x+1)^{-2}} x\in(-1,1)0 x\not\in(-1,1).\end{array}$

It is well known that $g$ is infinitely often differentiable. Clearly, $g$ is nowhere

constant and positive on the set $(-1,1)$ . The claim is witnessed by translations of
scaled versions of $g$ .

Now let $\mathcal{A}\subseteq[0,1]$ be as in Lemma 1 and choose a maximal family $\mathcal{G}$ of non-
negative $C^{\infty}$-functions on $[0,1]$ with the following properties:
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(1) For every $g\in \mathcal{G}$ the set $g^{-1}[$ ( $0$ , oo) $|$ is a non-empty open interval $I_{9}\subseteq$

$[0,1]\backslash A$ .
(2) For $g,$ $h\in \mathcal{G}$ with $g\neq h$ the intervals $I_{g}$ and $I_{h}$ are disjoint.

Such a family $\mathcal{G}$ exists by Zorn’s Lemma. Since $\{I_{9} : g\in \mathcal{G}\}$ is a disjoint family of
non-empty open intervals, it is countable. It follows that $\mathcal{G}$ is countable.

By the claim, $\cup(I_{g}$ : $g\in \mathcal{G}\}$ is a dense subset of $[0.1]\backslash A$ . Since $\mathcal{A}$ is nowhere
dense and yet of positive measure, $[0,1]\backslash \mathcal{A}$ is not the union of finitely many open
intervals and hence $\mathcal{G}$ is infinite. Let $(g_{n})_{n\in\omega}$ be an enumeration of $\mathcal{G}$ without
repetition.

For every $n\in\omega$ choose $\epsilon_{n}>0$ such that for all $m\leq n$ we have

$\epsilon_{n}\cdot\sup\{|g_{n}^{(m)}(x)|:x\in[0,1]\}<2^{-n}$ .

Here $g_{n}^{(m)}$ denotes the m-th derivative of $g_{n}$ .
For every $n\in\omega$ let $f_{n}= \sum_{m=0}^{n}\epsilon_{n\iota}g_{m}$ . Since the $I_{g_{r\iota}},,$ $m\in(v$ , are pairwise

disjoint and by the choice of the $\epsilon_{r\tau\iota}$ , the sequence $(f_{n})_{n\in\omega}$ converges uniformly in
every derivative and hence converges to a $C^{\infty}$ -function $f$ : $[0,1]arrow \mathbb{R}$ .

Clearly, $B=f^{-1}(0)=[0,1]\backslash \cup\{I_{g} : g\in \mathcal{G}\}$ and $B$ is a closed nowhere dense
superset of $A$ . Moreover, $f$ is not constant on any open interval disjoint from $B$ .
Since $B$ is nowhere dense, this implies that $f$ is nowhere constant. Clearly, every
point of $B$ , and hence of $A$ , is a local minimum of $f$ . $\square$

Let us point out that the use of Zorn’s Lemma in the proof of Lemma 4 can
be easily avoided and that for any given $\epsilon$ a suitable function $f$ can be defined
explicitly using a closed, but lengthy, formula.

3. CATEGORY

We point out that the analog of Theorem 3 for category fails badly.

Theorem 6. If $f$ ; $[0,1|arrow \mathbb{R}$ is continuous and not constant on any non-empty
open interval, then the set of local minima of $f$ is meager.

The proof of this theorem uses the following lemma.

Lemma 7. The set of local minima of a continuous function $f$ : $[0,1]arrow \mathbb{R}$ is $F_{\sigma}$ .

Proof. For $a,$ $b,$ $c,$ $d\in[0,1]\cap \mathbb{Q}$ with $a<b<c<d$ consider the set

$Af_{a,b.c.d}=\{x\in[b, c] : f(x)=\min(f[(a, d)])\}$ .

Clearly, $M_{a.b.c.d}$ is closed and every element of $\Lambda$ノ$l_{a.b_{i}c.d}$ is a local minimum of $f$ .
On the other hand, if $x$ is a local minimum of $f$ , then t,here are $a,$ $b,$ $c,$ $d\in[0,1]\cap \mathbb{Q}$

such that $a<b<c<d$ and $x\in Af_{o.b.c.d}$ . It follows that the set of local minima of
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$f$ is equal to

$\cup\{M_{a,b,c,d} : a, b, c, d\in[0,1]\cap \mathbb{Q}\wedge a<b<c<d\}$ ,

which is clearly $F_{\sigma}$ . 口

Proof of Theorem 6. By Lemma 7, the set $M$ of local minima of $f$ can be written as
$\bigcup_{n\in N}M_{n}$ where each $M_{n}$ is closed. Assume that $M$ is not meager. Then for some
$n\in N,$ $M_{n}$ is somewhere dense. Since $M_{n}$ is closed, $M_{n}$ actually contains a non-
empty open interval $(a, b)$ . But a continuous function that has a local minimum at
each point of a nonempty interval is constant on that interval. A contradiction. $\square$

Corollary 8. If $f:[0,1]arrow \mathbb{R}$ is not constant on any non-empty open interval,
then the set of local extrema of $f$ is meager. However, even the set of local minima
can be of measure 1,
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