Greg Hjorth

September 12, 2008

Abstract

This paper gives a proof based on large cardinal ideas that there is no injection inside $L(\mathbb{R})$ from $\prod_{i=1}^{1}$ to Borel.

1 Introduction

This paper concerns cardinalities inside $L(\mathbb{R})$ under determinacy assumptions, in particular giving another proof of a previous established result that the cardinality of Π_1^1 is greater than that of Δ_1^1 inside $L(\mathbb{R})$.

Definition For $A, B \in L(\mathbb{R})$ we write

$$|A|_{L(\mathbf{R})} \le |B|_{L(\mathbf{R})}$$

if there is an injection from A to B in $L(\mathbb{R})$. We write

 $|A|_{L(\mathbf{R})} < |B|_{L(\mathbf{R})},$

and say that —it the $L(\mathbb{R})$ -cardinality of A is less than that of B if there is an injection in $L(\mathbb{R})$ from the first set to the second, but not from the second to the first.

From [2]:

Theorem 1.1 (Hjorth) Assuming $AD^{L(\mathbf{R})}$, for all $\alpha < \beta < \omega_1$

$$|\prod_{\alpha}^{0}|_{L(\mathbf{R})} < |\prod_{\beta}^{0}|_{L(\mathbf{R})}$$

The exact computations in the Wadge hierarchy were given in [1], which in particular gave:

Theorem 1.2 (Andretta, Hjorth, Neeman) Assuming $AD^{L(\mathbf{R})}$, for all n > 1

$$\Delta_1^1|_{L(\mathbf{R})} < |\prod_1^1|_{L(\mathbf{R})} < |\prod_n^1|_{L(\mathbf{R})}.$$

The proof given there was exacting a technical. In this short note I will sketch a simpler proof based on large cardinal concepts that

$$\left\| \bigtriangleup_{1}^{1} \right\|_{L(\mathbf{R})} < \left\| \prod_{1}^{1} \right\|_{L(\mathbf{R})}.$$

2 Proof

For conceptual simplicity, let's start by assuming there are enough large cardinals ensure determinacy and absoluteness of the theory of $L(\mathbb{R})$ through all forcing extensions. See for instance [6].

Let

$$U \subset 2^{\omega} \times 2^{\omega}$$

be a universal Π_1^1 set. Assume for a contradiction

$$|\underline{\lambda}_1^1|_{L(\mathbf{R})} \ge |\underline{\Pi}_1^1|_{L(\mathbf{R})}.$$

Then in $L(\mathbb{R})$ we can find a relation

$$R \subset 2^{\omega} \times 2^{\omega} \times 2^{\omega}$$

such that:

(a)
$$(x, y_1, y_2) \in R \Rightarrow U_{y_1} = 2^{\omega} \setminus U_{y_2}$$

(b) $\forall x \exists y_1, y_2 R(x, y_1, y_2);$

(c) if $(x, y_1, y_2) \in R$, $(x', y'_1, y'_2) \in R$, and $U_x = U_{x'}$, then $U_{y_1} = U_{y'_1}$.

By $\text{Basis}(\Sigma_1^2, \Delta_2^1)$ in $L(\mathbb{R})$ and [3], we can find tree representatives for such a relation R in all generic extensions. By considering homogeneous forcing notions collapsing various cardinals and appealing to the stabilization of the theory we can find some choice of the relation $R \in L(\mathbb{R})$ above, and a measurable cardinal κ , an inaccessible

 $\theta > \kappa$

which is a limit of measurable cardinals and tree

$$T \subset 2^{<\omega} \times 2^{<\omega} \times 2^{<\omega} \times \delta^{<\omega},$$

on some δ such that in all forcing extensions of size less than $\exists_{\omega}(\kappa)^+ = |V_{\kappa+\omega}|^+$ we have that T continues to have p[T] = R, where R is now interpreted as its canonical extension in $L(\mathbb{R})$ of the generic extension, and thus we continue to have

(a)
$$(x, y_1, y_2) \in p[T] \Rightarrow U_{y_1} = 2^{\omega} \setminus U_{y_2};$$

(b) $\forall x \exists y_1, y_2 p[T](x, y_1, y_2);$

(c) if $(x, y_1, y_2) \in p[T], (x', y'_1, y'_2) \in p[T]$, and $U_x = U_{x'}$, then $U_{y_1} = U_{y'_1}$.

T will arise from the Scale on Σ_1^2 in $L(\mathbb{R})$ of some suitable massive generic extension. Thus we can assume there is a function π uniformly definable over all such $L(\mathbb{R})$'s with

$$\pi(x) = (\pi_0(x), \pi(x_1)),$$

and

$$(x,\pi_0(x),\pi_1(x))\in R$$

all $x \in 2^{\omega}$.

For future reference, let us fix now a measure μ on κ .

Definition A countable, transitive structure

$$\mathcal{M} = (M; \in, \kappa_0, \mu_0, T_0)$$

 $\rho: \mathcal{M} \to V_{\theta}$

is a *frog* if there exists

with

$$\kappa_0 \mapsto \kappa,$$

 $\mu_0 \mapsto \mu,$
 $T_0 \mapsto T.$

Note that this final clause ensures that any element of $p[T_0]$ is in p[T] and hence R.

A countable transitive structure

$$\mathcal{N} = (N; \in, \kappa_0, \mu_0, A_0)$$

is a *tadpole* if it satisfies powerset, comprehension, and all other axioms of ZFC except possible replacement, and it is iterable against the measure μ_0 , and $A_0 \subset \kappa_0$.

Given $\mathcal{M} = (M; \in, \kappa_0, \mu_0, T_0)$ a frog and $A_0 \in \mathcal{P}(\kappa_0)^{\mathcal{M}}$, we let

$$\mathcal{N} = (V_{\kappa_0 + \omega}; \in, \kappa_0, \mu_0, A_0)$$

be the tadpole induced from \mathcal{M} by A.

Note that any frog has unboundedly many measurables, and it will all generic extensions of the frog will be iterable against the surviving measurables in light of the embedding into a large rank initial segment of V.

Definition For $\mathcal{N} = (N; \in, \kappa_0, \mu_0, A_0)$ a tadpole, we let $V_{\mathcal{N}}$ be the set of codes for ordinals $\alpha < \omega_1$ such that if we take the iteration

$$i_{0, \alpha} : \mathcal{N} o \mathcal{N}_{lpha}$$

of length α against the measure μ_0 , then

 $\alpha \in i_{0,\alpha}[A_0].$

For $x \in 2^{\omega}$ coding a tadpole \mathcal{N} , we let a(x) be chosen canonically, and uniformly recursively in x, with

$$U_{a(x)} = V_{\mathcal{N}}.$$

Note that any two codes for the same tadpole give rise to the same $\prod_{i=1}^{1}$ set.

Thus given a tadpole $\mathcal N$ there will be a term $au_{\mathcal N}$ in

$$\mathbb{P}_{\mathcal{N}} = \operatorname{Coll}(\omega, \mathcal{N})$$

such that if $\sigma_{\mathcal{N}}$ is the canonical term for an element of 2^{ω} coding \mathcal{N} then $\mathbb{P}_{\mathcal{N}}$ forces that $\sigma_{\mathcal{N}}[\dot{G}]$ is a code for a Borel $B[\dot{G}]$ set of least possible rank with

$$\mathbb{P}_{\mathcal{N}} \Vdash B[\dot{G}] = U_{\pi_0(a(\sigma_{\mathcal{N}}[\dot{G}]))}$$

Lemma 2.1

$$\mathbb{P}_{\mathcal{N}} \times \mathbb{P}_{\mathcal{N}} \Vdash B[\dot{G}_l] = B[\dot{G}_r].$$

Proof Since

$$\mathbb{P}_{\mathcal{N}} \times \mathbb{P}_{\mathcal{N}} \Vdash U_{\pi_0(a(\sigma_{\mathcal{N}}[G_l]))} = U_{\pi_0(a(\sigma_{\mathcal{N}}[G_r]))} = V_{\mathcal{N}}$$

So for any \mathcal{N} we can define a coresponding $\alpha_{\mathcal{N}}$ such that

 $\mathbb{P}_{\mathcal{N}} \Vdash B[\dot{G}]$ is a Borel set of rank $\alpha_{\mathcal{N}}$.

By appealing to Wadge determinacy, the calculation of α_N is absolute to inner model containing uncountably many ordinals and satisfying \sum_{1}^{1} determinacy. Since every generic extension of a frog can be subject to an iteration of length ω_1 , it will continue to correctly calculate α_N for all its tadpoles through all generic extensions.

Lemma 2.2 Let $\mathcal{M} = (M; \in, \kappa_0, \mu_0, T_0)$ be a frog. $A \in \mathcal{P}(\kappa)^{\mathcal{M}}$, and \mathcal{N} the tadpole induced by A. Then

 $\mathcal{M} \models \alpha_{\mathcal{N}} < \kappa_0.$

Proof Take the iteration of \mathcal{M} of length $\alpha_{\mathcal{N}} + 1$ mapping

$$i_{0,\alpha_{\mathcal{N}}+1}^{\mathcal{M}}:\mathcal{M}\to\mathcal{M}_{\alpha_{\mathcal{N}}+1},$$

$$\kappa_0 \mapsto \kappa_{\alpha_N+1}$$
.

The important point about this iteration is that it moves κ_0 to an ordinal above α_N . $i_{0,\alpha_N+1}^{\mathcal{M}}|N$ equals the internal iterate of \mathcal{N} along its measure, since \mathcal{N} is closed under power set. Thus $V_{\mathcal{N}} = V_{i_{0,\alpha_N+1}^{\mathcal{M}}(N)}$. Thus,

$$V_{\mathcal{N}} = V_{i_{0,\alpha_{\mathcal{N}}+1}^{\mathcal{M}}(\mathcal{N})},$$

and hence

$$\alpha_{\mathcal{N}} = \alpha_{i_{0,\alpha_{\mathcal{N}}+1}^{\mathcal{M}}(\mathcal{N})},$$

and thus by the appeal to Wadge determinacy mentioned above,

$$\mathcal{M}_{\alpha_{\mathcal{N}}+1} \models \alpha_{i_{0,\alpha_{\mathcal{N}}+1}^{\mathcal{M}}(\mathcal{N})} < \kappa_{\alpha_{\mathcal{N}}+1},$$

and hence by elementarity

 $\mathcal{M}\models \alpha_{\mathcal{N}}<\kappa_{0}.$

Thus by cardinality considerations inside \mathcal{M} we can find a single $\alpha < \kappa_0$ such for some sequence $(A_\beta)_{\beta \in \kappa_0}$ we have that for \mathcal{N}_β the tadpole induced from A_β

 $\mathcal{M} \models \mathbb{P}_{\mathcal{N}_{\mathcal{B}}} \Vdash B_{\mathcal{B}}[\dot{G}]$ is a Borel set of rank α ,

$$\mathcal{M} \models \mathbb{P}_{\mathcal{N}_{\beta}} \Vdash B_{\beta}[G] = U_{\pi_0(a(\sigma_{\mathcal{N}}[G]))},$$

and hence

$$\mathcal{M} \models \mathbb{P}_{\mathcal{N}_{\mathcal{B}}} \times \mathbb{P}_{\mathcal{N}_{\mathcal{B}}} \Vdash B_{\mathcal{B}}[\dot{G}_{l}] = B_{\mathcal{B}}[\dot{G}_{r}]$$

and

 $\mathcal{M} \models \mathbb{P}_{\mathcal{N}_{\mathcal{B}}} \times \mathbb{P}_{\mathcal{N}_{\gamma}} \Vdash B_{\mathcal{B}}[\dot{G}_{l}] \neq B_{\gamma}[\dot{G}_{r}]$

for $\beta \neq \gamma$.

Thus we obtain, inside \mathcal{M} , more than $\beth_{1+\alpha+1}$ many inequivalent codes for invariant Borel sets – which is exactly the situation ruled out by the paper [5], and hence a contradiction.

So much for the argument under the simplifying assumptions indicated, now for a proof under only $AD^{L}(\mathbb{R})$.

This part uses some largely unpublished work of Hugh Woodin's, who showed that for any $S \subset Ord$ in $L(\mathbb{R})$ we have that on a cone of $x \in 2^{\omega}$

$$\operatorname{HOD}_{S}^{L[x,S]} \models (\omega_{2})^{L}[x,S]$$
 is a Woodin cardinal,

where here $HOD_S^{L[x,S]}$ is the collection of all sets in L[x, S] which (inside L[x, S] are hereditarily definable from S and the ordinals. Working inside such a model where S codes up the tree T for the complete Σ_1^2 set, the argument passes through as above.

References

- [1] A. Andretta, G. Hjorth, I. Neeman, *Effective cardinals of boldface pointclasses*, Journal of Mathematical Logic, 7 (2007), no. 1, 35-82.
- [2] G. Hjorth, An absoluteness principle for Borel sets, Journal of Symbolic Logic, 63 (1998), no. 2, 663-693.
- [3] D.A. Martin, Y.N. Moschovakis, J.R. Steel, The extent of definable scales, Bulletin American Mathematical Society, (N.S.) 6 (1982), no. 3, 435-440
- [4] Y.N. Moschovakis, Descriptive Set Theory, Studies in Logic and the Foundations of Mathematics, 100. North-Holland Publishing Co., Amsterdam-New York, 1980.
- [5] J. Stern, Annals of Mathematics, vol. 120 (1984), pp. 7-37.
- [6] W.H. Woodin, Supercompact cardinals, sets of reals, and weakly homogeneous trees, Proceedings of the National Academy of Sciences of the United States of America, 85 (1988), no. 18, 6587-6591.