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Abstract
This paper gives a proof based on large cardinal ideas that there is no injection inside $L(\mathbb{R})$ from $\prod_{\sim^{1}}^{1}$

to Borel.

1 Introduction
This paper concerns cardinalities inside $L(R)$ under determinacy assumptions, in particular giving an-
other proof of a previous established result that the cardinality of $\prod_{\sim^{1}}^{1}$ is greater than that of $\sim\Delta_{1}^{1}$ inside
$L(\mathbb{R})$ .

Deflnition For $A,$ $B\in L(R)$ we write
$|A|_{L(R)}\leq|B|_{L(R)}$

if there is an injection from $A$ to $B$ in $L(\mathbb{R})$ . We write

$|A|_{L(R)}<|B|_{L(R)}$ ,

and sav that –it the $L(\mathbb{R})$-cardinality of $A$ is less than that of $B$ if there is an injection in $L(R)$ from
the hrst. set to the second, but not from the second to the first,

From $[$ 2 $]$ :

Theorem 1.1 (Hjorth) Assuming A $D^{L(R)}$ , for all $\alpha<\beta<\omega_{1}$

$| \prod_{\sim^{a}}0|_{L(R)}<|\prod_{\sim^{\beta}}0|_{L(R)}$ .

The exact computations in the Wadge hierarchy were given in [1], which in particular gave:

Theorem 1.2 (A ndretta, Hjorth, Neeman) Assuming A $O^{L(R)}$ , for all $n>1$

$| \Delta_{1}^{1}|_{L(R)}\sim\cdot<|fI||_{L(R)}\sim<|\prod_{\sim^{\mathfrak{n}}}1.|_{L(R)}$ .

The proof given there was exacting a technical. In this short note I will sketch a simpler proof based
on large cardinal concepts that

$| \Delta_{1}^{1}|_{L(R)}\sim<|\prod_{\sim^{1}}1|_{L(R)}$ .

2 Proof
For conceptual simplicity, let’s start by assuming there are enough large cardinals ensure determinacy
and absoluteness of the theory of $L(\mathbb{R})$ through all forcing extensions. See for instance [6].

Let
$U\subset 2^{\omega}x2^{\omega}$

.
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be a universal $\Pi_{1}^{1}$ set. Assume for a contradiction

$| \sim\Delta_{1}^{1}|_{L(R)}\geq|\prod_{\sim^{1}}1|_{L(R)}$ .

Then in $L(\mathbb{R})$ we can find a relation
$R\subset 2^{d}\cross 2^{\omega}x2^{\omega}$

such that:
(a) $(x, y1, y2)\in R\Rightarrow U_{y\iota}=2^{w}\backslash U_{y2}$ ;
(b) $\forall x\exists y\iota,$ $y2R(x, y_{1}, y2)$ ;
(c)if $(x, y\iota, y_{2})\in R,$ $(x^{l}, y_{1}’, y_{2}’)\in R.$ and $U_{x}=U_{x’}$ , then $U_{y\iota}=U_{y_{1}’}$ .

By Basis $( \sum_{\sim^{1}},\sim\Delta_{2})$ in $L(\mathbb{R})$ and [3], we can find tree representatives for such a relation $R$ in all generic
extensions. By considering homogeneous forcing notions collapsing various cardinals and appealing to
the stabilization of the theory we can find some choice of the relation $R\in L(\mathbb{R})$ above, and a measurable
cardinal $\kappa$ , an inaccessible

$\theta>\kappa$

which is a limit of measurable cardinals and tree
$T\subset 2^{<\omega}x2^{<\omega}x2^{<\omega}x\delta^{<\omega}$ ,

on some $\delta$ such that in all forcing extensions of size less than コ
$\omega$

$(\kappa$ $)+=|V_{\kappa+u}|^{+}$ we have that $T$ continues
to have $p[T]=R$, where $R$ is now interpreted as its canonical extension in $L(\mathbb{R})$ of the generic extension,
and thus we continue to have

(a) $(x, y_{1}, y_{2})\in p[T]\Rightarrow U_{v\iota}=2^{\omega}\backslash U_{y2}$ ;
(b) $\forall x\exists y_{1},$ $y_{2}p[T](x, y1, y2)$ ;
(c)if $(x, y_{1}, y_{2})\in p[T],$ $(x’,y_{1}’, y_{2}’)\in p[T]$ , and $U_{x}=U_{x’}$ , then $U_{y1}=U_{y_{1}’}$

$T$ will arise from the Scale on $\Sigma_{1}^{2}$ in $L(\mathbb{R})$ of some suitable massive generic extension. Thus we can
assume there is a function $\pi$ uniformly definable over all such $L(R)$ ’s with

$\pi(x)=(\pi_{0}(x), \pi(x_{1}))$ ,

and
$(x, \pi_{0}(x).\pi_{1}(x))\in R$

all $x\in 2^{\omega}$ .
For future reference, let us fix now a measure $\mu$ on $\kappa$ .

Deflnition A countable, transitive structure

$\mathcal{M}=(M;\in, \kappa_{0}, \mu 0, T_{0})$

is a frog if there exists
$\rho\cdot \mathcal{M}arrow V_{\theta}$

with
$\kappa 0\mapsto\kappa$ ,

$\mu 0\mapsto\mu$ ,
$T_{0}\mapsto T$ .

Note that this final clause ensures that any element of $p[T_{0}]$ is in $p[T]$ and hence $R$ .
A countable transitive structure

$\mathcal{N}=(N;\in, \kappa_{0}, \mu 0, A_{0})$

is a tadpole if it satisfies powerset, comprehension, an $d$ all other axioms of ZFC except possible replace-
ment, and it is iterable against the measure $\mu 0$ , and $\mathcal{A}0\subset\kappa 0$ .

Given $\mathcal{M}=(M;\in, \kappa 0, \mu 0, To)$ a frog and $A0\in \mathcal{P}(\kappa 0)^{\Lambda t}$ , we let

$\mathcal{N}=(V_{\kappa(},+\cup;\in, \kappa 0, \mu 0, A_{0})$

be the tadpole indu$ced$ from $\mathcal{M}$ by $A$ .
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Note that any frog has unboundedly many measurables, and it will all generic extensions of the frog
will be iterable against the surviving measurables in light of the embedding into a large rank initial
segment of $V$ .

Deflnition For $\mathcal{N}=(N;\in, \kappa 0, \mu 0, A_{0})$ a tadpole, we let $V_{N}$ be the set of codes for ordinals $\alpha<\omega\iota$ such
that if we take the iteration

$t_{0.\alpha}:\mathcal{N}arrow N_{\alpha}$

of lengt. $h\alpha$ against the measure $\mu 0$ , then
$\alpha\in i_{0a}[A_{0}|$ .

For $x\in 2^{\omega}$ coding a tadpole $\mathcal{N}$ , we let $a(x)$ be chosen canonically, and uniformly recursively in $x$ , with

$U_{a(x\}}=v_{!v’}$ .

Note that any two codes for the same tadpole give rise to the same $\prod_{\sim^{1}}^{1}$ set.
Thus given a tadpole $\mathcal{N}$ there will be a term $\tau N$ in

$P_{N}=Col1(\omega,\mathcal{N})$

such that if $\sigma N$ is the canonical term for an element of $2^{\omega}$ coding $\mathcal{N}$ then $\mathbb{P}_{N}$ forces that $\sigma N[\dot{G}]$ is a code
for a Borel $B[\dot{G}]$ set of least possible rank with

$\mathbb{P}_{N}|\vdash B[\dot{G}1=U_{\pi_{()}(a(\sigma}N\ovalbox{\tt\small REJECT} G]))$ .

Lemma 2.1

$\mathbb{P}_{N}x\mathbb{P}_{N}|\vdash B|\dot{G}_{l}]=B[\dot{G}_{r}|$ .

Proof Since
$\mathbb{P}_{N}x\mathbb{P}_{N}|\vdash U_{\pi o(\circ(\sigma}=N[c_{l}]))U_{\pi o(a(\sigma[G_{f}\cdot]))}=NV_{N}$ .

ロ

So for $any\mathcal{N}$ we can define $a$ coresponding $\alpha N$ such that

$\mathbb{P}_{N}|\vdash B[\dot{G}]$ is a Borel set of rank $\alpha N$ .

By appealing to Wadge determinacy, the calculation of $\alpha N$ is absolute to inner model containing
uncountably many ordinals and satisfying $\sum_{\sim^{1}}1$ determinacy. Since every generic extension of a frog can be
su} $)ject$ to an iteration of length $\omega_{1}$ , it will continue to correctly calculate $\alpha_{\Lambda^{(}}$ for all its tadpoles through
all generic extensions.

Lemma 2.2 Let $\mathcal{M}=(M;\in. \kappa_{0}, \mu 0, T_{0})$ be a frog, $A\in \mathcal{P}(\kappa)^{\Lambda 4}$ , and $\mathcal{N}$ the tadpole induced by A. Then

$\mathcal{M}\models\alpha,v<\kappa_{O}$ .

Proof Take the iteration of $\mathcal{M}$ of length $\alpha N+1$ mapping

$i_{0,\alpha+1}^{\Lambda 4}:\mathcal{M}Narrow \mathcal{M}_{\alpha}N+1$ .
$\kappa 0\mapsto\kappa_{\alpha}N+1$ .

The important point about this iteration is that it moves $\kappa 0$ to an ordinal above $\alpha N\cdot i_{0.\alpha}^{At}N+1|\mathcal{N}$ equals
the internal iterate of $\mathcal{N}$ along its measure, since $\mathcal{N}$ is closed under power set. Thus $V_{A’}=V_{i_{0.a}^{1\Lambda}(N)}$ .
Thus.

$V_{N}=V_{i_{0.aN^{+1}}^{\wedge 4}(\Lambda^{r})}$ ,

and hence
$\alpha N=\alpha_{\iota_{0.t1N^{+1}}^{\lambda 4}(N)}$

,
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and thus by the appeal to Wadge determinacy mentioned above,

$\mathcal{M}_{\alpha+1}N\models\alpha_{i_{\acute{\check{0}},\alpha N+1}(N)}<\kappa_{\alpha+1}N$ ’

and hence by elementarity
$J^{\{\Lambda}\models\alpha N<\kappa_{0}$ .

口

Thus by cardinality considerations \’inside $\mathcal{M}$ we can find a single $\alpha<\kappa 0$ such for some sequence
$(A_{S})_{\beta\in\hslash(}$ we have that for $\mathcal{N}_{\beta}$ the tadpole induced from $A_{\beta}$

$\mathcal{M}\models \mathbb{P}_{N_{\beta}}|\vdash B_{\beta}[\dot{G}]$ is a Borel set of rank $a$ ,

$\mathcal{M}\models \mathbb{P}_{N_{\beta}}|\vdash B_{\beta}[\dot{G}]=U_{\pi 0(a(\sigma}N[G]))$

and hence
$\mathcal{M}\models \mathbb{P}_{\mathcal{N}_{\beta}}x\mathbb{P}_{N_{\beta}}|\vdash B_{\beta}[\dot{G}_{l}]=B_{\beta}[\dot{G}_{\tau}]$

and
$\mathcal{M}\models \mathbb{P}_{N,},$ $x\mathbb{P}_{\vee}\backslash r_{\gamma}|\vdash B_{3}[\dot{G}_{l}]\neq B_{\gamma}[\dot{G}_{r}]$

for $\beta\neq\gamma$ .
Thus we obtain, inside $\mathcal{M}$ , more than $\supset l+\alpha+1$ many inequivalent codes for invariant Borel sets -

which is exactly the situation ruled out by the paper [5], and hence a contradiction,

So much for the argument under the simplifying assumptions indicated, now for a proof under only
$AD^{L}(\mathbb{R})$ .

This part uses some largely unpublished work of Hugh Woodin’s, who showed that for any $S\subset Ord$

in $L(\mathbb{R})$ we have that on a cone of $x\in 2^{\omega}$

$HOD_{S}^{L\ovalbox{\tt\small REJECT} x.S\}}\models(\omega_{2})^{L}[x, S]$ is a Woodin cardinal,

where here $HOD_{s}^{\iota\ovalbox{\tt\small REJECT}^{x.S}1}$ is the collection of all sets in $L[x,$ $S]$ which (inside $L[x,$ $S]$ are hereditarily definable
from $S$ and the ordinals. Working inside such a model where $S$ codes up the tree $T$ for the complete $\Sigma_{1}^{2}$

set, the argument passes through as above,
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