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1 Knot points of typical continuous functions

We begin by giving the statement of the main theorem of the author’s $PhD$ thesis [Sal],
cstablished jointly with David Preiss. For the background and historical remarks, see
[Sal],

We write $I$ for the unit interval $[0,1]$ and $C(I)$ for the set of all real-valued con-
tinuous functions defined on $I$ .

Definition 1.1.
Let. $f\in C(I)$ . A point $a\in I$ is called a knot point of $f$ if

$\lim_{x\downarrow}\sup_{a}\frac{f(x)-f(a)}{x-a}=\lim_{x\uparrow a}S^{\backslash }11p\frac{f(x)-\cdot f(a)}{x-0,}=\infty$,

$Iim\inf_{x\downarrow a}\frac{f(x)-f(0_{l})}{x-a}=1i_{\ln}\inf_{x\uparrow 0}\frac{f(x)-f(a)}{x-a}=-\infty$ .

Here if $a$ is an endpoint of the interval $I$ , then we ignore the two undefined limits.
We denote by $N(f)$ the set of all points in $I$ $that$ are not knot points of $f$ .

If $f\in C(I)$ is differentiable, then $f$ has no knot points, so $N(f\cdot)=I$ . However
most $f\in C(I)$ are so bad that $N(f)$ is fairly small. To iiiake this stat$(enient$ precise,
we introduce the term typical. We give $C(I)$ the topology in(liiced by the supremum
$110rm$ .

Definition 1.2.
We say that a typical (generic) $f\in C(I)$ has $propertyP$ if the set of all $f\in C(I)$

with property $P$ is residual in $C(I)$ .

Recall that a subset $A$ of a topological space is said to be nowhere dense if the
closure of $A$ has empty interior; $\mathcal{A}$ is meagre (first category) if $A$ call bc expressed as
$c\prime 1$ countable union of nowhere dense sets; $A$ is residual (comeagre) if its complenient
$A^{C}$ is meagre.
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$\iota\iota_{e}^{r}$ shall characterise those families $\mathcal{F}$ of subsets of $I$ for which $N(f)\in \mathcal{F}$ for a
typical $f\in C(I)$ . Since $N(f)$ is always an $F_{\sigma}$ subset of $I$ , we may assume that $\mathcal{F}$ is a
subfamily of $\mathcal{F}_{\sigma}$ , the family of all $F_{\sigma}$ subsets of $I$ . For a subfamily $\mathcal{F}$ of $\mathcal{F}_{\sigma}$ , our main
theorem asserts that $N(f)\in \mathcal{F}$ for a typical $f\in C(I)$ if and only if $\mathcal{F}$ is large.

To define what it means for $\mathcal{F}$ to be large, we write $\mathcal{K}$ for the family of all closed
subsets of $I$ , and equip $\mathcal{K}$ with the Hausdorff metric $d$ . Recall that, writing $B(x, r)$

{’or the open ball of centre $x$ and radius $r$ , we define the Hausdorff metric by

$d(K, L)= \inf\{r>0$ $\bigcup_{x\in K}B(x, r)\supset L,\bigcup_{x\in I,}B(x, /)\supset K\}$

for nonemptv $K,$ $L\in \mathcal{K}$ , and $d(K\rangle\emptyset)=1$ for $K\in \mathcal{K}\backslash \{\emptyset\}$ . Its countable product $\mathcal{K}^{N}$

is furnished with the product topology.

Definition 1.3 ([Sa2, Definition 1.2]).
A subfamily $\mathcal{F}$ of $\mathcal{F}_{\sigma}$ is said to be residual if $\{(K_{\eta})\in \mathcal{K}^{N}|\bigcup_{n=1}^{\infty}K_{n}\in \mathcal{F}\}$ is a

residual subset of $\mathcal{K}^{N}$ .

$|_{Asubfamily\mathcal{F}of\mathcal{F}_{\sigma}isresidualifandon1y^{r}ifN(f)\in \mathcal{F}t\dot{c})\Gamma}^{Theorem1.4([Sa1,MainTheorem])}$

a $t.i\prime picalf\in C(I)$ .

2 A variant of the Banach-Mazur game
A cornplete proof of Theorem 1.4 can be found in [Sal]. An iinportant ingredient of
the proof there is to rephrase residuality in terms of the Banach-Mazur game.

Definition 2.1.
For a topological space $X$ and its subset $S$ , the $(X, S)$ -Banach-Mazur game is

described as follows. Plavers I and II alternatelv clioose a nonempt $\backslash ’$ open subset of
$X$ :

I: $U_{1}$ $U^{r_{2}}$

lI: V $V_{2}$

where $U_{m}$ and $V_{m}$ are nonempty open subsets of $X$ for all $m\in N$ , with the restriction
that $V_{m}$ must be contained in $U_{m}$ for every $m\in N$ and $U_{m}$ must be contained in
$V_{|11-1}$ for every $m\in \mathbb{N}\backslash \{1\}$ . Player II wins if $\bigcap_{m=1}^{\infty}V_{m}\subset S$ ; otherwise Player I wins.

Theorem 2.2 ([Ox]).
$I1Jr$he $(X. S)- I?ar$’ach-Maz$urgarie_{\}$ Plaver $II$ has a winning strategy if an $d$ only if

$S$ is residual in $X$ .
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In [Sal] we first use the Banach-Mazur game to prove that if $\mathcal{F}$ is residual, then
$N(f)\in \mathcal{F}$ for a typical $f\in C(I)$ ; then we invoke results in descriptive set theory to
show the converse. In order to make the descriptive set-theoretical results applicable,
we have to prove a slightly stronger statement than the first implication. However
the first implication itself can be proved in a simpler manner by using a variant of the
Banach-Mazur game. Unfortunately the simpler proof is still too complicated to be
$ii\}_{(}\gamma 1udod$ here, so what we shall do below is to detail $t$ }$\}ev_{C}wiaiit$ of the Banach-Mazur
game used there.

We first introduce an equivalent variant of the Banach-Mazur game:

Proposition 2.3.
Let $X$ be a topological space, $S$ a $su$ bset of $X$ , an $d\mathcal{A}$ a $t\dot{a}$mily of pairs of a $p$oint

of $X$ and its open neighbourhood. Suppose that for every nonempty open su\’ose$tO$

of $X$ there exists $(x, U)\in \mathcal{A}$ with $U\subset O$ . We consider tlie following game. Players
$I$ an$dII$ alternately choose an element of $\mathcal{A}$ :

I: $(x_{1}, U_{1})$ $(x_{2}, U\underline{\prime)})$

II: $(y_{1\}V_{1})$ $(y_{2}, \nu_{2}!’)$

where $(x_{m}, U_{m}),$ $(y_{m}, V_{m})\in \mathcal{A}$ for all $m\in N,$ $wi$ th the restriction that $y_{m}must$ belong
to $U_{m}$ for every $m\in \mathbb{N}$ and $x_{m}$ must $b$elong to $V_{m-1}$ for eveiy $m\in \mathbb{N}\backslash \{1\}$ . Player II
wins if $\bigcap_{m=1}^{\infty}V_{m}\subset S$ ; otherwise Player I wins.

Then Player II $h$as a winning stratcgy in this $game$ if and on$ly$ if $S$ is residu$al$ in
X.

Proof.
Suppose first that $S$ is residual in $X$ . Thcn Player II has a winning strategy in

$t_{)}h(Y(X, S)$ -Banach-Mazur game by Theorem 2.2. Using the winning strategy in the
Banach-Mazur game, Player II can obtain a winning strategv in our game in the
following manner:

our game
I: $(x_{1}, U_{1})$ $arrow$

II: $(y_{1}, V_{1})$ $arrow$

I: $(x_{2}, U_{2})$

II: $(y_{2}, V_{2})$ –

:

Banach-Mazur game
$\tilde{U}_{1}$

$\tilde{V}_{1}$

$\tilde{U}_{2}$

$\tilde{V}_{2}$

:

Broadly speaking, given the mth move $(x_{rn}, U_{m})$ of Player I in our game, Pla-yer II
transfers it to the Banach-Mazur game to obtain the $r’ rth$ iinaginary inove $U_{m}$ of
Playcr 1, and then transfers to our game the iniaginary replv $V_{m}$ given by the winning
strategy to get her real reply $(y_{m}, V_{m})$ . The details of the transfers are as follows:
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$\tilde{U}_{\mathfrak{m}}=U_{m}\cap V_{m-1}$ $(\tilde{U}_{m}=U_{m} if m=1)$ , and $(y_{m}, V_{m})$ is an element of $\mathcal{A}$ such that
$V_{m}\subset\tilde{V}_{m}$ . Note that this procedure gives legal movcs.

Obeying this method, Player II can wiii because $\bigcap_{\mathfrak{m}=1}^{\infty}V_{rn}\subset\bigcap_{rr1=1}^{\infty}\tilde{V}_{m}\subset S$ , where
the latter inclusion follows from the fact that the sets $V_{m}$ were given by the winning
strategy in the Banach-Mazur game,

The converse can be proved in the same way. 1

The residuality of subfamilies of $\mathcal{F}_{\sigma}$ has been defined via the space $\mathcal{K}^{N}$ in Def-
inition 1.3, but the subspace $\mathcal{K}_{\nearrow}^{N}$ of increasing sequences gives an equally natural
definition:

Definition 2.4 ([Sa2, Definition 1.2]).
Let $\mathcal{K}_{\nearrow}^{N}$ denote the set of all increasing sequences in $\mathcal{K}^{N}$ :

$\mathcal{K}_{\nearrow}^{N}=\{(K_{n})\in \mathcal{K}^{N}|K_{1}\subset K_{2}\subset\cdots\}$ ,

equipped with the relative topology. A subfamily $\mathcal{F}$ of $\mathcal{F}_{\sigma}$ is said to be $\nearrow$-residual
if $\{(A_{n}’)\in \mathcal{K}_{\nearrow}^{N}|\bigcup_{n=1}^{\infty}K_{n}\in \mathcal{F}\}$ is a residual subset of $\mathcal{K}_{\nearrow}^{N}$ .

It is shown in [Sa2] that the two definitions of residuality are equivalent.

Definition 2.5.
For $N\in \mathbb{N}$ and $t>0$ , we say that $(K_{n})\in \mathcal{K}^{N}$ is $(N, t)$ -close (resp. $(N, t)-$

$\nearrow$-close) to $(L.)\in \mathcal{K}^{N}$ if $d(K., L_{n})<t$ $($ resp. $d( \bigcup_{j=1}^{n}K_{j},$ $\bigcup_{j=1}^{n}L_{j})<t)$ for $n=$
$1,$ $\ldots.N$ .

Remark 2.6.
The $(1V, t)$ -closeness implies the $(N, t)-\nearrow$-closeness, but the converse is not true in

general.

Definition 2.7.
For a subfamilv $\mathcal{F}$ of $\mathcal{F}_{\sigma}$ , we define three games called the disjoint game, the

monotone game, and the mixed game.
Let $\mathcal{D}$ denote the set of all sequences whose terms are pairwise disjoint finite subsets

of $I$ . In any of these games, Players I and II alternately choose a sequence in $\mathcal{D}$ , a
positive integer, and a positive real number:

I: $(K_{n}^{(1)}),$ $0^{(1)},$ $r^{(1)}$ $(K_{n}^{(2)}),$ $a^{(2)},$ $r^{(2)}$

II: $(L_{\eta}^{(1)}),$ $b^{(1)},$ $s^{(1)}$ $(L_{n}^{(2)}),$ $b^{(2)},$ $s^{(2)}$

. . .

where $(K_{n}^{(m)})$ . $(L_{n}^{(m)})\in \mathcal{D},$ $a^{(m)},$ $b^{(m)}\in N$ , and $r^{(m)},$ $s^{(m)}>0$ for all $m\in N$ .
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(1) In the disjoint game, $(L_{n}^{(m)})$ must be $(a^{(m)}, r^{(m)})$ -close to $(If_{n}^{(m)})$ for every $m\in \mathbb{N}$

and $(K_{n}^{(m)})$ must be $(b^{(m-1)}, s^{(m-1)})$-close to $(L_{\eta}^{(m-1)})$ for every $m\in \mathbb{N}\backslash \{1\}$ .
Player II wins if $\bigcup_{n=1}^{\infty}K_{n}\in \mathcal{F}$ whenever $(K_{n})\in \mathcal{K}^{N}$ is $(b^{(m)}, s^{(m)})$ -close to
$(L_{n}^{(m)})$ for all $m\in \mathbb{N}$ ; otherwise Player I wins,

(2) In the monotone game, $(L_{n}^{(m)})$ must be $(a^{(m)}, r^{(m)})-\nearrow$-close to $(K_{n}^{(m)})$ for every
$m\in \mathbb{N}$ and $(K_{n}^{(m)})$ must be $(b^{(m-1)}, s^{(m-1)})-\nearrow$ -close to $(L_{n}^{(m-1)})$ for every $m\in$

$\mathbb{N}\backslash \{1\}$ . Player II wins if $\bigcup_{n=1}^{\infty}K_{n}\in \mathcal{F}$ whenever $(K_{n})\in \mathcal{K}_{\nearrow}^{N}$ is $(b^{(m)}, s^{(m)})-\nearrow-$

close to $(L_{n}^{(m)})$ for all $m\in \mathbb{N}$ ; otherwise Player I wins.
(3) In the mixed game, $(L_{n}^{(m)})$ must be $(a^{(m)}, r^{(m)})$ -close to $(K_{n}^{(m)})$ for every $m\in \mathbb{N}$

and $(K_{n}^{(m)})$ must be $(b^{(m-1)}, s^{(m-1)})-\nearrow$-close to $(L_{n}^{(m-1)})$ for every $m\in N\backslash \{1\}$ .
Player II wins if $\bigcup_{n=1}^{\infty}K_{n}\in \mathcal{F}$ whenever $(K_{n})\in \mathcal{K}_{\nearrow}^{N}$ is $(b^{(m)}, s^{(m)})-\nearrow$-close to
$(L_{n}^{(m)})$ for all $m\in \mathbb{N}$ ; otherwise Player I wins.

The set $\mathcal{D}$ defined above is dense in $\mathcal{K}^{N}$ . and the set $\{(\bigcup_{j=1}^{n}K_{j})\in \mathcal{K}_{\nearrow}^{N}|(K_{n})\in \mathcal{D}\}$

is dense in $\mathcal{K}_{\nearrow}^{N}$ .

Proposition 2.8.
For a subfamily $\mathcal{F}$ of $\mathcal{F}_{\sigma}$ , the following conditioii$s$ are equivalent:
(1) Player II has a winning strateg.V in the disjoint game for $\mathcal{F}$ ;

(1 a) $\mathcal{F}$ is residu$al$ ;
(2) Player II has a winning strategy in the monotone ganie for $\mathcal{F}_{1}$

(2a) $\mathcal{F}is\nearrow$ -residu$al$ ;
(3) Player II has a winning strategy in the mixed game for $\mathcal{F}$ .

Outline Proof.
Proposition 2.3 shows that (1) is equivalent to (la) and that (2) is equivalent to

(2a). It is easy to see that Remark 2.6 ensures that (3) irnplies both (1) and (2). It
is proved in [Sa2] that (1) and (2) arc equivalent, and in fact the proof there shows
that each of (1) and (2) implies (3). 1

The mixed game allows us to prove the following propositions, which is equivalent
to saying that if $\mathcal{F}$ is residual, then $N(f)\in \mathcal{F}$ for a typical $f\in C(I)$ :

Proposition 2.9.
Le $t\mathcal{F}$ be a subfamily of $\mathcal{F}_{\sigma}$ for which $Pl$ayer II has a wiiming $stratcg_{\iota}V$ in the mixed

gam $\epsilon\supset$ . Then Player II $h$as a winning strategy in the $(C(I), S)$ -Banach Mazur game,
where $S=\{f\in C(I)|N(f)\in \mathcal{F}\}$ .

Even the proof of this proposition is so coiiiplicated that we shall not go into
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further details here.
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