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The approximation o\ddagger the quadratic variation by the ”realized” quadratic variation
plays a very important role in practice, especially for financial data, since such data are
necessarily reported at discrete times. Other quantities of interest, based on discrete
observations as well, have been considered in many recent papers: these quantities are
sums of functions o\ddagger the successive increments of the process, usually suitable powers or
absolute powers o\ddagger those increments. They are used to estimates some characteristics o\ddagger

the jumps of the observed process, or the volatility of the continuous part, or for various
testing problems about jumps for example.

However, if the behavior of the realized quadratic variation and of other similar \ddagger unc-

tionals is well known when the observations come in regularly, this is no longer the case
when the observation times are irregularly spaced, and even worse, when they are ran-
dom. Relatively few papers are so far available in that case: see $[14|,$ $[1]$ and [15] for
deterministic observation times, and [4] for some special random times like hitting times,

and [7], $[$8$]$ , $[$9], [6] and $[2|$ when the process is multidimensional and the observation times
exhibit some sort of relatively restricted randomness, or are random but independent of
the observed process. In the five last papers, the situation is quite complex because the
various components are observed at different times. All those papers are concerned with a
continuous underlying process. One may also quote related works dealing with estimation
of various parameters with random sampling, like [5] for diffusions and [3] for Markov
processes.

In this short presentation–without proo\ddagger -- we consider a restricted problem, for the
following reasons:

$1arrow$ The underlying process is l-dimensional. This avoid considering two or more com-
ponents which are observed at different times.

2- The test functions which we use are absolute power functions. Those are the most
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useful ones in practice, but an extension to more general test functions would be
(relatively) easy to do.

3- The underlying process is continuous.

On the other hand, we do not restrict ouuselves to the realized quadratic variation,
although the integrated volatility is of course the archetypal and also the most interesting
quantity to estimate.

l-The observed process.
The underlying process $X$ is a l-dimensional continuous semimartingale $X$ on a filtered

probability space $(\Omega,\mathcal{F}, (\mathcal{F}_{t})_{t\geq 0},\mathbb{P})$ , which is of It\^o type, that is of the form

$X_{t}=X_{0}+ \int_{0}^{t}b_{\epsilon}ds+\int_{0}^{t}\sigma_{s}dW_{s}$ , (1)

where $W$ is a Wiener process and $b$ and $\sigma$ are progressively measurable processes. Our
aim is to estimate the following “integrated” quantities:

$V(p)_{t}=m_{p}/0^{t}|\sigma_{\epsilon}|^{p}ds$ (2)

(here $m_{p}$ is the pth absolute moment of the standard normal law $\mathcal{N}(0,1)$ ), when $p\geq$

$2$ , together with “feasible” estimators for the variance or conditional variance of these
estimators, so as to be able to construct confidence intervals for exainple.

Apart from being as in (1), we make two different assumptions on $X$ , depending on
the results we want to prove:

Assumption (A): We have (1), and the process $b$ is locally bounded, and the process $\sigma$

is c\‘adl\‘ag ( $=$ riglzt continuous with left limits). $\square$

Assumption (B): We have (1), and the process $\sigma$ is ako a (possibly discontinuous) It\^o
semimartingale, which can be written as

$\sigma_{t}=\sigma_{0}+1_{0^{t}}^{\tilde{b}_{s}ds}+/_{0^{t}}\tilde{\sigma}_{s}dW_{s}+M_{t}+\sum_{\epsilon\leq t}\Delta\sigma_{s}1_{\{|\Delta\sigma_{\epsilon}|>1\}}$ ,

where $M$ is a local martingale with $|\Delta M_{t}|\leq 1$ , orthogonal to $W$ , and its predictable
quadratic covariation process is $\langle M,$ $M \rangle_{t}=\int_{0}^{t}a_{s}’ds$ , and the predictable compensator of
$\sum_{s\leq t}1_{\{|\Delta\sigma_{\theta}|>1\}}$ is $\int_{0}^{t}a_{\epsilon}ds$ , and the processes $\tilde{b},$

$a$ and $a’$ are locally bounded, and the
processes a and $b$ are left continuous with right limits. ロ

Note that $M$ may have jumps, and it may also have a non-vanishing continuous mar-
tingale part, which then must be a stochastic integral with respect to another Brownian
motion independent of $W$ .
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2-The sampling scheme.

At stage $n$ the process $X$ is observed along a strictly increasing sequence of-possibly
random–finite times $T(n, i),$ $i\geq 0$ , starting at $T(n, 0)=0$ , and we use the notation

$\Delta(n, i)=T(n, i)-T(n, i-1)$ , $I(n, i)=(T(n, i-1),T(n, i)]$ ,

$N_{t}^{n}= \inf(i:T(n, i)>t)-1$ , $\pi_{t}^{n}=\sup_{i=1,\cdots,N_{t}^{n}+1}\Delta(n, i)$

( $\pi_{t}^{n}$ is the “mesh” up to time $t$ , by convention $\inf(\emptyset)=\infty$ and $\sup(\emptyset)=0$). Also, for any
process $Y$ we write

$\Delta_{i}^{n}Y=Y_{T(n,i)}-Y_{T(n_{t}i-1)}$ .

First, we always assume the following minimal requirements:

$n\geq 1$ $\Rightarrow$ $T(n,i)arrow\infty$ P–a.s., as $iarrow\infty$

(3)
$t\geq 0$ $\Rightarrow$

$\pi_{t}^{n}arrow^{\mathbb{P}}0$ as $narrow\infty$ .

Next, we have a structural assumption:

Assumption (C): There is a sub-filtration $(\mathcal{F}_{t}^{0})_{t\geq 0}$ of $(\mathcal{F}_{t})_{t\geq 0}$ , with respect to which $W$

and $b$ and $\sigma$ are adapted, and such that any $(\mathcal{F}_{t}^{0})$ martingale is also an $(\mathcal{F}_{t})$-martingale, and
such that for all $n,$ $i\geq 1$ the variable $T(n, i)$ is an $(\mathcal{F}_{t})$-stopping time which, conditionally
on $\mathcal{F}_{T(n,i-1)}$ , is independent of the $\sigma- field\mathcal{F}^{o}=_{t>0}\mathcal{F}_{t}^{0}$ .

This assumption is satisfied when the $T(n, i)$ ’s are non-random $(dete\prime vninistic$ schemes$)$ ,
and when the $T(n, i)$ ’s are independent of the processes $(W, X, b, \sigma)$ (independent schemes),
but it includes many other cases as well. However it excludes some a priore interesting
situations: when $\mathcal{F}_{t}^{0}=\mathcal{F}_{t}$ , then (C) amounts to saying that those stopping times are
“strongly predictable” in the sense that $T(n, i)$ is $\mathcal{F}_{T(n_{1}i-1)}$-measurable, and this is quite
restrictive; for example it excludes the case where the $T(n, i)$ ’s are the successive hitting
times of a spatial grid by $X$ , a case considered in [4] under some restrictive assumptions
on $X$ .

Apart from (3) and (C), the sampling scheme should also be not too wildly scattered,
asymptotically speaking. Also, its meshes $\pi_{t}^{n}$ should converge to $0$ at some deterministic
rate, the same for all $t$ . This rate is expressed through a sequence $r_{n}arrow\infty$ of positive-
non random-numbers. The assumptions below all involve this sequence $r_{n}$ , in an implicit
way.

Before giving the assumptions, and for any $q\geq 0$ , we introduce the processes

$A(q)_{t}^{n}=r_{n}^{q-1} \sum_{i=1}^{N_{t}^{n}}\Delta(n, i)^{q}$.

The normalization $r_{n}^{q-1}$ is motivated by the regular schemes $T(n, i)=i\Delta_{n}$ , for which
$A(q)_{t}^{n}=\Delta_{n}[t/\Delta_{n}|$ (with the choice $r_{n}=1/\Delta_{n}$ ) converges towards $t$ for any $q\geq 0$ . Note
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also that $A(0)_{t}^{n}=N_{t}^{n}/r_{n}$ , and since $t-\pi_{t}^{n}\leq A(1)_{t}^{n}\leq t$ we deduce that

$A(1)_{t}^{n}arrow^{\mathbb{P}}t$

as soon as (3) holds. Then, with $q\geq 0$ , we set:

Assumption $(D(q))$ : We have (3) and (C), and there is a (necessarily nonnegative)
$(\mathcal{F}_{t}^{0})$ -optional process $a(q)$ , such that for all $t$ we have

$A(q)_{t}^{n} arrow^{\mathbb{P}}\int_{0}^{t}a(q)_{s}ds$ . (4)

Note that $(D(q))$ for some sequence $r_{n}$ implies $(D(q))$ for any other sequence $r_{n}’$ such
that $r_{n}’/r_{n}arrow\alpha\in[0, \infty)$ , and the new liniit in (4) is then $\alpha^{q-1}a(q)$ if $\alpha>0$ or if $q\geq 1$ , and
in particular vanishes when $r_{n}^{l}/r_{n}arrow 0$ : the forthcoming theorems which explicitly involve
$r_{n}$ are true but “empty” when the limit in (4) vanishes identically. Regular sampling
schemes with lag $\Delta_{n}$ satis$\mathfrak{b}^{r}(D(q))$ for all $q\geq 0$ , with $r_{n}=1/\Delta_{n}$ and $a(q)_{t}=1$ .

Let us state some important connections between these assumptions: If $0\leq q<p<q’$

we have for all $0\leq s<t$ we have

$A(p)_{t}^{n}-A(p)_{s}^{n}\leq(A(q)_{t}^{n}-A(q)_{s}^{n})^{i’,^{-}A}q-q(A(q’)_{t}^{n}-A(q’)_{s}^{n})^{\mu_{-q}^{-}}$

Then if $(D(q))$ holds for some $q\neq 1$ and if $p$ is strictly between 1 and $q$ , from any
subsequence one may extract a further subsequence which satisfies $(D(p))$ , and we have
versions of $a(q)$ and $a(p)$ satisfying $a(p)_{t}\leq a(q)_{t}^{(p-1)/(q-1)}$ .

Another interesting property is that (4) for all $t$ implies

$r_{n}^{q-1} \sum_{i=1}^{N_{t}^{n}}H_{T(n_{1}i)}\Delta(n, i)^{q}$
$u.c.parrow$

.
$/_{0^{t}}H_{8}a(q)_{s}ds$

as soon as $H$ is c\‘adl\‘ag. However in some cases this convergence should hold at a rate
faster than $1/\sqrt{r_{n}}$ , and we express this in the following assumption.

Assumption $(D’(q))$ : We have $(D(q))$ , and further for all $t\geq 0$ and all c\‘adl\‘ag $(\mathcal{F}_{t}^{0})-$

adapted processes $H$ we have

$\sqrt{r_{n}}(r_{n}^{q-1}\sum_{i=1}^{N_{t}^{n}}H_{T(n,i)}\Delta(n, i)^{q}-\int_{0}^{t}H_{s}a(q)_{s}ds)$
$u.c.parrow$

.
$0$ .

This assumption is indeed very strong: for example if we have an independent scheme
for which the $\Delta(n, i)$ ’s are i.i. $d$ . when $i$ varies, then this assumption is never satisfied
unless $r_{n}\Delta(n, 1)$ converges in law to a (necessarily non $0$) constant, as $narrow\infty$ .
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For a deterministic scheme, $(D(q))$ may or may not be satisfied, but there is no simple
criterion to ensure that it holds. For a random scheme, it may be useful to describe
conditions on the laws or on the conditional laws of the lags $\Delta(n, i)$ which ensure $(D(q))$ .
For each $n$ and each $q\geq 0$ we choose an $(\mathcal{F}_{t})$-optional $(0,$ $\infty|$ -valued process $G(q)^{n}$ such
that

$G(q)_{T(n_{\gamma}i-1)}^{n}=r_{n}^{q}E(\Delta(n,i)^{q}|\mathcal{F}_{T(n,i-1)})$. (5)

This specifies $G(q)_{t}^{n}$ only at the times $t=T(n, i)$ , so there are many such processes
$G(q)^{n}$ . A simple choice consists in taking $G(q)_{t}^{n}$ to be equal to the right side of (5) when
$T(n, i-1)\leq t<T(n, i)$ (a piecewise constant process). But other choices are possible,
and perhaps inore appropriate in view of the forthcoming assumption. We can obviously
take $G(0)_{t}^{n}=1$ , and by Holder’s inequality, we can and will choose processes $G(q)^{n}$ which
satisfy

$0\leq p\leq q$ $\Rightarrow$ $G(p)^{n}\leq(G(q)^{n})^{p/q}$ .
Then we set, with $q>1$ :

Assumption $(E(q))$ : We have (C) and (3), and for each $p\in[0,$ $q|$ there is a c\‘adl\‘ag
process $G(p)$ , adapted to $(\mathcal{F}_{t}^{0})$ , and further $G(1)$ and $G(1)_{-}$ do not vanish, such that for
an appropriate choice of $G(p)^{n}$ we have

$G(p)^{n}$ $u.c.parrow$
.

$G(p)$ . (6)

Note that $(E(q))$ for some $q>1$ yields $(D(p))$ for all $p\in[0, q)$ , with

$a(p)_{t}= \frac{G(p)_{t}}{G(1)_{t}}$ ,

and in particular

$\frac{1}{r_{n}}N_{t}^{n}arrow^{\mathbb{P}}$ $\int_{0}^{t}\frac{1}{G(1)_{8}}ds$ .

Sometimes we also need a rate of convergence in (6), which is expressed as follows:

Assumption $(E‘(q))$ : We have $(E(q))$ , and for each $p\in[0,$ $q|$ we have $\sqrt{r_{n}}(G(p)^{n}-$

$G(p))u.c.parrow 0$ .

Finally as an example we introduce a kind of sampling schemes which are somehow
restrictive but accommodates many practical applications, and are called mixed renewal
schemes. These schemes are constructed as follows: we consider a filtration $(\mathcal{F}_{t}^{0})$ as in
(C), and a double sequence $(\epsilon(n, i) : i, n\geq 1)$ of i.i. $d$ . positive variables on $(\Omega, \mathcal{F},\mathbb{P})$ ,
independent of $\mathcal{F}^{0}$ , with moments

$m_{q}’=E(\epsilon(n, i)^{q})$ .
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We may have $m_{q}’=\infty$ for $q>1$ , but we assume that $m_{1}’<\infty$ . We consider a sequence
$v^{n}$ of positive $(\mathcal{F}_{t})$ -adapted processes, and we define $T(n, i)$ by induction on $i$ as follows:

$T(n, 0)=0$, $T(n, i+1)=T(n, i)+ \frac{1}{r_{n}}v_{T(n,i)}^{n}\epsilon(n, i+1)$ .

Then $(\mathcal{F}_{t})$ is any filtration containing $(\mathcal{F}_{t}^{0})$ and such that each $T(n, i)$ is a stopping time.
In this situation, a natural choice for the processes $G(q)^{n}$ of (5) is $G(q)_{t}^{n}=m_{q}’(v_{t}^{n})^{q}$ .

Any mixed renewal scheme satisfies (C), and as soon as $v^{n}$ $ucparrow v$ (convergence in
probability, locally uniformly in time), where $v$ is an $(\mathcal{F}_{t}^{\triangleleft})$ -adapted c\‘adl\‘ag process $v$ such
that both $v$ and $v_{-}$ do not vanish, then we have (3) and $(E(q))$ and $(D(q))$ for any $q\geq 0$

for which $m_{q}’<\infty$ , and in this case

$G(q)_{t}=m_{q}’(v_{t})^{q}$ , $a(q)_{t}= \frac{m_{q}’}{m_{1}}(v_{t})^{q-1}$ . (7)

And if furthermore $\sqrt{\Delta_{n}}(v_{n}-v)ucparrow 0$ , we also have $(E’(q))$ .

3- The estimators.
A natural estimator for $V(p)_{t}$ in (2) is, at stage $n$ , the variable

$V^{n}(p)_{t}= \sum_{i=1}^{N_{t}^{n}}\Delta(n, i)^{1-p/2}|\Delta_{i}^{n}X|^{p}$ . (8)

The upper limit of the sum is such that $V^{n}(p)_{t}$ involves exactly the observations actually
occurring up to time $t$ only. These estimators are natural because we have:

Theorem 1 Under $(A)$ and $(C)$ and (3), we have

$V^{n}(p)_{t}$ $\underline{ucp}_{\rangle}V(p)_{t}=m_{p}\int_{0}^{t}|\sigma_{s}|^{p}ds$ . (9)

This is of course well known for a regular sampling scheme $T(n, i)=i\Delta_{n}$ for some time
lag $\Delta_{n}$ going to $0$ , because then $V^{n}(p)_{t}= \Delta_{n}^{1-p/2}\sum_{i=1}^{N_{t}^{n}}|\Delta_{i}^{n}X|^{p}$. Note that when $p=2$
this holds under no condition at all on $b$ and $\sigma$ , other than the fact that (1) makes sense;
end this is a very hold result. Note also that the factor $\Delta(n, i)\Delta(n, i+1)^{-p/2}$ which goes
out of the suni in the regular case does not in general, and the idea to place this factor
inside the sum is due to $[$ 1 $]$ .

As we will see, the behavior of $V^{n}(p)$ is not enough for our purposes, and we need to
establish the convergence in probability for more general processes. For $p>0$ and $q\geq 0$

we set

$V^{n}(p, q)_{t}= \sum_{i=1}^{N_{t}^{n}}\Delta(n,i)^{q+1-p/2}|\Delta_{i}^{n}X|^{p}$ , (10)
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so in particular $V^{n}(p)=V^{n}(p, 0)$ . In the regular sampling case $\Delta(n, i)=\Delta_{n}$ these
processes all convey the same information, since $V^{n}(p, q)=\Delta_{n}^{q}V^{n}(p)$ , but this is no
longer the case in the irregular sampling case.

Theorem 2 Let $p\geq 1$ and $q\geq 0$ . Assume $(A)$ and $(D(q+1))$, and also $(D(q+1+\epsilon))$

for some $\epsilon>0$ when $q>0$ . Then

$r_{n}^{q}V^{n}(p, q)_{t}$ $u.c.parrow V(p, q)_{t}:=m_{p}/0^{t}|\sigma_{s}|^{p}a(q+1)_{s}ds$ . (11)

4-The Central Limit Theorem.

The previous consistency results are undoubtedly useful, but to make full use of them
we need some associated CLT (central limit theorem).

For a proper statement of the CLT, we recall the notion of $\mathcal{F}^{o}$ -stable convergence in
law for a sequence of random variables (or processes) $Y_{n}$ defined on $(\Omega,\mathcal{F}, \mathbb{P})$ , see [10] for
more details. We say that $Y_{n}$ converge $\mathcal{F}^{0}$ -stably in law to $Y$ , where $Y$ is a variable defined
on an extension $(\tilde{\Omega},\tilde{\mathcal{F}},\tilde{\mathbb{P}})$ of $(\Omega,\mathcal{F}, \mathbb{P})$ , if we have

$E(Zh(Y_{n}))arrow\tilde{E}(Zh(Y))$ : $Z$ bounded $\mathcal{F}^{0}$-measurable, $h$ continuous bounded.

There are in fact two versions for the CLT. The first is associated with Theorem 1, and
is thus the most useful in practice, and it also holds for (11) when $q>0$ under a strong
additional assumption:

Theorem 3 Let $p\geq 2_{f}$ and assume $(A)$ when $p=2$ and $(B)$ when $p>2$ . Let $q\geq 0$ and
assume one of the following two sets of hypotheses:

(i) $q=0$ and $(D(2))$;

(ii) $q>0$ and $(D(q+1))$ and $(D(2q+2))$ and $(D’(q+1))$ .

Then the processes $\sqrt{r_{n}}(r_{n}^{q}V^{n}(p, q)-V(p, q))$ converge $F$ -stably in law to

$\overline{V}(p, q)_{t}=\sqrt{m_{2p}-m_{p}^{2}}\int_{0}^{t}|\sigma_{s}|^{p}\sqrt{a(2q+2)_{s}}dW_{s}^{l}$,

where $W’$ is a standard Brownian motion, defined on an extension of $(\Omega, \mathcal{F}, (\mathcal{F}_{t})_{t\geq}0, \mathbb{P})$

and independent of $\mathcal{F}$ . Moreover, conditionally on $\mathcal{F}^{0}$ , the process $\overline{V}(p, q)$ is a continuous
centered Gaussian martingale with (conditional) variance at time $t$ :

$(m_{2p}-m_{p}^{2})/0^{t}|\sigma_{s}|^{2p}a(2q+2)_{s}ds$ (12)
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As mentioned before, $(D’(q+1))$ is a very strong assumption, which for example is
never satisfied by mixed renewal schemes unless the variables $\epsilon(n, i)$ are constant. So when
$q>0$ the previous CLT hardly applies.

In practice we want to estimate $V(p)_{t}$ , so the above seems enough. However we
need also an estimate for the conditional variance (12). For this, we may use (1 $-$

$\frac{m_{p}^{2}}{m_{2p}})r_{n}V^{n}(2p, 1)_{t}$ by virtue of (11): this is why we have introduced the processes $V^{n}(p, q)$

for $q>0$ . But now, for asserting the quality of the latter estimator, we need a CLT for the
processes $V^{n}(p, q)$ under reasonable assumptions, weaker than (ii) above. This is achieved
in the following result:

Theorem 4 Let $p\geq 2$ and $q\geq 0$ . $\mathcal{A}ssume(B)$ and that the sampling scheme satisfies
$(E’(2q+2+\epsilon))$ for some $\epsilon>0$ , and that the $(\mathcal{F}_{t}^{0})$ -adapted processes $G(p)$ for $p\in[1,2q+2]$
are It\^o semimartingales with the same properties as the process $\sigma$ in Assumption $(B)$ . Then
the processes $\sqrt{r_{n}}(r_{n}^{q}V^{n}(p, q)-V(p, q))$ converge $\mathcal{F}^{0}$ -stably in law to

$\overline{V}(p, q)_{t}=/0^{t}|\sigma_{s}|^{p}\sqrt{a(2q+2)_{s}w(p,q)_{s}}dW_{8}’$ ,

where $W’$ is as in Theorem 3 and

$w(p, q)_{t}=m_{2p}-m_{p}^{2} \frac{2G(q+2)_{t}G(q+1)_{t}G(1)_{t}-(G(q+1)_{t})^{2}G(2)_{t}}{G(2q+2)_{t}(G(1)_{t})^{2}}$ .

One may check that
- $w(p, q)_{t}\geq m_{2p}-m_{p}^{2}$ always;
-when the assumptions of both theorems above are satisfied, then $w(p, q)_{t}=m_{2p}-m_{p}^{2}$ ,

so the two limits are the same.
Also, if we have an independent scheme with, say $\Delta(n, i)=\epsilon(n, i)/r_{n}$ where the $\epsilon(n, i)$

are all i.i. $d$ . with law $\eta$ and $m_{1}’=1$ (this is a special mixed renewal scheme, for which
$v^{n}=v=1$ and so (7) gives $G(q)_{t}=m_{q}’$ and $a(q)_{t}=m_{q}’)$ . On the one hand, the average
number of sampling times inside $[0, t]$ , at stage $n$ , is $tr_{n}$ . On the other hand we have
$a(2q+2)_{t}>1$ and $w(p, q)_{t}\geq m_{2p}-m_{p}^{2}$ , unless $\epsilon(n, i)=1$ a.s., in which case those are
equalities. So the asymptotic conditional variance of the estimator for this independent
scheme is always strictly bigger than the asymptotic conditional variance for the regular
scheme having the same average number of observations.

5 - Estimation of the integrated volatility and other powers.

Suppose we want to estimate the variable $V(p)_{t}$ at some time $t>0$ . We can “stan-
dardize” our estimator $V^{n}(p)_{t}$ by considering the variable

$T_{t}^{n}=\sqrt{\frac{m_{2p}}{(m_{2p}-m_{p}^{2})V^{n}(2p)1)_{t}}}(V(p)_{t}^{n}-V(p)_{t})$ .

Then the following holds:
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Theorem 5 Let $p\geq 2$ . Assume $(D(2))$ and $(D(2+\epsilon))$ for some $\epsilon>0$ . Assume also $(A)$

when $p=2$ and $(B)$ otherwise. Then for any $t>0$ such that $\int_{0}^{t}|\sigma_{\theta}|^{2p}a(2)_{s}ds>0a.s.$ , the
sequence $T_{t}^{n}$ converges in law (and even $\mathcal{F}^{0}$ -stably in law) to $\mathcal{N}(0,1)$ .

All ingredients in the definition of $T_{t}^{n}$ are known to the statistician, except of course the
quantity $V(p)_{t}$ to be estimated. Therefore we can derive (asymptotic) confidence intervals
for $V(p)_{t}$ , or tests, in a straightforward way.

An interesting-and crucial-feature of this result is that the properties of the observa-
tion scheme are not showing explicitly in the result itself, and in particular the knowledge
of the process $a(2)$ and even of the rates $r_{n}$ is not necessary to apply it. This is a good
thing because those are generally unknown, whereas it is also dangerous because one might
be tempted to use the property that $T_{t}^{n}$ is (approximately) $\mathcal{N}(0,1)$ without checking that
the assumptions on the sampling scheme are satisfied. When they are satisfied, and al-
though the rates $r_{n}$ do not explicitly show up, these rates still govern the “true” rate of
convergence.

Once more, $r_{n}$ is unknown, but $N_{t}^{n}$ is of course known. Then as soon as we have also
$(D(O))$ (for example when $(E(2))$ holds), then $N_{t}^{n}/r_{n} arrow^{\mathbb{P}}\int_{0}^{t}a(0)_{s}ds$ , and so the actual
rate of convergence for the estimators is also $1/\sqrt{N_{t}^{n}}$, as it should be.
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