
An Invariance Property for Exchangeable Sequence:
Application to Stock Price Data

Alok Goswami
Division of Theoretical Statistics & Mathematics

Indian Statistical Institute, Kolkata

Lecture delivered in Workshop on “Stochastic Numerics”, RIMS,
Kyoto University, Kyoto, July 7-9 : 2008

1 Some Probability Limit Results

Consider $n$ objects arranged in a row and suppose $m$ are selected at random
(that is, with equal probability for each of $(_{m}^{n})$ selections). If we label se-
lected objects by Os and the rest of the objects by ls, we get a random n-long
binary sequence with $m$ many Os and $n-m$ many ls. There will be $(m+1)$
runs of ls (of which, some may be possibly of length zero) separated by Os.
Let $Y_{1}^{n},$

$\ldots,$
$Y_{m+1}^{n}$ denote the lengths of these $m+1$ runs of ls. Then $Y_{1}^{n},$

$\ldots,$
$Y_{m+1}^{n}$

is a sequence of nonnegative interger valued random variables, which are
cleraly not independent (they add up to $n-m!$). Further, for every vector
$(l_{1}, \ldots, l_{m+1})$ of non-negative integers with $l_{1}+\cdots+l_{m+1}=n-m$ , we have

$P(Y_{1}^{n}=l_{1}, \ldots, Y_{m+1}^{n}=l_{m+1})=\frac{1}{(_{m}^{n})}$

Clarly, the sequence $Y_{1}^{n},$
$\ldots$ , $Y_{m+1}^{n}$ is exchangeable, that is, the joint distri-

bution is invariant undr permutations of coordinates.

The question that we ask is: what happens as $narrow\infty$?

We show that when $m$ also grows with $n$ in an appropriate way, the random
variables $Y_{j}^{n},$ $1\leq j\leq m+1$ behave asymptotically like an i.i. $d$ . sequenec of
geometric random variables.
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Theorem 1: Let $narrow\infty$ and let $m\sim np$ for some $p\in(O, 1)$ .
Then, for any $k\geq 1$ ,

$(Y_{1}^{n}, \ldots,Y_{k}^{n})arrow^{d}(Y_{1}, \ldots, Y_{k})$ ,

where $Y_{1},$
$\ldots,$

$Y_{k}$ are independent and identically distributed ran-
dom variables having the geometric distribution with parameter $p$ .

Next, we consider a slightly different question. Consider the probability his-
togram (relative frequencies) generated by the random variables $Y_{1}^{n},$

$\ldots,$
$Y_{m+1}^{n}$ .

This will give a (random) probability distribution on non-negative integers
with the probability mass functions

$\theta_{n}(l)(\omega)=\frac{1}{m+1}\sum_{i=1}^{m+1}1_{\{Y_{i}^{n}(\omega)=l\}}$ ,

$l=0,1,$ $\ldots$

What do these probability histograms look like for large $n$? In other words,
do the empirical distributions of the $Y_{j}^{n},$ $1\leq j\leq m+1$ converge to a limit,
as $narrow\infty$? If $Y_{1}^{n},$

$\ldots,$
$Y_{m+1}^{7t}$ were IID Geometric(p), then of course, the

histograms would resemble, for large $n$ , Geometric(p) distribution. This is
classical rsult. But here the $Y_{1}^{n},$

$\ldots,$
$Y_{m+1}^{n}$ are only asymptotically i.i. $d$ . with

Geometric(p) distribution. It turns out, however, that, with probability one,
the (random) probability histograms gemated by the $Y_{1}^{n},$

$\ldots,$
$Y_{m+1}^{n}$ will, for

large $n$ , still resemble a Geometric(p) distribution.

Theorem 2: Let $narrow\infty$ and let $m\sim np$ for some $p\in(O, 1)$ .
Then,

$P\{\begin{array}{lll}\lim \theta_{n}(l)=p(1-p)^{l} narrow\infty l=0,1 \cdots\end{array}\}=1$ .

Denote the empirical distribution for the random variables in the nth row
by $P_{n}$ . Then, by the well-known Scheffe’s Theorem, one gets the following
result.
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Corollary: The distributions $P_{n}$ converge, with probability 1, to
the Geometric(p) distribution, in total variation as well as in Kol-
mogorov distance. Further, the convergence $\theta_{n}(l)arrow p(1-p)^{l}$ is
uniform in $l$ , with probability 1.
In the next section, we outline a connection of the above results with analy-
sis of stock price data, which was the main motivation for these results. In
particular, the above results provide an invariance theorem in probability.
Further details on the stock price analysis and the detailed proofs of the
results may be found in [1] and [2].

2 Connection with stock-price data: An In-
variance Result

Much of what follows is basd on the principle of what is called hierarchical
segmentation of the Stock Price Time Series. Given prices of a stock at equal
intervals of time, consider the times of occurences of extreme values for the
returns over succesive time intervals. This will generate a certain subset from
among the set of all time points considered. Now suppose that the assumed
model for stock prices implies that the returns over successive time intervals
(of equal length) are i.i. $d$ . or, more generally, exchangeable. Then it is clear
that in picking the times of occurences of extreme values of such returns, all
subsets (of a fixed size) from among the set of all time points are equally
likely to show up.
To elaborate, let $\alpha,$ $\beta\geq 0$ with $0<\alpha+\beta<1$ . From a set of values
$(x_{1}, x_{2}, \ldots,x_{n})$ , we want to choose those that form the lower $100\alpha$-percentile
and those that form the upper $100\beta$-percentile. It is clear that if $k$ and $l$ are
integers satisfying

$\frac{k}{n}\leq\alpha<\frac{k+1}{n}\leq\frac{l-1}{n}<1-\beta\leq\frac{l}{n}$ ,

we will always end up selecting exactly $k+n-l+1$ from the $n$ data points
with $k$ of them forming the lower $100\alpha$-percentile and remaining $n-l+1$
forming the upper $100\beta$-percentile. The following theorem says that in case
the data points are realizations of $n$ exchangeable random variables, then
this amounts to selecting $k+n-l+1$ objects at random from a set of $n$

objects. This gives the connecting link between analysis of stock price data
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and the limit results in the previous section.

Theorem 3: If $X_{1},$
$\ldots,$

$X_{n}$ are random variables with an exchange-
able joint distribution, then any one of the $(_{k+n-l+1}n)$ possible choices
can occur with equal probability as the set of points constituting
the lower $100\alpha-$ and upper $100\beta$-percentiles,

The importance of the above lies in the fact that under many of the standard
theoretical models of stock prices (starting from the classical Black-Scholes’
Geometric Brownian Motion model to the more recent Geometric Levy Pro-
cess Model), the returns over successive intervals of time (of equal length)
are i.i. $d$ . Our results also cover the case when such returns are merely ex-
changeable, as is the case of Geometric Fhractional Brownian Motion with
Hurst index $=1$ . Our results would suggest that under any of these models,
the histograms (empirical distributions) of the successive gaps between loca-
tions of extremes in the stock price returns should be close to an appropriate
Geometric distribution, at least for large $n$ . An outline of the findings with
real-life stock price data is contained in the talk given by my collaborator
Chii-Ruey Hwang and in his article in this volume. A number of interesting
problems remain open and are being looked into.
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