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1 Introduction
Study of economic growth has long history of almost 600 years after A. Smith and T. Malthus. The

main thesis of economic growth theory is to answer the following question: Why some countries are so
$r\prime ich$ and the others are so poor?

In nowadays economic growth theories, Neo-classical growth model plays the fundamental part. This
model was developed by the works of R. Solow, 1956, 1957.

After Solow’s work, R. Lucus (1988), D. Romer (1986), G. Mankiw (1992), and etc refined Solow
model by importing advances of technology or human factor. In this paper, we discuss Solow model with
stochastic perturbations.

We will start $hom$ the original Solow model. An economy in the model is considered in the following
setting.

Assumption 1.1. (i) The economy is an isolated tsland in where many labors live. There is a social
planner, who govems all $e$の nomic.

(ii) There is one good. At time $t$ , production $Y(t)$ of the good depends on two factors, capital $K(t)$ and
labor $L(t)$ . The good can be either consumed or invested as capital.
(iii) The social planner saves a constant fraction $s\in(0,1)$ of production, to be added to the economy’s
capital stock, and distributes the remaining fraction uniformly across the labors of the economy. $0$

In what follows, we introduce the following standard signatures in economic theory:

$Y(t)=$ output at time $t$ , $K(t)=$ capital stock at time $t$ ,
(1.1) $I(t)=$ investment at time $t$ , $C(t)=$ consumption at time $t$ ,

$L(t)=$ the number of labors at time $t$ .

From Assumption 1.1 ( $+a$ little assumptions), the following condition is derived:

Condition 1.2. (i) The economy is Keynes system, that is

$I(t)+C(t)=Y(t)$ .

(ii) The output of the good production is given by the production function $F:[0, \infty)x[0,$ $\infty)arrow[0, \infty)$ ,
that is

(1.2) $Y(t)=F(K(t), L(t))$ .

(iii) Capital depreciates at a fixed rate $\lambda\in[0,1|$ , that is

$K’(t)=I(t)-\lambda K(t)$ .
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(iv) Saving rate $s\in(0,1)$ is constant, that is

$Y(t)=sY(t)+C(t)$ .

(v) The population of labors increases in a $\omega nstant$ rate $n$ :

(1.3) $L’(t)=nL(t)$ . $0$

In addition, we assume that the production function $F$ in (1.2) is neo classical, i.e. the following
condition is fulfilled.

Condition 1.3. The production function $F$ is a strictly concave $C^{2}$ class function with $F(O, L)=0=$
$F(K, 0)$ . Moreover $F$ satisfies:

(1.4) $0< \lim_{Karrow 0}\partial_{K}F(K, L)$ , $0< \lim_{Larrow 0}\partial_{L}F(K, L)=\infty$,

(1.5) $\lim_{Karrow\infty}\partial_{K}F(K, L)=0$ , $\lim_{Larrow\infty}\partial_{L}F(K, L)=0$.
(1.6) $F(aK, a L)=aF(K, L)$ for $\forall a>0$ ; CRS (constant returns to scale) property. $0$

Remark 1.4. (i) In many prior papers, (1.4) is replaced by the stronger lnada condition, that is

(1.7) $\lim_{Karrow 0}\partial_{K}F(K, L)=\infty$ , $\lim_{Larrow 0}\partial_{L}F(K, L)=\infty$ .

But Inada condition (1.7) concludes“2 that

huge growth of the production are derived from small increment in the capital only if the population
of labors is sufficiently large.

Therefore some economists ([7] et.al.) assert that Inada condition is not adequate to assume, and we
assume Condition 1.3 only.

(ii) A production function $F$ is called DRS (decreasing retums to scales) if the following inequality holds:

$F(a K, a L)<aF(K, L)$ for $\forall a>0$ .
It is called IRS (increasing retum to scales) if the following inequality holds:

$F^{\urcorner}(a K, a L)>aF(K, L)$ for $\forall a>0$ . $0$

Example 1.5. (i) The Cobb-Douglas production function is a typical example fulfilling Condition 1.3
and Inada condition (1.7), that is

(1.8) $F(K, L)=K^{\alpha}L^{1-\alpha}$ with a constant $0<\alpha<1$ .

(ii) Let $c$ be a positive constant. A modified Cobb-Douglas production function

(1.9) $F(K, L)\equiv(K+cL)^{\alpha}L^{1-\alpha}-c^{\alpha}L$

is an example which fulfills Condition 1.3 without Inada condition (1.7). $0$

We introduce the per ca-pita measurements, that is

$y(t)\equiv Y(t)/L(t)$ (per ca-pita GDP),
(1.10)

$k(t)\equiv K(t)/L(t)$ (per ca-pita capital stock),

By CRS condition in Condition 1.3, (ii),

(1.11) $y(t)= \frac{Y(t)}{L(t)}=\frac{F(K(t),L(t))}{L(t)}=F(\frac{K(t)}{L(t)}, 1)\equiv f(k(t))$

We also call this $f$ as a production function. By definition (1.11) of $f$ and Condition 1.3,

$*2$ For instant, aee $[7| or |13, \S 4]$ .
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Condition 1.6. A production function $f$ : $[0, \infty)arrow[0, \infty)vs$ a stnctly concave $C^{2}$ class function with
$f(O)=0$ . Moreover $f$ satisfies
(1.12a) $\lim_{karrow\infty}f’(k)=0$ ,

(1.12b) $\exists\lim_{karrow 0}f’(k)>0$ ,

where $\lim_{karrow 0}f’(k)$ may be infinity. $0$

Remark 1.7. If $F$ satisfies Inada condition (1.7), then (1.12b) is replaced by the following condition

$\lim_{karrow 0}f’(k)=\infty$ . $0$

Example 1.8. (i) If $F$ is the Cobb-Douglas production function (1.8), then

$f(k)=k^{\alpha}$ .

(ii) If $F$ is the Cobb-Douglas production function (1.9), then

$f(k)=(k+c)^{\alpha}-c^{\alpha}$ . $0$

Combining the equations in Condition 1.2, we derive ODE for the capital stock $K(t)$ :

$K’(t)=\{Y(t)-C(t)\}-\lambda K(t)=sY(t)-\lambda K(t)$
(1.13)

$=sF(K(t),$ $L(t))-\lambda K(t)$ .
By a simple calculation,

$k’(t)=( \frac{K(t)}{L(t)})’=\frac{K’(t)}{L(t)}-\frac{K(t)}{L(t)}\cdot\frac{L’(t)}{L(t)}$ .

Now (1.13) and (1.3) give the dynamics of capital stock in per ca-pita measurement:
(1.14) (Solow equation) $k’(t)=sf(k(t))-(\lambda+n)k(t)$ ,

where $s\in(O, 1)$ is saving rate, $\lambda\in[0,1|$ is capital depreciating rate, and $n$ is population growth rate.

Fig. 1.1 The state of golden age $k$ “

Owing to Condition 1.6, if $hm_{karrow 0}f’(k)>(\lambda+n)/s$ , then there exists a unique solution $k^{*}$ to
(1.15) $sf(k)-(\lambda+n)k=0$ , $k>0$ ,

and it is a stable fixed point of Solow equation (1.14).

Proposition 1.9. If $\lim_{karrow 0}f’(k)>(\lambda+n)/s$ , then there exists a unique point $k^{*}>0$ which solves
(1.15). We call $k^{*}$ as the state of golden age, since

$\lim_{tarrow\infty}k(t)=k^{*}$ for any $k(O)>0$ . $0$
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2 Verification of Solow model
We shall compare the result in Proposition 1.9 with a statics in the real economy between 1980 and

1997 which will be shown in Fig. 2.1.
Growth rate of per ca-pita GDP is $y’(t)/y(t)$ . From (1.11) and Solow equation (1.14), we have

(2.1) $\frac{y’(t)}{y(t)}=\frac{f’(k(t))}{f(k(t))}k’(t)=f’(k(t))\{s-(\lambda+n)\frac{k(t)}{f(k(t))}\}$.

Suppose that $f’(0)>(\lambda+n)/s$ . Then owing to Condition 1.6, we know that the right hand side of (2.1)
behaves as

$f’(k) \{s-(\lambda+n)\frac{k}{f(k)}\}$ $\{\begin{array}{l}>0 and monotonously decreases in k if 0<k<k^{*},=0 if k=k^{*},<0 if k>k^{*}.\end{array}$

From the above arguments, it follows that:

Proposition 2.1. (i) If $k(O)$ is small ($i.e$. poor $\omega$untries), growth rate of per ca-pita $GDP,$ $y’(t)/y(t)$ ,
should be bigger than the case of large $k(O)$ ($i.e$ . rich countnes).

(ii) If $k(t)$ is near to the golden age $k^{*}$ , growth rate of per ca-pita $GDP$ should be very small. $0$

Fig. 2.1 Per ca-pita GDP and its growth rate (Source-book: World Development Indicators)

Fact 2.2. (i) Economies of some $\omega untr\dot{v}es$ are much conform to Solow model (2.1), what are Japan
and Korean for instance.

(ii) USA must have reached the golden age, but he firmly maintains 2 % growth rate of per ca-pita $GDP$

during this 100 years. This fact $\omega ntmdicts$ to the $\omega nclusion$ (ii) in Proposition 2.1.

(iii) There exists many such countries as in the area A of Fig. 2.1, what are counter examples against
the conclusion (i) in Proposition 2.1. In particular, it is hard to account ne.qative growth rates in the
area A. $0$
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In order to overcome the difficulties stated in Fact 2.2 (iii), many economists make various attempts
to approve Solow model.

I. R. Lucus (1988), D. Romer (1986), and etc imported advances in technology $A(t)$ into Solow model.
For instant, Lucus considered Harrod type production function

(2.2) $Y(t)=F(K(t),$ $A(t)L(t))$ ,

where

(2.3) $A(t)\equiv A_{0}\exp\{gt\}$ , $g$ is a non-negative constant

is an advances in technology for each labor.
While some economists“3 consider Hicks type production function

(2.4) $Y(t)=A(t)F(K(t), L(t))$ ,

in place of (2.2) with the same $A(t)$ as in (2.3).

II. H. Uzawa (1965), G. Mankiw(1992), and etc introduced human factor $H(t)$ . For instant, Mankiw
introduced a production function

$Y(t)=F(K(t), L(t), H(t))$

with a human factor $H(t)$ , and he implied a simultaneous equations

$k’(t)=s_{k}y(t)-(n-\lambda_{k})k(t)$ ,
$h’(t)=s_{h}y(t)-(n-\lambda_{h})k(t)$ ,

where $s_{k}$ is a constant saving rate to capital stock. $s_{h}$ is a constant saving rate to human capital stock,
and $\lambda_{k},$ $\lambda_{h}$ are constant depreciating rates.
III. After adjusting factor $g$ in (2.3) and so on, they have obtained prosperous theories against to the
conclusion (ii) in Proposition 2.1. However their theories are not sufficient to defeat negative growth
rates stated in the conclusion (iii) in Proposition 2.1.

3 Solow equation under two random factors
Apart form Lucus and etc., some economists tried to randomize Solow equation. In particular, R.

$Merton^{*4}(1975)$ has shifted the population growth equation (1.3) on to a SDE

(3.1) $dL(t, w)=nL(t, w)dt+\sigma_{1}L(t, w)dB_{1}(t, w)$ ,

where $n$ and $\sigma_{1}$ are positive constants and $\{B_{1}(t, w)\}$ is a one dimensional Brownian motion. Applying
It\^o’s formula to (1.13), Merton has obtained a SDE which accounts per ca-pita capital stock $\{k(t, w)\}$

as a diffusion process in $(0, \infty)$ .

After Merton, Cho and Cooley (2001) replaced (2.3) by the diffusion process $A(t, w)$ which is a solution
of the following SDE

(3.2) $dA(t, w)=gA(t, w)dt+\sigma_{2}A(t, w)dB_{2}(t, w)$

where $g$ and $\sigma_{2}$ are positive constants and $\{B_{2}(t, w)\}$ is a one dimensional Brownian motion.

$*3$ Solow himself, E. Denison, D. Jorgenson, and etc..
$*4$ He is famous as a founder of Mathematical Finace.

57



In this note, we randomize both of the population growth $L(t, w)$ and advances in technology $A(t, w)$

by SDE’s (3.1) and (3.2) where $\{E_{1}(t, w)\}$ and $\{B_{2}(t, w)\}$ are independent one dimensional Brownian
motions. Then we consider an economy with the Harrod type production function (2.2).

Following Merton, we apply It\^o’s formula to a modified capital stock (per ca-pita capital stock with
advances in technology)

(3.3) $x(t, w) \equiv\frac{K(t,w)}{A(t,w)L(t,w)}$ .

Then we have

$d( \frac{K(t,w)}{A(t)w)L(t,w)})=\frac{K’(t,w)}{A(t,w)L(t,w)}-\frac{K(t,w)}{A(t,w)L(t,w)}t\frac{dA(t,w)}{A(t,w)}+\frac{dL(t,w)}{L(t,w)}\}$

$+ \frac{K(t,w)}{A(t,w)L(t,w)}(\frac{2(\sigma_{1}A(t,w))^{2}}{2(A(t_{2}w))^{2}}dt+\frac{2(\sigma_{2}L(t,w))^{2}}{2(L(t,w))^{2}}dt\}$.

Since $F$ is CRS (Condition 1.3 (ii)), we see that

$dx(t, w)=\{sf(x(t, w))-(\lambda+n+g-\sigma_{1^{2}}-\sigma_{2^{2}})x(t, w)\}dt$

(3.4)
$+x(t, w)\{\sigma_{1}dB_{1}(t, w)+\sigma_{2}dB_{2}(t, w)\}$

Here we introduce a new one dimensional Brownian motion

(3.5) $W(t, w) \equiv\frac{-1}{\sigma}(\sigma_{1}B_{1}(t, w)+\sigma_{2}B_{2}(t, w))$ with $\sigma\equiv\sqrt{\sigma_{1^{2}}+\sigma_{2^{2}}}$

and obtain a randomized Solow equation:

the stochastic Solow equation
(3.6)

$dx(t, w)=\{sf(x(t, w))-(\lambda+n+g-\sigma^{2})x(t, w)\}dt+\sigma x(t, w)dW(t, w)$.
Remark 3.1. For later use, we also show an explicit representation of $A(t, w)L(t, w)$ .

(3.7) $A(t, w)L(t, w)=A( O)L(O)\exp\{\sigma W(t)+(n+g-\frac{\sigma^{2}}{2})t\}$ , $t\geq 0$ .

4 Economy driven by the $stochast\dot{\ovalbox{\tt\small REJECT}}\subset$ Solow equation
First we shall study precise behaviors of $\{x(t, w)\}$ and its growth rate.

Applying Appendix \S A, I, we classify the boundaries $0$ and $\infty$ for $\{x(t, w)\}$ . The boundaries are the
natural boundary but they are either finite or infinite according to the value of

(4.1) $\theta\equiv\lambda+n+g-\frac{\sigma^{2}}{2}$ .

A direct calculation derives the following result.

Lemma 4.1. (i) $\{x(t, w)\}$ in (3.6) is a diffusion process in the interval $(0, \infty)$ with such boundary points
as
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(ii) Corresponding to $\{x(t, w)\}$ , the speed measure density $m(x)$ is define as in Appendix $A,$ $I$ , and it
behaves as follow$*5_{;}$

Now we are in the position to classify the asymptotics of $\{x(t, w)\}$ according to Appendix $A$ ;

Theorem 4.2. Le$t$ the production function $f$ satisfy Condition 1.6, and define a $\omega nstant\theta$ by (4.1).
Then asymptotics of $x(t, w)$ are as follows:

Here ‘positive recurrent’ means that the process is a recurrent diffusion in $(0, \infty)$ with an invanant
probability measure. While ‘null recurrent’ means that the process is recurrent but its invariant measure
is not probability one. $0$

Remark 4.3. If $\{x(t, w)\}$ is null recurrent, then it converges to a boundary in C\’esaro’s sense, that is

(4.2) $\lim_{Tarrow\infty}\frac{1}{T}/0^{\tau_{x(t,w)dt=}}\{\begin{array}{ll}\infty a.s. if \theta=00 a.s. if \theta=sf’(0).\end{array}$

Next we discuss about the growth rate of the modified capital stock $x(t, w)$ . In the non-random case,
the growth rate of per ca-pita capital stock $k(t)$ is defined as

(4.3) $\frac{k’(t)}{k(t)}=(\log k(t))’$ .

But in our case, the modified capital stock $x(t, w)$ is a diffusion process and $x’(t, w)$ has no sense. So we
should consider an average growth rate in time“6

(4.4) $\rho(T, w)\equiv\frac{\log x(T,w)-\log x(0)}{T}=\frac{1}{T}/0^{\tau_{d(\log x(t,w))}}$
’

instead of the instant growth rate (4.3).
Applying Ito’s formula to $\rho(t, w)$ , we easily obtain

(4.5) $\rho(T, w)=\frac{1}{T}/0^{T}\frac{sf(x(t,w))}{x(t,w)}dt-\theta-\sigma\frac{W(T)}{T}$ .

From Theorem 4.2 and Appendix $A$ , we can compute the first term in the right hand side of (4.5) (see
Appendix B).

Proposition 4.4. Let the production function $f$ satisfy Condition 1.6, and define a constant $\theta$ by (4.1).
Then asymptotics $of\rho(T, w)$ is as follows:

$\overline{6}$It suggoets properties of an invariant measure to $\{x(t,w)\}$ .
$*6$ This converges to the Lyapunov index of $\{x(t, w)\}$ as $tarrow\infty$ .
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Our $x(t, w)$ is the modified capital stock (3.3), it is not easy to see behaviors of the total capital stock
$K(t, w)$ itself from Proposition 4.4. So we show its asymptotics. Since $K(t, w)=A(t, w)L(t, w)x(t, w)$ ,
it holds that

(4.6) $\lim_{tarrow\infty}\frac{\log K(t,w)-\log K(0)}{t}=\lim_{tarrow\infty}\rho(t, w)+n+g-\frac{\sigma^{2}}{2}$ $a.s.$ .

Now the following theorem is obtained from Proposition 4.4 and (4.6).

Theorem 4.5. Let the production function $f$ satisfy Condition 1.6, and $a$ constant $\theta$ be defined by
(4.1). On the $(\lambda, n+g-\sigma_{2^{2}}/2)$ plain, we define domains A through $E$ as in Fig. 4.1.

$\lambda$

Fig. 4.1 The domains on $(\lambda, n+g-\sigma_{2^{2}}/2)$ plain

Then the following are asymptotics of the modified capital stock $\{x(t, w)\}$ and the total capital stock
$\{K(t, w)\}$ ;

5 Economic growth and economic indexes
In this section we investigate precise relation between asymptotics of the per ca-pita GDP $y(t, w)$ , the

total GDP $Y(t, w)$ , and $\theta$ in (4.1), assuming that $F$ is the Cobb-Douglas production function (1.8).
$Y(t, w)$ and $y(t, w)$ are given by

$Y(t, w)=F(K(t, w),$ $A(t, w)L(t, w))=A(t, w)L(t, w)f(x(t, w))$ ,

$y(t, w)= \frac{Y(t,w)}{L(t,w)}=A(t, w)f(x(t, w))$ .
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So if the production function $F$ is of Cobb-Douglas type (1.8), then it holds that

$\lim_{tarrow\infty}\frac{1ogY(t,w)-\log Y(0)}{t}=\alpha\lim_{tarrow\infty}\rho(t, w)+n+g-\frac{\sigma_{1^{2}}+\sigma_{2^{2}}}{2}$ $a.s.$ ,
(5.1)

$\lim_{tarrow\infty}\frac{\log y(t,w)-\log y(0)}{t}=\alpha\lim_{tarrow\infty}\rho(t, w)+g-\frac{\sigma_{2^{2}}}{2}$ $a.s.$ . $0$

From Proposition 4.4 and (5.1), we have the following main $th\infty rem$ .
Theorem 5.1. Suppose that the production function $f$ is of Cobb-Douglas type. On the $(n-\sigma_{1^{2}}/2,$ $g-$
$\sigma_{2}^{2}/2)$ plain, we define domains A through $F$ as in Fig. 5.1.

$q-\sigma_{2^{2}}/2$

$\sigma_{1^{2}}/2$

Fig. 5.1 The domains on the $(n-\sigma_{1^{2}}/2, g-\sigma_{2^{2}}/2)$ plain

Then the $follov\prime ing$ are asymptotics of the per ca-pita $GDP\{y(t, w)\}$ and the total $GDP\{Y(t, w)\}$ :
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where

$\gamma_{1}\equiv(1-\alpha)(g+n-\frac{\sigma_{1^{2}}+\sigma_{2^{2}}}{2})$ –a $\lambda$ ,

$\gamma_{2}\equiv n+g-\frac{\sigma_{1^{2}}+\sigma_{2^{2}}}{2}$ ,

$\gamma_{3}\equiv(1-\alpha)(g-\frac{\sigma_{2^{2}}}{2})-\alpha(n-\frac{\sigma_{1^{2}}}{2}+\lambda)$ ,

$\gamma_{4}\equiv g-\frac{\sigma_{2^{2}}}{2}$ . $0$

Remark 5.2. (i) Under the stochastic Solow equation (3.6), there is no such state of ‘golden age’ as in
Proposition 1.9.

(ii) If the economic indexes $(g-\sigma_{1^{2}}/2, n-\sigma_{2^{2}}/2)$ are there on one of the domains $B,$ $D$ , and $F$ of Fig.
5.1, then growth rates of those countries should be negative with probability one.
(iii) There exists only one domain $E$ on the $(g-\sigma_{1^{2}}/2, n-\sigma_{2^{2}}/2)$ plain of Fig. 5.1 such that both rate
of the total and the per ca-pita GDP grow up positively. $0$

Appendix A One dimensional diffusion $pro\subset ess$ with boundaries
I. We shall review behaviors of the diffusion process $\{x(t, w)\}$ defined by SDE (3.6).

Fix an arbitrary point $k_{0}\in(0, \infty)$ , and define

(the scale function) $S(x)\equiv l_{0}^{x}\varphi(y)dy$ ,

(the speed measure density) $m(x) \equiv\frac{1}{\sigma^{2}x^{2}\cdot\varphi(x)}$ ,

where
$\varphi(y)\equiv\exp\{-2/x_{0}y\frac{sf(\xi)-(\lambda+n+g-\sigma^{2})\xi}{\sigma^{2}\xi^{2}}d\xi\}$ , $y>0$ .

Using the scale function $S$ and the speed measure $m(k)dk$ , Feller (1954) and $It\hat{r}$McKean (1965) classified
boundaries of a one dimensional diffusion into five types, that is

a regutar boundary, an entrance, an exit, an infinite naturat, and a finite natural.

II. For $\{x(t, w)\}$ given by SDE (3.6), its boundary points are $0$ and $\infty$ , and both are natural boundaries.
In this case, asymptotic behaviors is already known, Nishioka (1976).

Case 1. Both are infinite natural:
$\{x(t, w)\}$ is recurrent on the interval $(0, \infty)$ , and density function of an invariant measure is

(Appendix A. 1) $\mu(x)\equiv\frac{m(x)}{C}=\frac{1}{C}\cdot\frac{1}{\sigma^{2}x^{2}\varphi(x)}$ .

Here the constant $C$ is

(Appendix A.2) $C\equiv\{\begin{array}{ll}\int_{0}^{\infty}m(x)dx if the integral is finite,1 otherwise.\end{array}$
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In addition, the following Ergodic Theorem holds:

Maruyama-Tanaka (1957): If functions $g,$ $h$ are integrable $w th$ respect to $\mu(y)dy$ , then

(Appendix A.3) $\lim_{Tarrow\infty}\frac{/_{0^{\tau_{g(x(t_{?}w))dt}}}}{\int_{0}^{T}h(x(t,w))dt}=\frac{/_{0^{\infty}}g(y)\mu(y)dy}{/_{0^{\infty}}h(y)\mu(y)dy}$ $a.s.$ ,

where the denominator in the right hand side must not vanish.

Case 2. One is finite natural and the other is infinite natural:
(i) $\{x(t, w)\}$ cannot reach boundaries within a finite time, almost surely.

(ii)

$\{$

$0$ $a.s$ . if $0$ is finite natural

$\lim_{tarrow\infty}x(t, w)=$

and $\infty$ is infinite natural,
$\infty$ $a.s$ . if $0$ is infinite natural

and $\infty$ is finite natural.

Case 3. Both are finite natural:
The statement (i) in Case 2 is true, but

$P_{x}[\lim_{tarrow\infty}x(t, w)=0|=\frac{S(\infty)-S(x)}{S(\infty)-S(0)}$ ,

$P_{x}[\lim_{tarrow\infty}x(t, w)=\infty 1=\frac{S(x)-S(0)}{S(\infty)-S(0)}\cdot$

Appendix B Sketch to the proof of Proposition 4.4
First remember SDE (4.5) that is

(Appendix B. 1) $\rho(T, w)=\frac{s}{T}/0^{T}\frac{f(x(t,w))}{x(t,w)}dt-(\lambda+n+g-\frac{\sigma^{2}}{2})-\frac{\sigma}{T}W(T, w)$ .

Here note that

(Appendix B.2) $\lim_{Tarrow\infty}\frac{W(T)}{T}=0$ $a.s$ .

from the iterated law of large number for a Brownian motion.
Step 1. Let $\theta<0$ . By Theorem 4.2, $x(t, w)arrow\infty a.s$ . if $\theta<0$ . Since $f$ satisfies Condition 1.6,

$\lim_{Tarrow\infty}\frac{1}{T}/0^{T}\frac{sf(x(t,w))}{x(t,w)}dt=\lim_{xarrow\infty}\frac{sf(x)}{x}=0$ $a.s.$ .

This and (Appendix B.2) derive that $\rho(T, w)arrow-\theta a.s$ . if $\theta<0$ .
Step 2. Let $0<\theta<sf’(O)$ . In this case, there exists an invariant probability measure whose density is
$\mu(x)$ of (Appendix A.1).
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We shall calculate the first term on the right hand side of (Appendix B. 1). Put $\beta\equiv 2(\lambda+n+g)/\sigma^{2}-2$ .

The first term $=s/ o^{\infty}dx\frac{f(x)}{x}\frac{C}{\sigma^{2}x^{2+\beta}}\exp\{\frac{2s}{\sigma^{2}}/x_{0}x\frac{f(\xi)}{\xi^{2}}d\xi\}$

$= \frac{sC\sigma^{2}}{2s}\int_{0}^{\infty}dx\frac{1}{\sigma^{2}x^{1+\beta}}(\exp\{\frac{2s}{\sigma^{2}}/x_{0}x\frac{f(\xi)}{\xi^{2}}d\xi\})’$

$= \frac{C}{2}\cdot\frac{1}{x^{1+\beta}}\exp\{\frac{2s}{\sigma^{2}}/x_{0}x\frac{f(\xi)}{\xi^{2}}d\xi\}|_{x=0}^{\infty}$

$+ \frac{\sigma^{2}C}{2}(1+\beta)/o^{\infty}dk\frac{1}{\sigma^{2}k^{2+\beta}}\exp\{\frac{2s}{\sigma^{2}}\int_{k_{O}}^{k}\frac{f(\xi)}{\xi^{2}}d\xi\}$

$= \frac{\sigma^{2}C}{2}(1+\beta)\frac{1}{C}=\lambda+n+g-\frac{\sigma^{2}}{2}=\theta$ ,

where we used that
$\frac{sf(\xi)}{\xi}\simeq sf’(0)>\theta$ if $\xi$ is sufficiently small.

Now we have proved that $\lim_{Tarrow\infty}\rho(T)=0$.
Step $9$. We shall investigate asymptotics of $\rho(t, w)$ when $\theta=0$ .
In this case, an invariant measure $\mu(x)dx$ is not finite, that is

$/L^{\mu(x)dx} \infty\sim\int_{L}^{\infty}\frac{1}{\sigma^{2}x}dx=\infty$ for large $L$ .

Moreover the function $f(x)/x$ may not be integrable.
Fix a sufficiently small $\epsilon>0$ , and define a function $h$ as

$h(x)\equiv\epsilon x$ , $x\geq 0$ .

Since $sf’(0)>0$ , we can find a unique point $x\dagger>0$ such that

$f(x)=h(x)$ , $x>0$ .

We define new functions $f$ and $\tilde{h}$ by

$\tilde{f}(x)\equiv\{\begin{array}{l}f(x) 0\leq x<x\dagger h(x) x^{\uparrow}\leq x,\end{array}$

$\tilde{h}(x)\equiv f(x)-h(x)=\{$ $f(x)_{0}-\epsilon x$

$0\leq x<x^{\dagger}$

$x\dagger\leq x$ .

Here $\tilde{h}(x)/x$ is integrable with respect to $\mu(x)dx$ , since $\mu(x)\sim x^{N}$ for small $x$ with any $N>0$ .
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We easily see that

$T\geq/o^{\tau_{I_{(0,L)}(x(t,w))}}dt$ , $/0^{\infty}I_{(0,L)}(x)\mu(x)dx<\infty$ ,

for arbitrary $L>0$ . By Ergodic Theorem (Appendix A.3), the next inequality holds with probability
one:

$0 \leq\lim_{Tarrow}\sup_{\infty}\frac{1}{T}/0^{T}\frac{\tilde{h}(x(t,w))}{x(t,w)}dt$

$\leq\lim_{Tarrow\infty}\frac{\int_{0}^{T}\frac{\tilde{h}(x(t,w))}{x(t,w)}dt}{1_{0}^{\tau_{I_{(0_{2}L)}(x(t_{2}w))dt}}}=\frac{/_{0^{\infty}}\frac{\tilde{h}(x)}{x}\mu(x)dx}{/_{0^{\infty}}I_{(0,L)}(x)\mu(x)dx}$.

Note that $/0^{\infty}\mu(x)dx=\infty$ , and let $Larrow\infty$ . Then we have

$\lim_{Tarrow\infty}\frac{1}{T}/0^{T}\frac{\tilde{h}(x(t,w))}{x(t,w)}dt=0$ $a.s.$ .

With respect to $h$ , remark that

$\frac{1}{T}/0^{T}\frac{h(x(t,w))}{x(t,w)}dt=\frac{1}{T}/0^{\tau_{\epsilon dt}}=\epsilon$ .

From this and the previous calculation,

$\lim_{Tarrow\infty}\frac{1}{T}/0^{T}\frac{\tilde{f}(x(t,w))}{x(t,w)}dt$

$= \lim_{Tarrow\infty}\frac{1}{T}/0^{T}\frac{\tilde{h}(x(t,w))}{x(t,w)}dt+\lim_{Tarrow\infty}\frac{1}{T}/0^{T}\frac{h(x(t,w))}{x(t,w)}dt=\epsilon$ .

The definition of $\tilde{f}$ implies that $0\leq f\leq f$ , and we have

$0 \leq\lim_{Tarrow}\sup_{\infty}\frac{1}{T}/0^{T}\frac{f(x(t,w))}{x(t,w)}dt$

$\leq\lim_{Tarrow\infty}\frac{1}{T}/0^{T}\frac{\overline{f}(x(t,w))}{x(t,w)}dt=\epsilon$ $a.s.$ .

Here $\epsilon>0$ is arbitrary. Let $\epsilon\downarrow 0$ and we have

$\lim_{Tarrow\infty}\frac{1}{T}\int_{0}^{T}\frac{f(x(t))}{x(t)}dt=0$ $a.s.$ .

Note that our assumption is $\theta=0$ . Now we have

$\lim_{Tarrow\infty}\rho(T)=0-\theta=0$ $a.s.$ ,

by an analogous way as in Step 1.
We shall omit the remained proof. $\square$
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