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1 Introduction

Suppose we wish to investigate what motivates consumers to purchase a cer-

tain good over others offered in a market. Marketers and economists usually

frame these purchasing behaviors in terms of consumers’ maximizing their

utilities. For some goods, notably agricultural products such as corn, soy-

beans and wheat, the only differentiating characteristic is often price. On the

other hand, many industrial durable goods such as automobiles have many

differentiating characteristics. We call the market of these goods a differen-

tiated product market. As a consumer, your utility is higher for products

with a lot of desirable product characteristics, but you are expected to pay

a premium for such characteristics. This can be incorporated into utility

with the price coefficient having a negative sign while other characteris-

tics coefficients taking positive signs. Analysis, however, can improve if we
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incorporate suppliers into the equation. Modern marketing and economic
demand analyses, therefore, often model a demand side as well as a supply

side simultaneously. This is sometimes called by marketers and economists

as price endogeneity.

Consumers are in general very heterogenous in terms of income, educa-
tion, ethnicity, other attributes as well as tastes. As a result, their utilities
vary widely and this variabilities are transmitted to differing purchasing
patterns or differing utility coefficients. This is often referred by marketers

and economists as consumer heterogeneity. We have to account for the price

endogeneity as well as consumer heterogeneity when we model consumers’

purchasing behaviors in a differentiated product markets.

In some markets, we have access to a detailed individual purchasing

history from, for instance, POS (point-of-sale) scanning data. In other

markets–the market of differentiated products being the one–only prod-

ucts’ market shares and possibly overall market sizes are available. We call

the former consumer-level data while the latter is usually classified as market

level-data.

Yonetani et al. (2007) proposed a Bayesian simultaneous demand and

supply model with consumers’ heterogeneity for market-level data. Then

Yonetani et al. (2008) examined the validity of the same model through

a simulation study only with non-diffuse priors and the small number of

parameters. Additionally, we sometimes encounter problems such as non-

positive product cost and very long time to convergence in their model.

The purpose of this paper is two-fold. First, we examine causes of the

problems in Yonetani et al $s$ (2007) model. Second, we implement simula-

tions for their model with diffuse priors and the large number of parameters

to find out its applicability and to give practical suggestions. This paper
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is organized as follows. In Sections 2 and 3, we briefly review Yonetani

et al.’s (2007) model and estimation method respectively (See Yonetani et

al. (2008) for more specific explanations). Section 4 examines the prob-

lems. Section 5 contains the simulation study. Summaries are presented in

Section 6.

2 Model specification

2.1 Demand Model

We assume that there are $J$ products in a market of a differentiated durable

product where a consumer purchases one unit of a product. Let us observe

a $J\cross 1$ sales volume vector $v^{o}=(v_{1}^{o}, \ldots, v_{J}^{o})’$ and the overall market size

$M= \sum_{j=0}^{J}v_{j}^{o}$ with $j=0$ being the outside good.

Each consumer $i$ has his/her utility for product $j$ as

$u_{ij}=u_{ij}(p_{j}, x_{j}, \xi_{j}, y_{i}, \theta_{i},\epsilon_{ij})=\alpha_{i}\log(y_{i}-p_{j})+x_{j}\beta_{i}+\xi_{j}+\epsilon_{ij}$, (2. 1)

where $y_{i}$ and $\theta_{i}=(\alpha_{i}, \beta_{i}’)’$ are his/her income and $Q\cross 1$ coefficient vector

respectively, $p_{j},$ $x_{j}$ and $\xi_{j}$ are product $j$ ’s unit price, $1\cross(Q-1)$ observed

characteristic vector and unobserved (by researchers) characteristic respec-

tively, and $\epsilon_{ij}$ is a consumer-level sampling error term. For $j=0$ , we assume

$p0=0,$ $x_{0}=0$ and $\xi_{0}=0$ .
In (2.1), we assume that $\epsilon_{ij}$ is independent of the other terms and inde-

pendently and identically Gumbel (type I extreme value) distributed across

consumers and products. Then we derive a consumer $i$ ’s logit choice prob-

ability for product $j$ as

$s_{ij}=s_{ij}(p, X, \xi, y_{t}, \theta_{i})=\frac{\exp\{\alpha_{i}\log(y_{i}-p_{j})+x_{j}\beta_{i}+\xi_{j}\}}{\sum_{k=0}^{J}\exp\{\alpha_{i}\log(y_{i}-p_{k})+x_{k}\beta_{i}+\xi_{k}\}}$ , (2.2)
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where $X=(x_{1}’, \ldots, x_{J}’)’,$ $p=(p_{1)}\ldots,p_{J})’$ and $\xi=(\xi_{1}, \ldots, \xi_{J})’$ .
The market share of product $j$ in $I$ sample consumers is

$s_{j}=s_{j}(p)=s_{j}(p, X, \xi, y, \theta)=\frac{1}{I}\sum_{i=1}^{I}s_{ij}$ , (2.3)

where $y=(y_{1}, \ldots, y_{I})’$ and $\theta=(\theta_{1}, \ldots, \theta_{I})$ . We denote $s$ as a $J\cross 1$ market

share vector for product $j=1,$ $\ldots,$
$J$ :

$s=s(p, X, \xi, y, \theta)=(s_{1}, \ldots, s_{J})’$ . (2.4)

We also denote $v=(v_{1}, \ldots, v_{J})’$ as a $J\cross 1$ sales volume vector for product

$j=1,$ $\ldots,$
$J$ in the $I$ consumers where we define

$v_{j}=$ int $(I \cdot\frac{v_{j}^{o}}{M}+0.5)$ .

Note that int $(\cdot)$ is the integral part in the expression $(\cdot)$ . The number of

consumers for $j=0$ in the $I$ consumers is thus $v_{0}=I- \sum_{j=1}^{J}v_{j}$ .

2.2 Supply Model

We assume that fixed $F$ firms are in an oligopolistic market of the $J$ products

with Bertrand competition. We also assume that each firm $f$ produces a

subset of the $J$ products and sets prices for its products to maximize its

total profit

$\Pi_{f}=\sum_{j\in f}Ms_{j}(p)(p_{j}-c_{j})$
, (2.5)

where $c_{j}$ is a unit cost. The Bertrand competition leads to the first order

condition for $j=1,$ $\ldots,$
$J$ from (2.5) as

$p=-\{$ $( \frac{\partial G}{\partial p})’\}^{-1}s+c$ , (2.6)
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assuming the inverse above exists. Note $c=(c_{1}, \ldots, c_{J})’$ and $(\partial G/\partial p)=$

$(\partial s/\partial p)*\delta$ where the sign $*$ represents the element-by-element multiplica-

tion of the matrices it connects and the $(j, k)$ element $\delta_{jk}$ of $\delta$ is 1 if the

products $j$ and $k$ are produced by the same firm and $0$ otherwise.3 As for

the cost $c_{j}$ , we assume

(2.8)

$\log c_{j}=z_{j}\gamma+\eta_{j}$ , (2.7)

where $z_{j}$ and $\eta_{j}$ are product $j^{)}s1\cross S$ cost shifter vector and unobserved

cost respectively and $\gamma$ is a $S\cross 1$ coefficient vector.

Let us denote $Z=(z_{1}’, \ldots, z_{J}’)’$ and $\eta=(\eta_{1}, \ldots, \eta_{J})’$ . Substituting

$\exp\{Z\gamma+\eta\}$ for $c$ in (2.6), we obtain the pricing equation

$\log[p+\{(\frac{\partial G}{\partial p})’\}^{-1}s]=Z\gamma+\eta$ .

We can also write $p$ as

$p=p(s, X, \xi, \delta, y, \theta, Z, \eta, \gamma)$ . (2.9)

3 Bayesian Estimation

3.1 Parameters and their prior distributions

Given the overall market size $M$ , product $j$ ’s market share $s_{j}$ and sales

volume $v_{j}$ are the one-to-one correspondence for $j=1,$ $\ldots,$
$J$ . Therefore,

we can rewrite the simultaneous demand and supply model from (2.4) and

(2.9) as

$v|p,$ $X,\xi,$ $y,$
$\theta$ , (2.4)’

$p|v,$ $X,$ $\xi,$ $\delta,$ $y,$ $\theta,$ $Z,$ $\eta,$ $\gamma$ . (2.9)’

3The elements of $(\partial s/\partial p)$ and $(\partial G/\partial p)$ are specified in Yonetani et al. (2008),
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In terms of unobserved product and cost characteristics $\xi$ and $\eta$ , we assume

$\xi$ I $\Sigma_{d}\sim MVN(0, \Sigma_{d})$ , (3.1)

$\eta$ I $\Sigma_{s}\sim MVN(0, \Sigma_{s})$ . (3.2)

These assumptions extend the simultaneous demand and supply model as

$v|p,$ $\xi,$ $\theta$ , (2.4)’

$p|v,$ $\xi,$ $\theta,$
$\eta,$ $\gamma$ , (2.9)’

$\xi|\Sigma_{d}$ , (3.1)

$\eta|\Sigma_{s}$ . (3.2)

Note that the exogenous $X,$ $y,$
$\delta$ and $Z$ are left out from $($ 2.4 $)^{}$ and (2.9)’

for notational simplicity.

We next hypothesize prior distributions for the parameters $\theta,$
$\gamma,$ $\Sigma_{d}$ and

$\Sigma_{s}$ . As for $\theta=(\theta_{1}, \ldots, \theta_{I})$ , we introduce a hierarchical structure where

the prior of $\theta_{i}$ for $i=1,$ $\ldots,$
$I$ is

$\theta_{i}|\overline{\theta},$ $\Sigma_{\theta}\sim MVN(\overline{\theta}, \Sigma\theta)$ (3.3)

and $\overline{\theta}$ and $\Sigma\theta$ are also treated as parameters with the priors4

$\overline{\theta}\sim MVN(\mu_{\overline{\theta}}, V_{\overline{\theta}}),$ $\Sigma\theta\sim IW_{g_{\theta}}(G_{\theta})$ . (3.4)

As for the remaining parameters, we assume

$\gamma\sim MVN(\overline{\gamma}, V\gamma),$ $\Sigma_{d}\sim IW_{g_{d}}(G_{d}),$ $\Sigma_{s}\sim IW_{g_{\epsilon}}(G_{s})$ . (3.5)

4The Bayesian hierarchical estimation can complement the lack of information about

$\theta=(\theta_{1}, \ldots, \theta_{I})$ of the $I$ consumers. It can also take into account some posterior uncer-
tainty for $(\theta_{I+1}, \theta_{I+2}, \ldots)$ of additional sample consumers.
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3.2 Distributions of endogenous observed data

With $s=(s_{1}, \ldots, s_{J})’$ in (2.4), we obtain a multinomial distribution for
$v=(v_{1}, \ldots, v_{J})’$ as

$f(v|p, \xi, \theta)=\frac{I!}{v_{0}!\cdots v_{J}!}s_{0}^{v_{O}}\cdots s_{J^{J}}^{v}$ . (3.6)

Since the pricing equation (2.8) is implicit in $p$ , we solve it with respect to $\eta$

and then apply the variable transformation formula with $\eta\sim MVN(O, \Sigma_{s})$

in (3.2) to obtain the distribution of $p^{5}$

$f(p|\xi, \theta, \gamma, \Sigma_{s})$

$=(2 \pi)^{-\neq}|\Sigma_{s}|^{-\#}||(\frac{\partial\eta}{\partial p})\Vert$

$x\exp[-\frac{1}{2}[\log[p+\{(\frac{\partial G}{\partial p})’\}^{-1}s]-Z\gamma]’\Sigma_{s}^{-1}[\log[p+\{$ $( \frac{\partial G}{\partial p})’\}^{-1}s]-Z\gamma]]$ .

(3.7)

3.3 The joint posterior of the parameters

The distributions so far lead to

$f(\xi, \theta,\overline{\theta}, \Sigma\theta, \Sigma_{d}, \gamma, \Sigma_{s}|v,p)\propto f(v|p, \xi, \theta)f(p|\xi, \theta, \gamma, \Sigma_{s})$

$\cross f(\xi|\Sigma_{d})[\prod_{i=1}^{I}f(\theta_{i}|\overline{\theta}, \Sigma\theta)]$

$\cross f(\overline{\theta})f(\Sigma\theta)f(\Sigma_{d})f(\gamma)f(\Sigma_{s})$

from which we obtain the joint posterior of the parameters as

$f( \theta,\overline{\theta}, \Sigma\theta, \Sigma_{d}, \gamma, \Sigma_{s}|v,p)=\int\theta,$ . (3.8)

Since it is difficult to solve the integral in (3.8) analytically, we numerically

obtain the joint posterior as follows. First, we apply the data augmentation

6The elements of $(\partial\eta/\partial p)$ are specified in Yonetani et al. (2008).
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technique (Tanner &Wong, 1987) to the equation (3.8). Let us denote
$\psi=(\theta,\overline{\theta}, \Sigma\theta, \Sigma_{d}, \gamma, \Sigma_{s})$ . The equation (3.8) can be rewritten so that the

joint posteior $f(\psi|v, p)$ appears on both sides as

$f( \psi|v,p)=\int f(\psi|\xi, v,p)f(\xi|v,p)d\xi$ (3.9)

$= \int f(\psi|\xi, v,p)[\int f(\xi|\psi, v,p)f(\psi|v,p)d\psi]d\xi$ . (3.10)

The equation (3.10) suggests an iterative process:

Step A In the brackets, we generate $\psi_{l}$ from $f(\psi|v,p)$ and then generate
$\xi_{l}$ from $f(\xi|\psi_{l}, v, p)$ to obtain $\xi_{1},$

$\ldots,$
$\xi_{L^{6}}$.

Step B We calculate a Monte Carlo estimator of $f(\psi|v,p)$ as
$\sum_{l=1}^{L}f(\psi|\xi_{l}, v,p)/L$ from which we generate $\psi_{l}$ in Step A.

Second, we set $L=1$ . Then we no longer need Step $B$ and rewrite Step

A as

Step A In the brackets, we generate $\psi$ from $f(\psi I\xi, v,p)$ and then generate

$\xi$ from $f(\xi|\psi, v,p)$ .

We apply the Gibbs sampler to a nonstandard parametric $f(\psi|\xi, v,p)$ . In

the Gibbs sampler, we further apply the Metropolis-Hastings algorithm to

the conditional posterior of $\theta$ which has a nonstandard parametric form.78
6In other words, we apply the composition method to the integral in the brackets in

(3.10) to generate $\xi_{1},$
$\ldots,$

$\xi_{L}$ from $f(\xi|v,p)$ in (3.9).
7Note that we further apply the Gibbs sampler to the conditional posterior of $\theta$ and

then apply the Metropolis-Hastings algorithm to the conditional posterior of $\theta_{i}$ for $i=$

$1,$
$\ldots,$

$I$ in the MCMC algorithm in Yonetani et al. (2008). In this paper, we directly

apply the Metropolis-Hastings algorithm to the conditional posterior of $\theta$ to reduce the

computation time.
8As the Metropolis-Hastings algorithm, we employ the third method in Chibs&Green-

berg (1995).
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We can generate draws of the other parameters from their standard para-

metric posteriors. On the other hand, we also apply the Metropolis-Hastings

algorithm to a conditional posterior $f(\xi|\psi, v,p)$ which also has a nonstan-

dard parametric form. The resulting MCMC algorithm is in Appendix A.

We also list the posteriors from which we generate the draws in Appendix B.

4 On the MCMC problems

To start the MCMC algorithm, we have to set initial parameter values

and hyperparameter values in MCMCO in the MCMC algorithm in Ap-

pendix A. We find that inappropriate choices for some of these values prevent

the MCMC algorithm from proceeding.

The first type of problem is induced by inappropriate $\xi^{(0)},$ $\theta^{(0)},$ $\xi^{*}$ and $\theta^{*}$

generating nonpositive values for some components of cost $c$ in the density of

$p$ in (3.7). This problem can occur in MCMC2 and MCMC5. When this

problem occurs, we have to stop the MCMC algorithm because whatever a

firm produces takes cost.

The second type of problem is induced by an inappropriate set of $\xi^{(0)}$ ,

$\theta^{(0)},$ $\gamma^{(0)}$ and $\Sigma_{s}^{(0)}$ generating the likelihood $f(v,p|\xi^{(0)}, \theta^{(0)}, \gamma^{(0)}, \Sigma_{s}^{(0)})=0$

computationally. Even when this problem occurs, we can proceed with

the MCMC algorithm. Once this problem occurs, however, the MCMC

algorithm can continues to hover on the range of the computational

$f(v,p|\xi, \theta, \gamma, \Sigma_{s})=0$ for a while before it finds a combination of values for $\xi$ ,

$\theta,$
$\gamma$ and $\Sigma_{s}$ generating computational $f(v,p|\xi, \theta, \gamma, \Sigma_{s})>0$ . Since the set

of true parameter values must be on the range with $f(v, p|\xi, \theta, \gamma, \Sigma_{s})>0$ ,

this hovering can be a waste of time. In the following, we elaborate the

mechanisms of these problems.
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4.1 Nonpositive cost problem

Given price $p$ , the range of values $\{(\partial G/\partial p)’\}^{-1}s$ can take have to be re-
stricted to make cost $c=p+\{(\partial G/\partial p)’\}^{-1}s$ positive. Hence, the MCMC
algorithm must be able to find values for $\theta$ and $\xi$ so that $p>\{(\partial G/\partial p)’\}^{-1}s$

while it attains convergence. There are four cases under which some com-
ponents of cost $c$ are nonpositive.

The first case occurs in MCMC2 in the first iteration $t=1$ where we cal-

culate the density of $p$ with $\xi^{(0)}$ and $\theta^{(0)}$ to obtain $f(v,p|\xi^{(0)}, \theta^{(0)}, \gamma^{(0)}, \Sigma_{s}^{(0)})$ .
The second case also occurs in MCMC2 for $t=1$ where we calculate
$f(v,p|\xi^{*}, \theta^{(0)}, \gamma^{(0)}, \Sigma_{s}^{(0)})$ with $\xi^{*}$ from $MVN(O, \Sigma_{d}^{(0)})$ in MCMCI and
$\theta^{(0)}$ . The third case takes place in MCMC2 for $t=2,$ $\ldots$ where we
calculate $f(v,p|\xi^{*}, \theta^{(t-1)}, \gamma^{(t-1)}, \Sigma_{s}^{(t-1)})$ with $\xi^{*}$ from $MVN(O, \Sigma_{d}^{(t-1)})$ in

MCMCI given $\theta^{(t-1)}$ . The fourth case arises in MCMC5 for $t=1,$ $\ldots$

where we calculate $f(v,p|\xi^{(t)}, \theta^{*},\gamma^{(t-1)}, \Sigma_{s}^{(t-1)})$ with $\theta^{*}=(\theta_{1}^{*}, \ldots, \theta_{I}^{*})$

from $MVN(\overline{\theta}^{(t-1)}, \Sigma^{(t-1)}\theta)$ in MCMC4 given $\xi^{(t)}$ .
To avoid the nonpositive cost problem, we should set not only appropri-

ate $\xi^{(0)}$ and $\theta^{(0)}$ but also appropriate $\overline{\theta}^{(0)},$
$\Sigma^{(0)}\theta$ and $\Sigma_{d}^{(0)}$ and $\mu_{\overline{\theta}},$

$V_{\overline{\theta}},$ $g_{\theta}$ ,

$G_{\theta},$ $g_{d}$ and $G_{d}$ in MCMCO because of the following reasons. We know that
$\xi^{*}$ depends on $\Sigma_{d}^{(t-1)}$ for $t=1,$ $\ldots$ in MCMCI. For $t=1$ , we can alter
$\Sigma_{d}^{(0)}$ in MCMCO. For $t=2,$ $\ldots$ , the range of values $\Sigma_{d}^{(t-1)}$ can take in its

poseterior in (B.3) is determined by $g_{d}$ and $G_{d}$ in its prior in (3.5) whose val-

ues can be also altered in MCMCO. We also know that $\theta^{*}=(\theta_{1}^{*}, \ldots, \theta_{I}^{*})$

depend on $\overline{\theta}^{(t-1)}$ and $\Sigma^{(t-1)}\theta$ for $t=1,$ $\ldots$ in MCMC4. For $t=1$ , we can

alter $\overline{\theta}^{(0)}$ and $\Sigma^{(0)}\theta$ in MCMCO. For $t=2,$ $\ldots$ , the ranges of values $\overline{\theta}^{(t-1)}$

and $\Sigma^{(t-1)}\theta$ can take in their conditional posteriors in (B.1) and (B.2) are

determined by $\mu_{\overline{\theta}}$ and $V_{\overline{\theta}}$ in the prior of $\overline{\theta}$ and $g_{\theta}$ and $G_{\theta}$ in the prior of
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$\Sigma\theta$ respectively in (3.4) whose values can be also altered in MCMCO.

4.2 Computational zero likelihood problem

Computationally, the likelihood $f(v,p|\xi, \theta,\gamma, \Sigma_{s})$ has a narrow range of

$f(v,p|\xi, \theta, \gamma, \Sigma_{s})>0$ and a wide range of $f(v,p|\xi, \theta, \gamma, \Sigma_{s})=0$ . The

likelihood with $\xi^{(0)},$ $\theta^{(0)},$ $\gamma^{(0)}$ and $\Sigma_{s}^{(0)}$ is written as

$f(v,p|\xi^{(0)}, \theta^{(0)}, \gamma^{(0)}, \Sigma_{s}^{(0)})=f(v|p, \xi^{(0)}, \theta^{(0)})f(p|\xi^{(0)}, \theta^{(0)},\gamma^{(0)}, \Sigma_{s}^{(0)})$.

This computational problem arises from either $f(v|p, \xi^{(0)}, \theta^{(0)})=0$ or
$f(p|\xi^{(0)}, \theta^{(0)}, \gamma^{(0)}, \Sigma_{s}^{(0)})=0$ as explained below or both.

As for $f(p|\xi^{(0)}, \theta^{(0)},\gamma^{(0)}, \Sigma_{s}^{(0)})$ from (3.7), if we calculate it under an in-

appropriately small $\Sigma_{s}^{(0)}$ relative to $\log[p+\{(\partial G/\partial p)’\}^{-1}s]-Z\gamma^{(0)}$ which

depends on inappropriate $\xi^{(0)}$ and $\theta^{(0)}$ as well as $\gamma^{(0)}$ given $y,$ $p,$ $X$ and

$Z$ , then it can be zero computationally. The $f(v|p, \xi^{(0)}, \theta^{(0)})$ from (3.6)

also becomes zero computationally with inappropriate $\xi^{(0)}$ and $\theta^{(0)}$ generat-

ing extremely small $s_{j}(p, X,\xi^{(0)}, y, \theta^{(0)})$ which in turn generates extremely

small $Is_{j}$ relative to the corresponding $v_{j}$ . This is because $f(v|p, \xi^{(0)}, \theta^{(0)})$

involves $s_{j}$ and $v_{j}$ in the form of $s_{j}^{v_{j}}$ .
We next describe how inappropriate $\xi^{(0)}$ and $\theta^{(0)}$ make $s_{j}$ extremely

small, using a consumer $i$ ’s representative utility for product $j$ with them,

$\alpha_{i}^{(0)}\log(y_{i}-p_{j})+x_{j}\beta_{i}^{(0)}+\xi_{j}^{(0)}=\alpha_{i}^{(0)}\log(y_{i}-p_{j})+\beta_{i1}^{(0)}x_{j1}+\cdots$

$+\beta_{iq}^{(0)}x_{jq}+\cdots+\beta_{i(Q-1)}^{(0)}x_{j(Q-1)}+\xi_{j}^{(0)}$ ,

(4.1)

in $s_{ij}$ in (2.2) which is used to calculate $s_{j}$ in (2.3). Given $y,$ $p$ and $X$ , there

are three cases.
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The first case occurs when $\alpha_{i}^{(0)}$ is large so that the influence of $\alpha_{i}^{(0)}\log(y_{i}-$

$p_{j})$ on (4.1) is large relative to the influences of the remaining terms. This
leads $s_{0}$ very large relative to $s_{1},$ $\ldots,$ $s_{J}$ because the representative utility
for $j=0$ practically depends only on $\alpha_{i}^{(0)}\log y_{i}$ with $p_{0}=0,$ $x_{0}=0$ and
$\xi 0=0$ which is larger than $\alpha_{i}^{(0)}\log(y_{i}-p_{j})$ for $j=1,$ $\ldots,$

$J$ . When this
happens, $s_{1},$ $\ldots,$ $s_{J}$ can be practically zero.

The second case takes place when $\beta_{iq}^{(0)}$ is large so that the influence of
$\beta_{iq}^{(0)}x_{jq}$ on (4.1) is large relative to the influences of the remaining terms,

This makes $s_{j}$ with the highest $x_{jq}$ among $x_{1q},$ $\ldots,$ $x_{Jq}$ very large relative

to $s_{0},$ $\ldots$ , $s_{j-1},$ $s_{j+1},$ $\ldots,$ $s_{J}$ and so some of them can be practically zero.
The third case arises when the influence of $\xi_{j}^{(0)}$ on (4.1) is large relative

to the influences of the remaining terms. This makes $s_{j}$ with the highest $\xi_{j}^{(0)}$

among $\xi^{(0)}=(\xi_{1}^{(0)}, \ldots,\xi_{J}^{(0)})’$ very large relative to $s_{0},$ $\ldots,$ $s_{j-1},$ $s_{j+1},$ $\ldots,$ $s_{J}$

and so some of them can be practically zero.
Note we have not encountered the computational zero likelihood problem

so far with $\xi^{(t)},$ $\theta^{(t)},$ $\gamma^{(t)}$ and $\Sigma_{s}^{(t)}$ for $t=1,$ $\ldots$ . So it is important to have

an appropriate set of $\xi^{(0)},$ $\theta^{(0)},$ $\gamma^{(0)}$ and $\Sigma_{s}^{(0)}$ in MCMCO.

5 Simulation study

In this section, we obtain implications of our model from its simulation study

where we test if the model can recover true parameter values with simulated

data and diffuse priors. In subsection 5.1, we explain the simulation design.

Subsection 5.2 explains how we set true parameter values and exogenous

and endogenous variables. Subsection 5.3 impliments the MCMC algorithm

according to the design and summarizes the results. As it turns out, the

posterior standard deviation of each component of $\overline{\beta}$ is large relative to
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that of $\overline{\alpha}$ but tends to be smaller as the number of consumers increases.
We examine how many consumers we need to obtain reliable results for

the components of $\overline{\beta}$ in subsection 5.4 in the most complex case in our
design. We also find that the simulations overestimate $\Sigma\theta,$ $\Sigma_{d}$ and $\Sigma_{s}$ .
Subsection 5.5 examines the causes of the overestimations.

5.1 Simulation design

We assume an oligopolistic market of a durable product where a consumer
purchases one unit of a product. We set the overall market size $M=500$ ,

1000 or 2000 and then use all the $M$ consumers as the sample consumers
$(M=I)$ . The market offers $J=5,10$ or 25 products. The number $J=5$

implies that the market is highly oligopolistic. The number $J=25$ comes

from our upcoming empirical study of the U.S. automobile market in 1996

where the sales of the top 25 cars occupy about 51.3% of the total sales. We

set $j=0$ for the outside good.

On the demand side, a consumer $i$ has his $/her$ own utility $u_{ij}$ for product

$j$ in (2.1). On the supply side, the pricing equation of firms is in (2.8).

For each combination of $I$ and $J$ , we change the number of products one

firm produces, that of observed product characteristics $x_{j}$ in (2.1), that of

cost shifters $z_{j}$ in (2.7) and the degree to which $x_{j}$ overlaps $z_{j}$ . The details

are as follows.

The number of products one firm produces

When $J=5$ , each firm produces one product. When $J=10$ , it produces

either one or two products. This means that there are ten or five firms

respectively. When $J=25$ , it produces either one or five products. Again
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this corresponds to either 25 or five firms respectively. Note that the markets
are highly oligopolistic when $J=10$ and $J=25$ with each firm producing
multiple products as well as when $J=5$ .

The numbers of observed product characteristics and cost shifters

We consider three cases where both are 1, 5 or 10. Since $Q$–the length of the
vector $\theta_{i}$–includes price, these choices make $Q$ and $S$ as $(Q, S)=(2,1)$ ,
(6,5) or (11,10) respectively. Note that $Q=2$ implies that researchers

can observe only one differentiating product characteristic other than price

because, for example, products in the market are homogeneous; and $Q=11$

comes from the past empirical studies in the U.S. automobile market (Berry,

Levinsohn &Pakes, 1995; Sudhir, 1999; Myojo, 2006). Given $J$ , we only

consider cases where $S$ is less than $J$ in the pricing equation (2.8): When

$J=5,$ $(Q, S)=(2,1)$ ; when $J=10,$ $(Q, S)=(2,1)$ or (6,5); and when

$J=25,$ $(Q, S)=(2,1),$ $(6,5)$ or (11, 10).

The degree to which observed product characteristics overlap cost

shifters

For each case of $(Q, S)$ , we further consider three cases: Independence where

$x_{j}$ and $z_{j}$ are separate; overlap where they completely overlap; and partial

overlap. When $(Q, S)=(2,1)$ , we have either independece with $z_{j}=z_{j1}$ or

overlap with $z_{j}=x_{j}$ . Note that partial overlap is impossible when $(Q, S)=$

$(2,1)$ . When $(Q, S)=(6,5),$ $z_{j}=(z_{j1}, \ldots, z_{j5})$ defines independence, $z_{j}=$

$x_{j}$ defines overlap, and $z_{j}=(x_{j1}, \ldots, x_{j4}, z_{j5})$ defines partial overlap. When

$(Q, S)=(11,10),$ $z_{j}=(z_{j1}, \ldots, z_{j10})$ defines independence, $z_{j}=x_{j}$ defines

overlap, and $z_{j}=(x_{j1}, \ldots, x_{j8}, z_{j9}, z_{j10})$ defines partial overlap.
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5.2 True parameter values and exogenous and endogenous

variables

We obtain positive $y_{1},$ $\ldots,$ $y_{M}$ randomly from the $\log$ normal distribution
with mean 1 and standard deviation 0.1. We also obtain values for $x_{j1},$ $\ldots$ ,

$x_{j(Q-1)}$ and $z_{j1},$ $\ldots,$ $z_{jS}$ for $j=1,$ $\ldots,$
$J$ randomly from $N(O, 0.1)$ . As for

the outside good $j=0$ , we set $p_{0}=0,$ $x_{0}=0$ and $\xi_{0}=0$ . We also set

$\overline{\theta}=(\overline{\alpha},\overline{\beta}’)’=(2,2, \ldots, 2)’,$ $\Sigma\theta=10^{-1}E_{Q}$ ,

$\gamma=(1, \ldots, 1)’,$ $\Sigma_{d}=10^{-4}E_{J},$ $\Sigma_{s}=10^{-4}E_{J}$

where $E_{Q}$ and $E_{J}$ are the $Q\cross Q$ and $J\cross\sim J$ identity matrices respectively.

We then generate $\theta=(\theta_{1}, \ldots, \theta_{M})$ randomly from $MVN(\overline{\theta}, \Sigma\theta)$ in (3.3).

We also generate $\xi=(\xi_{1}, \ldots, \xi_{J})’$ and $\eta=(\eta_{1}, \ldots , \eta_{J})’$ from $MVN(0, \Sigma_{d})$

in (3.1) and $MVN(0, \Sigma_{s})$ in (3.2) respectively. We determine $v^{o}$ and $p$

endogenously in the demand with (2.3) and supply with (2.8), using the

Newton-Raphson method.

5.3 MCMC with diffuse priors

For each case in subsection 5.1, we run three independent MCMC sequences

each of which has 10, 000 iterations with a different set of initial parameter

values. Based on the implications in Section 4, we set initial parameter

values and hyperparameter values at MCMCO. To use relatively diffuse

priors in (3.4) and (3.5), we set the hyperparameter values as

$\mu_{\overline{\theta}}=(20,0, \ldots, 0)’,$ $V_{\overline{\theta}}=10^{2}E_{Q},$ $g_{\theta}=Q+4,$ $G_{\theta}=3E_{Q},\overline{\gamma}=(0, \ldots, 0)’$ ,

$V_{\gamma}=10^{2}E_{S},$ $g_{d}=J+4,$ $G_{d}=3\cross 10^{-2}E_{J},$ $g_{s}=J+4,$ $G_{s}=3\cross 10^{-2}E_{J}$ .

We next set the initial parameter values as

$\overline{\theta}^{(0)}=(2.5, \ldots, 2.5)’,$ $(3, \ldots, 3)’$ and $($3.5, $\ldots,$
$3.5)’$ ,
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$\gamma^{(0)}=(-5, \ldots, -5)’,$ $(0, \ldots, 0)’$ and $($ 5, $\ldots,$
$5)’$ ,

respectively for each sequence, fixed $\Sigma^{(0)}\theta’\Sigma_{d}^{(0)}$ and $\Sigma_{s}^{(0)}$ :

$\Sigma^{(0)}=E_{Q}\theta’\Sigma_{d}^{(0)}=E_{J},$ $\Sigma_{s}^{(0)}=E_{J}$ ,

and $\theta^{(0)}=$
$(\theta_{1}^{(0)}, \ldots , \theta_{I}^{(0)})\sim MVN(\overline{\theta}^{(0)}, \Sigma^{(0)}\theta)$ and $\xi\sim MVN(0, \Sigma_{d}^{(0)})$ .

We inspect a time-series plot of the draws for each parameter $hom$ the
three sequences to assess the convergence of the MCMC. Given the last
halves of the three sequences, we also check if the 95% posterior inverval of
each parameter includes its true value.

We are confident that the components of $\overline{\theta}=(\overline{\alpha},\overline{\beta}’)’$ and $\gamma$ converge to
their true values in almost all the cases. The posterior standard deviation
of each component of $\overline{\theta}=(\overline{\alpha},\overline{\beta}’)’$ tends to be smaller as $I$ and $J$ increase

while that of each component of $\gamma$ becomes smaller only as $J$ increases but
is not affected by the increasing $I$ . This is because $\theta=(\theta_{1}, \ldots, \theta_{I})$ depend

on $\overline{\theta}$ and appear in the utility (2.1) on the demand side as well as in the

pricing equation (2.8) on the supply side, while $\gamma$ appears only in (2.8).

We are somewhat concerned about the following three facts. First, the

posterior standard deviation of each component of $\overline{\beta}$ is large relative to

that of $\overline{\alpha}$ . In subsetion 5.4, we examine how many consumers we need to

obtain a reliable result for each component of $\overline{\beta}$ in the most complex case
in our simulation design. Second, some of the 95% posterior intervals of the

components of $\overline{\beta}$ and $\gamma$ include $0$ as well as their true values. Third, two

95% posterior intervals of the components of $\overline{\beta}$ do not include their true

values.

The problem we encountered is that the diagonal components of $\Sigma\theta$ ,

$\Sigma_{d}$ and $\Sigma_{s}$ are everestimated as far as their time-series plots and summary
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statistics are concerned. We explore reasons as to these phenomena in sub-

section 5.5.

5.4 The number of consumers for a reliable $\overline{\beta}$

We examine how many consumers $I$ we need to obtain more reliable esti-

mates for the components of $\overline{\beta}$ . We consider a case of $M=10000,$ $J=25$ ,

$Q=11$ and $S=10$ with each firm producing five products in the partial

overlap cost shifter case, which is the most complex case in our simulation

design. The other settings for simulated data are the same as those in sub-

section 5.2. We use ten sets of consumers of $I=500$ , 1000 thorugh 9000

increment by 1,000 drawn randomly from the original 10, 000 comsumers

and all the 10, 000 consumers,

We run ten MCMC sequences each of which has 10,000 iterations for

each set of consumers. We set hyperparameter values and initial parameter

values in the same way as that in subsection 5.3 except for $\overline{\theta}^{(0)},$ $\gamma^{(0)}$ and
$\Sigma_{d}^{(0)}$ . As for $\overline{\theta}^{(0)},$ $\gamma^{(0)}$ and $\Sigma_{d}^{(0)}$ , we set

$\overline{\theta}^{(0)}=(2.05, \ldots, 2.05)’,$
$\ldots,$

$(2.5, \ldots, 2.5)’$ increment by 0.05,

$\gamma^{(0)}=(-5, \ldots, -5)’,$
$\ldots,$

$(5, \ldots, 5)’$ except for $($ 1, $\ldots,$
$1)’$ increment by 1,

$\Sigma_{d}^{(0)}=10^{-1}E_{J}$ ,

for each sequence based on the implications in Section 4.

As $I$ increases, the amount of the reductions of the posterior standard

deviation of each component of $\overline{\theta}$ including $\overline{\beta}$ decreases. When $I\geq 4000$ , the

fluctuations of the components of $\overline{\beta}$ do not seem to improve noticeably based

on their time-series plots and posterior standard deviations. Therefore, we

can use $I=5,000$ consumers to obtain reliable results for the components
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of $\overline{\beta}$ when $J=25,$ $Q=11,$ $S=10$ with each firm producing five products
in the partial overlap cost shifter case.

5.5 On overestimating $\Sigma\theta’\Sigma_{d}$ and $\Sigma_{s}$

On overestimating $\Sigma\theta$

We found wrong $\theta=(\theta_{1}, \ldots, \theta_{I})$ induce the overestimated $\Sigma\theta$ from the

following three nested experiments to estimate $\Sigma\theta$ . First has only MCMC8

with the true $\overline{\theta}$ and $\theta$ . Second is the Gibbs sampler with MCMC7 and

MCMC8 with the true $\theta$ . Third is the Gibbs sampler with MCMC4
through MCMC8. Note that hyperparameter values are the same as those

in subsection 5.3 and initial parameter values for each experiment are far

from thier true values. Although we can recover true $\Sigma\theta$ in the first and

second experiments, we can not in the third experiment. This implies that

MCMC4 thorugh MCMC6 incorrectly estimate $\theta=(\theta_{1}, \ldots, \theta_{I})$ which

in turn induce the overestimated $\Sigma\theta$ . The MCMC4 thorugh MCMC6 are

the Metropolis-Hastings algorithm generating draws of $\theta$ where we accept

a proposal draw for $\theta$ with an acceptance probability from the likelihood

ratio in each iteration. This can not work well. We need to examine the

likelihood ratio with simulated data.

On overestimating $\Sigma_{d}$ and $\Sigma_{s}$

The overestimated $\Sigma_{d}$ and $\Sigma_{s}$ are induced by the large influence of each

diffuse prior on its posterior with the small number of observations (one

course of observation). If the number of observations was large enough, the

influence of each diffuse prior on its corresponding posterior would be small.
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6 Summary

In this paper, we reviewed Yonetani et al.’s (2007) Bayesian simultaneous

demand and supply model with market-level data. We also summarized the

nonpositive cost problem and computational zero likelihood problem which

prevented the MCMC algorithm from proceeding. They imply that we can

not always set any diffuse priors and initial parameter values for the MCMC

algorithm. We also performed a simulation study with diffuse priors which

could avoid the problems above.

In the simulation study, the means of consumers’ coefficients and the co-

efficients for cost shifters were correctly estimated for almost all of the vari-

ous cases we considered. The posterior standard deviations of the means of

consumers’ coefficients for observed product characteristics were large when

the number of consumers is small. From the additional simulation study, we

found that 5, 000 consumers could be used to obtain reliable estimates for

them.

On the other hand, the variance-covariance matrices of consumers’ coef-

ficients and unobserved product and cost characteristics were overestimated,

The variance-covariance matrix of consumers’ coefficients was overestimated

because of incorrectly estimated consumers’ coefficients while the variance-

covariance matrices of unobserved product and cost characteristics were

overestimated because of the small number of observations.

In future, we need the following three studies. First, we examine the like-

lihood ratio in the Metropolis-Hastings algorithm generating the incorrect

consumers’ coefficients with simulated data to overcome their overestimated

variance-covariance matrix. Second, we implement additional simulation

studies with panel data which has the large number of observations to over-
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come the overestimated variance-covariance matrices of unobserved product
and cost characteristics. Third, based on the fact that more informative pri-

ors can estimate all of the parameters correctly from Yonetani et al. (2008),

we develop a pre-analytical process to obtain such priors.

A MCMC algorithm

MCMCO Set $\mu_{\overline{\theta}},$
$V_{\overline{\theta}},$ $g_{\theta},$ $G_{\theta},$ $g_{d},$ $G_{d},\overline{\gamma},$ $V_{\gamma},$ $g_{s}$ and $G_{s}$ and $\theta^{(0)},\overline{\theta}^{(0)}$ ,

$\Sigma^{(0)}\theta’\gamma^{(0)},$ $\Sigma_{s}^{(0)}\Sigma_{d}^{(0)}$ and $\xi^{(0)}$ .

For $t=1,$ $\ldots$ ,

MCMCI Generate a proposal $\xi^{*}$ from $MVN(O, \Sigma_{d}^{(t-1)})$ .

MCMC2 Calculate

$R_{\xi^{*}}^{(t)}=\{\begin{array}{l}\min(\frac{f(v,p|\xi^{l},\theta^{(t-1)},\gamma^{(t-1)\Sigma}s)(t-1)}{f(v,p|\xi^{(t-1)},\theta^{(t-1)},\gamma^{(t-1)\Sigma_{s}^{(t-1)})}}, 1)if f(v,p|\xi^{(t-1)}, \theta^{(t-1)}, \gamma^{(t-1)}, \Sigma_{s}^{(t-1)})>0,1 otherwise.\end{array}$

MCMC3 Set $\xi^{(t)}=\xi^{*}$ with probability $R_{\xi^{*}}^{(t)}$ or $\xi^{(t)}=\xi^{(t-1)}$ with proba-

bility $1-R_{\xi^{*}}^{(t)}$ .

MCMC4 Generate each component of proposal $\theta^{*}=(\theta_{1}^{*}, \ldots, \theta_{I}^{*})$ ran-

domly from $MVN(\overline{\theta}^{(t-1)}, \Sigma^{(t-1)}\theta)$ .

MCMC5 Calculate

$R_{\theta^{*}}^{(t)}=\{\begin{array}{l}\min(\frac{f(v,p|\xi^{(t)},\theta_{I}^{*}\gamma^{(t-1)\Sigma)}s(\iota-1)}{f(v_{r}p|\xi^{(t)},\theta^{(t-1)},\gamma^{(t-1)\Sigma_{s}^{(t-1)})}}, 1)if f(v,p|\xi^{(t)}, \theta^{(t-1)},\gamma^{(t-1)}, \Sigma_{s}^{(t-1)})>0,1 otherwise.\end{array}$
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MCMC6 Set $\theta^{(t)}=\theta^{*}$ with probability $R_{\theta^{*}}^{(t)}$ or $\theta^{(t)}=\theta^{(t-1)}$ with proba-

bility $1-R_{\theta^{*}}^{(t)}$ .

MCMC7 Generate $\overline{\theta}^{(t)}$ from $f(\overline{\theta}|\theta^{(t)}, \Sigma^{(t-1)}\theta)$ .

MCMC8 Generate $\Sigma^{(t)}\theta$ from $f(\Sigma\theta|\theta^{(t)},\overline{\theta}^{(t)})$ .

MCMC9 Generate $\gamma^{(t)}$ from $f(\gamma|\theta^{(t)}, \Sigma_{s}^{(t-1)}, \xi^{(t)},p)$ .

MCMCIO Generate $\Sigma_{s}^{(t)}$ from $f(\Sigma_{s}|\theta^{(t)}, \gamma^{(t)}, \xi^{(t)},p)$ .

MCMCII Generate $\Sigma_{d}^{(t)}$ from $f(\Sigma_{d}|\xi^{(t)})$ .

MCMC12 If random draws from MCMC6, MCMC7, MCMC8, MCMC9,

MCMCIO and MCMCII stabilize, then stop the iteration. Other-

wise increase $t$ by one and return to MCMCI.

B Posteriors in MCMC

We obtain the (conditional) posteriors in the MCMC as follows.

$f(\xi|\theta,\gamma,\Sigma_{d},\Sigma_{s},v,p)\propto f(v,p|\xi,\theta,\gamma,\Sigma_{\theta})f(\xi|\Sigma_{d})$

$=f(v|p,\xi,\theta)f(p|\xi,\theta,\gamma,\Sigma_{s})f(\xi|\Sigma_{d})$

$\propto s_{0^{0}}^{v}\cdots s_{J}^{v_{J}}$ .

$\cross|\Sigma_{s}|^{-\}\Vert(\frac{\partial\eta}{\partial p})\Vert$

$\cross\exp[-\frac{1}{2}[\log[p+\{(\frac{\partial G}{\partial p})’\}^{-1}\epsilon]-Z\gamma]’\Sigma_{\epsilon}^{-1}[\log[p+\{$ $( \frac{\partial G}{\partial p})’\}^{-1}s]-Z\gamma]]$

$x|\Sigma_{d}|^{-\#}\exp(-\frac{1}{2}\xi’\Sigma_{d}^{-1}\xi)$ ,

$f(\theta|\overline{\theta},\Sigma_{\theta},\gamma,\Sigma_{\delta},\xi,v,p)\propto f(v,p|\xi,\theta,\gamma,\Sigma_{\iota})[.\theta]$

$=f(v|p, \xi,\theta)f(p|\xi,\theta,\gamma,\Sigma_{s})[\prod_{=1}^{I}f(\theta.|\overline{\theta},\Sigma\theta)]$

$\propto s_{0^{0}}^{v}\cdots s_{J^{J}}^{v}$
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$\cross|\Sigma_{s}|^{-\xi}||(\frac{\partial\eta}{\partial p})||$

$\cross\exp[-\frac{1}{2}[\log[p$
$+ \{(\frac{\partial G}{\partial p})’\}^{-1}s]-Z\gamma]^{/}\Sigma_{s}^{-1}[\log[p+\{(\frac{\partial G}{\partial p})’\}^{-1}\epsilon]-Z\gamma]]$

$x\prod_{l=1}^{I}[|\Sigma_{\theta}|^{-\not\in}\exp\{$
$- \frac{1}{2}(\theta_{i}-\overline{\theta})’\Sigma^{-1}\theta(\theta_{1}-\overline{\theta})\}]$ ,

$\overline{\theta}|\theta,$ $\Sigma\theta\sim N((I\Sigma^{-1}\theta+V_{\overline{\theta}}^{-1})^{-1}(I\Sigma_{\theta}^{-1}\nu+V_{\overline{\theta}}^{-1}\mu_{\overline{\theta}}),$

$(I\Sigma^{-1}\theta+V_{\overline{\theta}}^{-1})^{-1})$ (B. 1)

where $\nu=\frac{1}{I}\sum_{i=1}^{I}\theta_{i}$ ,

$\Sigma\theta|\theta,\tilde{\theta}\sim IW_{g_{\theta}+I}(\sum_{i=1}^{I}(\theta_{i}-\overline{\theta})(\theta_{i}-\overline{\theta})’+G_{\theta})$ , (B.2)

$\gamma|\theta,$ $\Sigma_{s},$ $\xi,$ $p\sim N((\Sigma_{s*}^{-1}+V_{\overline{\gamma}}^{1})^{-1}(\mu+V_{\overline{\gamma}}^{1}\overline{\gamma}),$
$(\Sigma_{sr}^{-1}+V_{\overline{\gamma}}^{1})^{-1})$ ,

where $\mu=Z’\Sigma_{\theta}^{-1}[\log[p+\{(\frac{\partial G}{\partial p})’\}^{-1}\epsilon]]$ and $\Sigma_{s*}^{-1}=Z’\Sigma_{s}^{-1}Z$ ,

$\Sigma_{s}|\theta,\gamma,\xi,p$

$\sim IW_{9\cdot+1}((\log[p+\{(\frac{\partial G}{\partial p})’\}^{-1}s]-Z\gamma)(\log[p+\{$ $( \frac{\partial G}{\partial p})’\}^{-1}s]-Z\gamma)’+G_{s})$ ,

$\Sigma_{d}|\xi\sim IW_{g_{d}+1}(\xi\xi’+G_{d})$ . (B.3)
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