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1 Introduction
Empirical likelihood method is one of the nonparametric methods for statistical in-

ference proposed by Owen (1988, 1990). It is shown that empirical likelihood ratio is
asymptotically chi-square distributed and used for constructing confidence regions for
the sample mean, for a class of M-estimates that includes quantile, and for differentiable
statistical functionals. $Emp\ddot{m}cal$ likelihood has been studied extensively in the litera-
ture because of its generality and effectiveness. We can name many applications, such
as general estimating equations (Qin and Lawless (1994)), regression models (Owen

(1991), Chen (1993, 1994)$)$ , biased sample models (Qin (1993)), etc. Although em-
pirical likelihood method has been smdied by many authors, it seems to have been
investigated mainly under i.i.$d$ . setting. For dependent observations, Kitamura (1997)

developed blockwise empirical likelihood for estimating equations and for smooth func-
tions of means. Monti (1997) applied the $emp\ddot{m}cal$ likelihood method to dependent
observations, essentially under circular Gaussian assumption, using a spectral method.

In this resume, we introduce some parts of our previous works on the extension of
the $emp\ddot{m}cal$ likelihood method to non-Gaussian stationary processes by use of spec-
tral approach. In Section 2, we deal with non-Gaussian scalar stationary processes.
Motivated by the Whittle likelihood, we introduce estimating functions for dependent
observations and derive the asymptotic distribution of the $emp\ddot{m}cal$ likelihood ratio.
In Section 3, we extend the setting to non-Gaussian vector stationary processes. The
method of fitting parametric model is also considered and by choosing this parametric
function properly, we can consider the estimation problem of the autocorrelation, which
is one of the most important indices for time series analysis. In Section 4, we study an
application of the method with Cressie-Read power-divergence statistic (CR statistic) to
non-Gaussian vector stationary processes. CR method is more general than $emp\ddot{m}cal$

likelihood method. In this setting, we consider the problem of testing, too. Various
numerical studies are also given in Section 5 and illuminate interesting feamres.
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2 Empirical likelihood method for non-Gaussian scalar
stationary processes

We consider a scalar-valued linear process $\{X(t);t\in R\}$ , generated as

$X(t)= \sum_{j=0}^{\infty}G(])e(t-j)$ , $t\in R$ , (1)

where $\{e(t)\}$ is a sequence of random variables satisfying $E\{e(t)\}=0$ and $E\{e(t)e(s)\}=$
$\delta(t, s)\sigma^{2}$ , with $\sigma^{2}>0,G(j)$ ’s are constants, and the $X,e$ and $G$ are all real. If $\sum_{j=0}^{\infty}G(])^{2}<$

$\infty$ (this condition is assumed throughout in this section), the process $\{X(t)\}$ is a second-
order stationary process, and has the spectral density function

$g( \omega)=\frac{\sigma^{2}}{2\pi}|\sum_{j=0}^{\infty}G(])e^{-i\omega j}|^{2}$, $-\pi<\omega\leq\pi$. (2)

For the stretch $X(t),$ $t=1,$ $\ldots,$
$T$ , we denote by $1_{T}(\omega)$ , the periodogram; namely

$I_{T}( \omega)=\frac{1}{2\pi T}|d_{T}(\omega)|^{2}$ , where $d_{T}( \omega)=\sum_{t=1}^{T}X(t)\exp\{-i\omega t\}$ $-\pi<\omega\leq\pi$ .

We set down the following assumptions.

Assumption 2.1. (i) $\{X(t)\}$ is strictly stationary with all ofwhose moments exist.

(ii) The joint k-th order cumulant $c_{X^{k}}(u_{1}, \ldots, u_{k-1})$ of $X(t),X(t+u_{1}),$ $\ldots,X(t+u_{k-1})$

satisfies

$u_{1} \ldots..u=-\infty\sum_{k- 1}^{\infty}(1+|u_{j}|)|c_{X^{k}}(u_{1}, \ldots, u_{k-1})|<\infty$

for $j=1,$ $\ldots,k-1$ and any $k,$ $k=2,3,$ $\ldots$ .

Assumption 2.2. For the sequence $\{C_{k}\}$ defined by

$C_{k}= \sum_{u_{1},\ldots,u_{k}=-\infty}^{\infty}|c_{X^{k}}(u_{1}, \ldots, u_{k-1})|$ ,

it holds that

$\sum_{k=1}^{\infty}C_{k}z^{k}/k!<\infty$

for $z$ in a neighborhood of $0$ .
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Denote by $g_{k}(\omega_{1}, \ldots, \omega_{k-1})$ , the k-th order spectral density of the process $\{X(t)\}$ ;
namely

$g_{k}( \omega_{1}, \ldots, \omega_{k-1})=(2\pi)^{-k+1}\sum_{u_{1},\ldots,u_{k}=-\infty}^{\infty}c_{X^{k}}(u_{1}, \ldots, u_{k-1})\exp(-i\sum_{j=1}^{k-1}u_{j}\omega_{j})$.

Henceforth we assume that spectral density depends on an unknown parameter $\theta$

in this section: thus $g(\omega)=g(\omega, \theta),$ $g_{k}(\omega_{1}, \ldots,\omega_{k-1})=g_{k}(\omega_{1}, \ldots,\omega_{k-1};\theta)$ . In what
follows, we state the fundamental results on periodogram.

Lemma 2.1. Let $\{X(t)\}$ satisfy Assumption 2.1. Let $A(\omega),$ $-\pi<\omega\leq\pi$ be a q-
dimensional vector valued continuous function, satisfying $A(\omega)=A(-\omega)$ . Then

$T^{-1/2} \sum_{t=1}^{T}A(\lambda_{t})\{I_{T}(\lambda_{t})-El_{T}(\lambda_{t})\}arrow dN(O,\Sigma_{1})$ $(Tarrow\infty)$ ,

where $\lambda_{t}=2\pi t/T$ and

$\Sigma_{1}$ $=$ $\frac{1}{2\pi}\int_{-\pi}^{\pi}\int_{-\pi}A(\omega_{1})A(\omega_{2})’g_{4}(\omega_{1}, -\omega_{1},\omega_{2})d\omega_{1}d\omega_{2}$

$+ \frac{1}{\pi}\int_{-\pi}A(\omega)A(\omega)’g(\omega)^{2}d\omega$ .

Lemma 2.2. Under the same assumption as in Lemma 2.1, it holds that

$T^{-1} \sum_{t=1}^{T}\{A(\lambda_{t})I_{T}(\lambda_{t})\}\{A(\lambda_{t})I_{T}(\lambda_{t})\}’arrow p\Sigma_{2}$ $(Tarrow\infty)$ ,

where

$\Sigma_{2}$ $=$ $\frac{1}{\pi}\int_{-\pi}^{\pi}A(\omega)A(\omega)’g(\omega)^{2}d\omega$.

$Emp\ddot{m}cal$ likelihood allows us to use likelihood methods, without assuming that the
data come from a known family of distribution. Empirical likelihood method is based on
the nonparametric likelihood ratio $R(F)= \prod_{i=1}^{n}np_{i}$ where $F$ is an arbitrary distribution
which has probability $p_{i}$ on the obtained data $X_{i}$ . We use this ratio $R(F)$ as a basis for
hypothesis testing and confidence intervals.

When we are interested in parameter $\theta\in R^{q}$ which satisfies $E[m(X,\theta)]=0$ , where
$m(X,\theta)\in R^{q}$ is a vector-valued function, called estimating function, we consider the
empirical likelihood ratio function $R(\theta)$ (defined in (5) below). As a test statistic, it is
shown that $-2\log R(\theta)$ tends to chi-square with degree of freedom $q$ , when $X_{i}$ ’s are i.i.$d$ .
(e.g. Owen (1988, 1990)).
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Here, we consider the case of dependent sample. When $\{X(t)\}$ is a Gaussian circu-
lar ARMA process, Anderson (1977) showed that the $\log$ likelihood $LL_{c}(\theta)$ for $X=$
$(X(1), \ldots,X(T))’$ becomes, disregarding a constant term,

$LL_{c}( \theta)=-\sum_{t--1}^{T}\{\log g(\lambda_{t},\theta)+\frac{I_{T}(\lambda_{t})}{g(\lambda_{t},\theta)}\}$ ,

and that $2I_{T}(\lambda_{t})/g(\lambda_{t}, \theta),$ $t=1,$ $\ldots,$ $(T/2)-1$ or $(T-1)/2$ , are independently distributed,
each with $\chi_{2}^{2}$ -distribution, where $I_{T}(\lambda_{t})$ is the periodogram of $X$ and $g(\lambda_{t}, \theta)$ is the spec-
tral density which depends on an unknown parameter $\theta$ . Without the assumption of
circular Gaussian ARMA process, it is known that Anderson’s results hold asymptot-
ically (e.g. Taniguchi and Kakizawa (2000, Section 7.2.2)). That is, if $\{X(t)\}$ is an
appropriate stationary process, $2I_{T}(\lambda_{t})/g(\lambda_{t},\theta),$ $t=1,$ $\ldots,(T/2)-1$ or $(T-1)/2$ are
asymptotically independent and asymptotically $\chi_{2}^{2}$ -distributed.

Monti (1997) applied the spectral approach of this type to the $emp\ddot{m}cal$ likelihood,
and considered an integral version of $LL_{c}(\theta)$ , which is called the Whittle likelihood, that
is,

$WL( \theta)\equiv\int_{-\pi}^{\pi}\{\log g(\omega,\theta)+\frac{I_{T}(\omega)}{g(\omega,\theta)}\}d\omega$, (3)

and used $\psi_{t}(\theta)=(\partial/\partial\theta)\{\log g(\lambda_{t},\theta)+I_{T}(\lambda_{t})/g(\lambda_{t}, \theta)\}$ as a counterpart ofOwen’s $m(X,\theta)$ .
Then, Monti (1997) showed that $-2\log R(\theta)$ tends to chi-square with degree of freedom
$q$ . However, her proof of the above result essentially relies on Anderson’s results.

In this section, assuming that $\{X(t)\}$ is a non-Gaussian scalar stationary process, we
give the rigorous proof of it. First, we impose the following assumptions.

Assumption 2.3. $g(\omega, \theta)$ is continuously twice differentiable with respect to $\theta$ .

Assumption $2A$ . (i) $\theta_{0}$ is the true value ofa parameter of interest $\theta$ .

(ii) $\theta_{0}$ is innovation free, that is,

$f_{-\pi} \frac{\partial}{\partial\theta}\{g(\omega, \theta)\}^{-1}g(\omega,\theta)d\omega|_{\theta=\theta_{0}}=0$ . (4)

If $\theta$ is innovation-free, $(\partial/\partial\theta)WL(\theta)|_{\theta=\theta_{0}}=0$ becomes

$\int_{-\pi}\frac{\partial}{\partial\theta}\{\frac{I_{T}(\omega)}{g(\omega,\theta)}\}d\omega|_{\theta=\theta_{0}}=0$

and its discriterized version of the left hand side is

$\frac{2\pi}{T}\sum_{t=1}^{T}\frac{\partial}{\partial\theta}1\frac{I_{T}(\lambda_{t})}{g(\lambda_{t},\theta)}\}|_{\theta=\theta_{0}}$
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Because it is known that $E\{I_{T}(\lambda_{t})\}$ converges to $g(\lambda_{t}, \theta_{0})$ , we can see that

$\frac{1}{T}\sum_{t=1}^{T}E[\frac{\partial}{\partial\theta}\{\frac{l_{T}(\lambda_{t})}{g(\lambda_{t},\theta)}\}|_{\theta=h}]arrow 0$

which motivates our empirical likelihood ratio function $R(\theta)$ defined by

$R( \theta)=\max_{w}\{\prod_{t=1}^{T}Tw_{t}|\sum_{t=1}^{T}w_{t}m(\lambda_{t}, \theta)=0,$ $w_{t}\geq 0,$ $\sum_{t=1}^{T}w_{t}=1\}$ , (5)

where $w=(w_{1}, \ldots, w_{T})’$ and

$m( \lambda_{t},\theta)=\frac{\partial}{\partial\theta}\{\frac{l_{T}(\lambda_{t})}{g(\lambda_{t},\theta)}\}$ .

We set down the following further assumption.

Assumption 2.5. The process $\{e(t)\}$ satisfies

$cum\{e(t_{1}),e(t_{2}),e(t_{3}),e(t_{4})\}=\{\begin{array}{ll}\kappa^{4} (t_{1}=t_{2}=t_{3}=t_{4})0 (otherwise)\end{array}$

Then we get the following theorem.

Theorem 2.1. Let $\{X(t)\}$ be a scalar-valued linear process defined in (1), and satisff
Assumptions 2.1 $\sim$ 2.5. $Then-2\log R(\theta_{0})arrow\chi_{q}^{2}d$ as $Tarrow\infty$ .

Using this theorem, we can constmct a confidence regions of $\theta$ . First, we choose a
proper threshold value $z_{a}$ , which is $\alpha$ percentile of $\chi_{q}^{2}$ . Then we calculate $-2\log R(\theta)$ at
division points over the range and construct the region

$C_{a,T}=\{\theta|-2\log R(\theta)<z_{a}\}$ .

3 Empirical likelihood method for non.Gaussian vector
stationary processes with fitting parametric spectral
model

Consider a vector-valued linear process $\{X(t);t\in Z\}$ generated by

$X(t)= \sum_{j=0}^{\infty}G(])e(t-])$, $t\in Z$, (6)

where $X(t)$ ’s have $s$ components and $e(t)$ ’s are $s$ dimensional vectors satisfying $E[e(t)]=$
$0$ and $E[e(t)e(I)’]=\delta(t, l)K$ , with $K$ a nonsingular $s$ by $s$ matrix, $G(J)$ ’s are constant $s$ by
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$s$ matrices, and the components of $X,$ $e$ and $G$ are all real. If $\sum_{j=0}^{\infty}$ tr$\{G(])KG(])’\}<\infty$

(this condition is assumed throughout in this section), the process $\{X(t)\}$ is a second-
order stationary process and has the spectral density matrix which is expressed as

$g( \omega)=\frac{1}{2\pi}k(\omega)Kk(\omega)^{*}$ , $-\pi<\omega\leq\pi$, (7)

where $k( \omega)=\sum_{j=0}^{\infty}G(j)e^{i\omega j}$ . For the stretch $X(t),$ $t=1,$ $\ldots,$
$T$ , we denote by $I_{T}(\omega)$ , the

periodogram; namely

$I_{T}( \omega)=\frac{1}{(2\pi T)}d_{T}(\omega)d_{T}(\omega)^{*}$, $-\pi<\omega\leq\pi$ . (8)

where $d_{T}( \omega)=\sum_{t=1}^{T}X(t)e^{-i\omega}$ ‘. We set down the following assumptions.

Assumption 3.1. (i) $\{X(t)\}$ is strictly stationary with all ofwhose moments exist.

$(li)$ Thejoint k-th order cumulant $c_{X^{k}}(u_{1}, \ldots, u_{k-1})_{\beta_{1}\beta_{2}..\beta_{k}}ofX(t)_{\beta_{1}},X(t+u_{1})_{\beta_{2}},$ $\ldots,X(t+$

$u_{k-1})_{\beta_{k}}$ satisfies

$\sum_{u1\cdots\cdot\cdot u_{k- 1}=-\infty}^{\infty}(1+|u_{j}|)|c_{X^{k}}(u_{1}, \ldots,u_{k-1})_{\beta_{1}..\beta_{k}}|<\infty$ (9)

for $j=1,$ $\ldots,k-1,\beta_{1},$ $\ldots,\beta_{k}=1,$
$\ldots,$

$s$ and any $k,$ $k=2,3,$ $\ldots$ .

Assumption 3.2. For the sequence $\{C_{k}\}$ defined by

$C_{k}= \sup_{\beta_{1},\ldots\beta_{k}}\sum_{u_{1},\ldots,u_{k}=-\infty}^{\infty}|c_{X^{i}}(u_{1}, \ldots, u_{k-1})_{\beta_{1}..\beta_{k}}|$ ,

it holds that

$\sum_{k=1}^{\infty}C_{k}z^{k}/k!<\infty$

for $z$ in a neighborhood of $0$ .

We denote by $g_{k}(\omega_{1}, \ldots,\omega_{k-1})_{\beta_{1}..\beta_{k}}$ , the k-th order spectral density of the process
$\{X(t)\}$ ; namely

$g_{k}( \omega_{1}, \ldots,\omega_{k-1})_{\beta_{1}..\beta_{k}}=(2\pi)^{-k+1}\sum_{ku_{1},\ldots,u=-\infty}^{\infty}c_{X^{\hslash}}(u_{1}, \ldots, u_{k-1})_{\beta_{1}..\beta_{k}}\exp(-i\sum_{j=1}^{k-1}u_{j}\omega_{j})$.

In Section 2, we extended the $emp\ddot{m}cal$ likelihood method to non-Gaussian scalar
stationary processes based on the Whittle likelihood. In this section, we consider to
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apply the method to non-Gaussian vector stationary processes. The difference from
Section 2 is not only that we deal with vector processes but also that we use a fitting
parametric spectral model instead of parametrized true spectral density.

For the vector-valued non-Gaussian linear process (6) with the true spectral density
matrix $g(\omega)$ , we fit a parametric spectral model $f(\omega,\theta)$ with $\theta\in\Theta\subset R^{q}$ , to $g(\omega)$ . Here
$f(\omega, \theta)$ may be different from $g(\omega)$ . Consider the multivariate Whittle likelihood

$\int_{-\pi}^{\pi}[\log\det f(\omega,\theta)+ff\{f(\omega,\theta)^{-1}l_{T}(\omega)\}]d\omega$ .

Here, we impose the following assumption on the parametric spectral model $f(\omega,\theta)$ .

Assumption 33. (i) $\Theta$ is a compact subset of $R^{q}$ .
(ii) $f(\omega, \theta)$ is continuously twice differentiable with respect to $\theta\in\Theta$ .

(iii) $f(\omega,\theta)\in F$ . Here 9“ is the parametric spectralfamily whose element is expressed
$as$

$f( \omega,\theta)=(\sum_{j=0}^{\infty}C_{j}(\theta)e^{ij\omega})\Sigma(\sum_{j=0}^{\infty}C_{j}(\theta)e^{ij\omega})^{*}$ (10)

where $C_{j}(\theta)$ is $s\cross s$ matrices, $C_{0}(\theta)$ is $s\cross s$ unit matrix and $\Sigma$ is an $s\cross s$ positive
definite matrix which is independent of $\theta$ .

The above model (10) is the spectral form of the general linear process so this assump-
tion is quite namral. Note that the parameter $\theta$ does not depend on $\Sigma$ , which corresponds
to the covariance matrix of the innovation. Like this, when $\theta$ depends on only the coeffi-
ciem parts $C_{j}$ and does not depend on the innovation part $\Sigma$ , we call $\theta$

”$innovation$-free”.
Let $\theta_{0}$ be the value defined by

$\frac{\partial}{\partial\theta}\int_{-\pi}^{\pi}[\log\det f(\omega,\theta)+\ddagger r\{f(\omega,\theta)^{-1}g(\omega)\}]d\omega|_{\theta=\theta_{0}}=0$, (11)

which is called the pseudo-true vale of $\theta$ . We use

$D(f_{\theta}, g):= \int_{-\pi}[\log\det f(\omega,\theta)+\ddagger r\{f(\omega, \theta)^{-1}g(\omega)\}]d\omega$

as a disparity measure between $f(\omega,\theta)$ and $g(\omega)$ , so $\theta_{0}$ means the point minimizing
the $D(f_{\theta}, g)$ . If $\theta$ is innovation-free, then $J_{-\pi}^{\pi}$ log det $f(\omega,\theta)d\omega$ is independent of $\theta$

(Brockwell-Davis (1991, p. 191). Therefore (11) becomes

$\frac{\partial}{\partial\theta}I_{-\pi}^{\alpha\{f(\omega,\theta)^{-1}g(\omega)\}d\omega}|_{*\theta_{0}}=0$. (12)
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Furthermore, by choosing $f(\omega, \theta)$ appropriately, $\theta_{0}$ can show various important indices
of time series model. One of such examples is the autocorrelation, which is introduced
in the following.

Example 3.1. Denote $\Gamma(\delta)=cov\{X(t), X(t+\delta)\}$ as the autocovariance matrix of$X$ with
lag $\delta$ . Let us consider the linear process defined in (6). Ifwe set

$\theta=(\theta_{11}, \ldots, \theta_{1s}, \ldots\ldots, \theta_{s1}, \ldots,\theta_{ss})’$ ,

$A(\theta)=[\theta_{s1}\theta_{11}$

$.\cdot.\cdot$

.
$\theta_{ss}\theta_{1s})$ ,

and

$f(\omega,\theta)=(I-A(\theta)e^{i\delta\omega})^{-1}(l-A(\theta)e^{i\delta\omega})^{-1^{*}}$,

then condition (12) shows

$\sum_{j=1}^{s}A(\theta_{0})_{\beta_{1}j}\int_{-\pi}^{\pi}g(\omega)_{j\beta_{2}}d\omega=\int_{-\pi}e^{i\delta\omega}g(\omega)_{\beta_{2}\beta_{1}}d\omega$ $(\beta_{1},\beta_{2}=1, \ldots, s)$ . (13)

It is well known that the autocovariance and the spectral density have the following
relation

$\Gamma(\delta)=\int_{-\pi}^{\pi}e^{i\delta\omega}g(\omega)d\omega$. (14)

From (13) and (14), we obtain

$A(\theta_{0})\Gamma(0)=\Gamma(\delta)’$ $\Leftrightarrow$ $A(\theta_{0})=\Gamma(\delta)\Gamma(0)^{-1}$ .

Hence, we can estimate the quantity $\Gamma(\delta)\Gamma(0)^{-1}$ , which is a generalized quantity of the
usual autocorrelation $\rho(\delta)=\Gamma(\delta)/\Gamma(0)$ in scalar case.

As a natural extension from the scalar case in Section 2, we define an estimating
function $m(\lambda_{t}, \theta)$ as

$m( \lambda_{t},\theta)=\frac{\partial}{\partial\theta}$ tr$\{f(\lambda_{t},\theta)^{-1}I_{T}(\lambda_{t})\}$ where $\lambda_{t}=\frac{2\pi t}{T},$ $t=1,$ $\ldots,$
$T$ (15)

according to (12). In addition, we use the $emp\ddot{m}cal$ likelihood ratio function $R(\theta)$ de-
fined in (5). Then we obtain the following theorem.

Theorem 3.1. Let $\{X(t)\}$ be the linear process defined in (6) satisfying Assumptions 3.1
$- 3.3$ . Then

$-2\log R(\theta_{0})arrow d(AN)’(AN)$ (16)
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as $Tarrow\infty$ , where $N$ has a q-dimensional stamdard normal distribution and $A=$
$\Sigma_{4}^{-1/2}\Sigma_{3}^{1/2}$ . Here $\Sigma_{3}$ is $q$ by $q$ matrix whose $(\gamma_{1}, \gamma_{2})$ element is

$(\Sigma_{3})_{\gamma_{1}\gamma_{2}}$ $=$ $\frac{1}{\pi}\int_{-\pi}^{\pi}tr[g(\omega)\frac{\partial f(\omega,\theta)^{-1}}{\partial\theta_{\gamma_{I}}}|_{\theta=\theta_{0}}g(\omega)\frac{\partial f(\omega,\theta)^{-1}}{\partial\theta_{72}}|_{\theta=h}]d\omega$

$+ \frac{1}{2\pi}\sum_{\beta_{1},\ldots\beta_{4}=1}^{s}\int\int_{-\pi}^{\pi}\frac{\partial f(\omega_{1};\theta)^{\beta_{1}\beta_{2}}}{\partial\theta_{71}}|_{\theta=\phi}\frac{\partial f(\omega_{2};\theta P^{3}\beta_{4}}{\partial\theta_{\gamma_{2}}}|_{\theta=h}$

$\cross g_{4}(-\omega_{1},\omega_{2}, -\omega_{2})_{\beta_{1}..\beta}$ $d\omega_{1}d\omega_{2}$ ,

and $\Sigma_{4}$ is $q$ by $q$ matrix whose $(\gamma_{1},\gamma_{2})$ element is

$(\Sigma_{4})_{\gamma_{I}\gamma_{2}}$ $=$ $\frac{1}{2\pi}I_{-\pi}^{tr[g(\omega)}\frac{\partial f(\omega,\theta)^{-1}}{\partial\theta_{\gamma_{1}}}|_{\theta=\theta_{0}}g(\omega)\frac{\partial f(\omega,\theta)^{-1}}{\partial\theta_{\gamma_{2}}}|_{\theta=\theta_{0}}]d\omega$

$+ \frac{1}{2\pi}\int_{-\pi}^{\pi}tr[g(\omega)\frac{\partial f(\omega,\theta)^{-1}}{\partial\theta_{\gamma_{1}}}|_{\theta=\theta_{0}}]tr[g(\omega)\frac{\partial f(\omega,\theta)^{-1}}{\partial\theta_{72}}|_{\theta=\theta_{0}}]d\omega$.

Remark 3.1. Denote the eigenvalues of $A’A$ by $a_{1},$ $\ldots,a_{q}$ , then we can write

$(AN)’(AN)= \sum_{\gamma=1}^{q}Z_{\gamma}$ (17)

where $Z_{\gamma}$ is distributed as Gamma distribution $\Gamma(2^{-1}, (2a_{\gamma})^{-1})$ .
$\Sigma_{3}$ and $\Sigma_{4}$ contain the unknown spectral density manix $g(\omega)$ and the fourth-order

spectral density $g_{4}(-\omega_{1},\omega_{2}, -\omega_{2})_{\beta_{1}\ldots\beta_{4}}$ . In practice, we can make appropriate consistent
estimators $\hat{\Sigma}_{3}$ and $\hat{\Sigma}_{4}$ of $\Sigma_{3}$ and $\Sigma_{4}$ , respectively as follows. We can use nonparametric
spectral estimator $g_{T}(\omega)$ (see Brillinger (2001) for example) and substitute it into $g(\omega)$

in $\Sigma_{3}$ and $\Sigma_{4}$ , then we get the consistent estimator for the integral of function of $g(\omega)$ . It
is complicated to give the explicit form of consistent estimator for the general integrals
of fourth-order spectral density $g_{4}(-\omega_{1}, \omega_{2}, -\omega_{2})_{\beta_{1}\ldots\beta_{4}}$ in $\Sigma_{3}$ . Basically we substitute
the fourth-order weighted periodograms into the fourth-order spectral. The consistent
estimators can be found in Keenan (1987 Section 2). Thus we can obtain consistent
estimators $\hat{\Sigma}_{3}$ and $\hat{\Sigma}_{4}$ . Then, from Slutsky’s theorem, it follows that

$( \text{\^{A}} N)’(\hat{A}N)arrow d(AN)’(AN)=\sum_{\gamma=1}^{q}Z_{\gamma}$ , (18)

where $\hat{A}=2_{4}^{-1/2}\Sigma_{3}^{1/2}^{\wedge}$ Using this theorem, we can construct confidence regions for
$\theta$ . First, we choose a proper threshold value $z_{a}$ , which is $\alpha$ percentail of estimated
distribution of (17) based on the relation (18). Then we calculate $-2\log R(\theta)$ at division
points over the range and construct the region

$C_{\alpha,T}=\{\theta|-2\log R(\theta)<z_{a}\}$. (19)

Remark 3.2. In the scalar case, we can easily see $\Sigma_{3}=\Sigma_{4}$ . Then the asymptotic
distribution $of-2\log R(\theta_{0})$ becomes $\chi_{q}^{2}$ , which is $independ\ell nt$ ofunknown parameter.
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4 Application of Cressie-Read power.divergence statis-
tics to non-Gaussian vector stationary processes with
fitting parametric spectral model

We consider a vector-valued linear process $\{X(t);t\in Z\}$ generated by

$X(t)= \sum_{j=0}^{\infty}G(J)U(t-j)$, $t\in Z$ , (20)

where the $U(t)$ ’s are i.i.$d$ . s-vector random variables with probability density $p(u)>0$
on $\mathbb{R}^{s}$ and $G(J)$ ’s are $s$ by $s$ matrices. The components of $X,$ $U$ and $G$ are all real. We
make the following assumptions.

Assumption 4.1.

(i) The coefficient matrices $G(])$ ’s satisfy

$\sum_{j=0}^{\infty}i^{1/2}||G(])||<\infty$ ,

$where||G(J)||$ denotes the sum ofall the absolute values of the entries of$G(])$ .

(ii) The probability densiiy $p(\cdot)$ satisfies

$\lim_{||u||arrow\infty}p(u)=0$ , $\int up(u)du=\theta$ , and $\int uu’p(u)du=I_{s}$,

where $||u||=\sqrt{u’u}$ and $1_{s}$ denotes the $s$ by $s$ identity matrix.

$(iii) \int||u||^{4}p(u)du<\infty$ .
The spectral density of the process $\{X(t)\}$ and the periodogram are expressed as (7)

and (8), respectively. (We set $K=I_{s}$ in this section.)
Let $\theta\in\Theta$ be a quantity of interest, and be characterized by an $s$ by $s$ nonnegative

definite matrix-valued function $f(\omega, \theta)$ as is seen in Section 3. Further we impose As-
sumption 3.3, and assume that true value $\theta_{0}$ satisfies (12).

In Section 3, we considered the derivative of an extended Whittle likelihood, i.e.,

$m( \omega, \theta)=\frac{\partial}{\partial\theta}tr\{f(\omega,\theta)^{-1}I_{T}(\omega)\}\in R^{q}$

as an estimating function. Then, for the empirical likelihood ratio $R(\theta)$ , we showed that
$-2\log R(\theta_{0})$ converges to a sum of Gamma distributions.
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In this section, motivated by Baggerly $(1998)$ ’s results in the i.i.$d$ . case, we suggest
the Cressie-Read powe-divergence (CR) statistic $CR_{v}(\theta)$ for time series

$CR_{v}(\theta)$

$= \min_{w}\{$ $\frac{2}{v(v+1)}\sum_{t=1}^{T}\{(Tw_{t})^{-v}-1\}$ $\sum_{-,t-1}^{T}w_{t}m(\lambda_{t},\theta)=0,$ $\sum_{t=1}^{T}w_{t}=1,$

$w_{t}\geq 0\}_{(21)}$

where $v\in(-\infty, \infty)$ . CR statistic contains user-specified parameter $v\in(-\infty, \infty)$ and
encompasses several commonly-used tests, i.e., Neyman-modified $X^{2}$ statistic $(v=-2)$ ,
the maximum entropy, minimum information or Kullback-Leibler statistic $(v=-1)$ ,
the Freeman-Tukey statistic $(v=-1/2)$ , the empirical likelihood statistic $(v=0)$ , and
Pearson’s $\nearrow$ statistic $(v=1)$ . Hence, Cressie-Read power-divergence statistic is much
broader criterion than the empirical likelihood ratio and its asymptotic theory covers the
results of Section 3.

The asymptotic results of the Cressie-Read power-divergence statistic are given as
follows.

Theorem 4.1. For any given $v\in$ ( $-$ oo2 $\infty$), as $Tarrow\infty$ ,

$CR_{v}(\theta_{0})arrow d(AN)’(AN)$ , (22)

where the asymptotic distribution $(AN)’(AN)$ is same one in Theorem 3.1.

In addition, we consider a power property of the test based on Theorem 4.1. From
now on, let the coefficient matrices $G(])$ ’s of (20) be parametrized by $\theta\in\Theta,$ $\Theta\subset R^{q}$ .
Write

$G_{\theta}(z)= \sum_{j=0}^{\infty}G_{\theta}(j)z^{j}$ , $|z|<1$ .

We make the following assumptions.

Assumption 4.2.

(i) $(a)$ Every $G_{\theta}(j)$ is continuously two times differentiable with respect to $\theta$, and
the derivatives satisfy

$|(\partial/\partial\theta_{u_{1}})\ldots(\partial/\partial\theta_{u_{k}})G_{\theta.l_{1}l_{2}}(j)|=O1_{J^{arrow 1+D}}(\log j)^{k}\}$ , $k=0,1,2$

for $l_{1},$ $l_{2}=1,$
$\ldots,$

$s$ .
$(b)\det G_{\theta}(z)\neq 0$ for $|z|<1$ and $G_{\theta}^{-1}(z)$ can be expanded asfollows:

$G_{\theta}^{-1}(z)=I_{s}+B_{\theta}(1)z+B_{\theta}(2)z^{2}+\cdots$ ,
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$(c)$ Every $B_{\theta}(])$ is continuously two times differentiable with respect to $\theta$, and
the derivatives satisfy

$|(\partial/\partial\theta_{u_{1}})\ldots(\partial/\partial\theta_{u_{k}})B_{\theta,l_{1}l_{2}(i)|=O\{J^{arrow 1-D}}(\log])^{k}\}$ , $k=0,1,2$

for $l_{1},$ $l_{2}=1,$
$\ldots,$

$s$ .

(ii) The continuous derivative $Dp$ of $p(\cdot)$ exists on $R^{s}$ .

(iii) $\int||\kappa(u)||^{4}p(u)du<\infty$ , where $\kappa(u)=p^{-1}(u)Dp(u)$ .
Consider the problem of testing

$H:\theta=\theta_{0}$ against $A:\theta\neq\theta_{0}$ .
To see a goodness of our test we evaluate the local power under the sequence of lo-
cal altematives $A_{T}$ : $\theta_{T}=\theta_{0}+T^{-1/2}h$ where $h=(h_{1}, \ldots,h_{q})’$ . Define $t^{X}(j)=$

cum$\{\kappa(U(t)), X(t+])’\}$, and the cross-spectral density matrix $P^{X}(\omega)$ is given by the
following relation

$c^{\kappa X}(J)= \int_{-\pi}^{\pi}e^{ij\omega}f^{x}(\omega)d\omega$.

Then we get the following theorem.

Theorem 4.2. Let $A,$ $\Sigma_{3},$ $\Sigma_{4}$ and $N$ be the same matrices and q-dimensional standard
normal vector as defined in Theorem 4.1. Under the sequence of local alternatives $A_{T}$ ,

for any given $v\in$ $(-$ oo $\infty)$ ,

$CR_{v}(\theta_{0})arrow d(AN+\mu)’(AN+\mu)$ ,

where $\mu=2\Sigma_{4}^{-1/2}\tau$. Here $\tau=(\tau_{1}, \ldots,\tau_{q})’$ with

$\tau_{i}=I_{-\pi}^{tr[g(\omega)\frac{\partial f(\omega,\theta)^{-1}}{\partial\theta_{i}}?^{x_{(\omega)\{\sum_{j=1}^{\infty}B_{h’\delta\theta_{0}}(])e^{i\omega j}\}]}}}\theta=\theta_{0}d\omega$.

where

$B_{h’\delta\theta_{0}}(])= \sum_{l=1}^{q}h_{l}\frac{\partial B_{\theta_{0}}(j)}{\partial\theta_{l}}$ .

The difference with Theorem 4.1 is that we are considering the asymptotic distribu-
tion of the test under a sequence of”contiguous altematives $A_{T}$”, and that its normal
factorization $AN+\mu$ has mean $\mu$ . This difference $\mu$ means the distance from the asymp-
totic distribution under the null hypothesis, so the magnimde $|\mu|$ shows the magnitude
of the power of the test.
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5 Numerical simulations
In this section, we introduce the results of numerical simulations for Theorems 4.1

and 4.2. Let us consider the following scalar-valued AR(1) model

$X(t)=bX(t-1)+U(t)$ (23)

where $|b|<1$ , and $U(t)’s$ are independent and identically distributed, and the distribu-
tion of $U(t)$ satisfies (ii) and (iii) of Assumption 4.1.

As an application ofTheorem 4.1, we can discuss the estimation of the autocorrelation
with lag $\delta$ , which is denoted by $\rho(\delta)$ . As is seen in Example 3.1, we set $f(\omega,\theta)=$

$|1-\theta e^{i\delta\omega}|^{-2}$ and calculate $CR_{v}(\theta)$ at division points over $(-1,1)$ . Since the process (23)

is scalar, the asymptotic distribution of $CR_{v}(\theta_{0})$ is chi-square with degree of freedom 1,
$X_{1}^{2}$ (see Remark 3.2). Then we construct the interval $C_{a.T}(\theta)$ in (19) where $z_{\alpha}$ is the $\alpha$

percentail of $\chi_{1}^{2}$ and get the $\alpha$ percent confidence interval of $\theta_{0}=\rho(\delta)$ .
Let the innovation $U(t)$ have t-dishibution with degree of freedom 5 and generate

$X(1),$ $\ldots,X(2\alpha))$ from (23), i.e. $T=200$ . Then we estimate the autocorrelation with
lag $\delta=2$ . In AR(1) model (23), the autocorrelation $\rho(\delta)$ is $b^{|\delta|}$ , hence $\theta_{0}=b^{2}$ . Table 1
shows that 90% confidence interval of $\theta_{0}$ by use of the Cressie-Read power-divergence
method $(v=-2, -1, -1/2,0,1,2)$ and the usual sample autocorrelation (SAC) method
for $b=0.1,0.5$ , and 0.9. The upper side in each cell shows the 90% confidence interval
and the lower side shows the length of the interval. Except for a few cases, the length
of interval by use of the Cressie-Read power-divergence method is shorter than that by
use of the sample autocorrelation.

Next, as an application of Theorem 4.2, we discuss the power property of the test

$H:\rho(\delta)=\theta_{0}$ against $A:\rho(\delta)\neq \mathfrak{g})$ .

We evaluate the local power under the sequence of local altematives $A_{T}$ : $\rho(\delta)=\theta_{0}+$

$T^{-\iota/2}h,$ $h\in$ R. From Theorem 4.2, we can see that the mean difference $|\mu|$ shows a
magnimde of the power. When we consider the AR(1) model (23), the magnimde $\beta\ell|$ is
expressed as

$|\mu|=(2\pi)^{-\iota/2}|M_{p}h|K(b,\delta)$

where $M_{p}$ $:= \int_{-\infty}^{\infty}uDp(u)du$ and $K(b,\delta)$ is a positive function of $b$ and $\delta$ . Therefore we
can see that the larger $|h|,$ $|M_{p}|$ and $K(b,\delta)$ bring the larger power.

If the innovation $U(t)$ is distributed as a standard normal we can easily check $|M_{p}|=1$ .
To see the effect of non-Gaussianity we consider the generalized exponential distribu-
tions $GE(\eta)$ , whose density is expressed as

$p(u)=c\exp\{-|u|^{\eta}/2\zeta\}$,
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where $\eta>0,$ $\zeta=2^{-1/\eta}\Gamma(1/\eta)^{1/2}\Gamma(3/\eta)^{-1/2}$ and $c=\eta\zeta^{-1}2^{-(1+\eta)/\eta}\Gamma(1/\eta)^{-1}$ . $GE(2)$ coin-
cides with standard normal distribution and $GE(\eta),$ $\eta<2$ is heavier-tailed distribution
than normal. Therefore we see the behavior of $|M_{p}|$ when $\eta<2$ to check the effect
of non-Gaussianity. Figure 1 shows the relation of $\eta$ and $|M_{p}|$ . Except for the region
close to $0$ , the magnitude of $|M_{p}|$ is approximately 1, so we can see that the effect of non-
Gaussianity is very small. Finally we see the magnimde of $K(b,\delta)$ . Figures 2 shows that
the relation of $K(b, \delta)$ and $b$ with $\delta=2,3$ and 4. In every case the magnimde of $K(b,\delta)$

becomes larger when the value of $b$ tends to 1. Therefore the test based on Cressie-Read
power-divergence method works well for the near unit root process.
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eta

図 1: The relation of $|M_{p}|$ and $\eta$

$b$

図 2: The relation of $K(b, 1)$ and $b$
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