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1 Introduction

This is based on the author’s recent work with R. Magnanini [MS4].

Let $\Omega$ be a domain in $\mathbb{R}^{N}$ with $N\geq 3$ , and let $u=u(x, t)$ be the unique bounded
solution of the following problem for the heat equation:

$\partial_{t}u=\Delta u$ in $\Omega\cross(0, +\infty)$ , (1.1)

$u=1$ on $\partial\Omega\cross(0, +\infty)$ , (1.2)

$u=0$ on $\Omega\cross\{0\}$ . (1.3)

The problem we consider is to characterize the boundary $\partial\Omega$ such that the solution
$u$ has a stationary isothermic surface, say $\Gamma$ . A hypersurface $\Gamma$ in $\Omega$ is said to be a
stationary isothermic surface of $u$ if at each time $t$ the solution $u$ remains constant
on $\Gamma$ (a constant depending on $t$ ). Examples we easily notice are isoparametric hy-
persurfaces. Namely, $\Gamma$ and $\partial\Omega$ are either parallel hyperplanes, concentric spheres,

or concentric spherical cylinders. This complete classification of isoparametric hy-

persurfaces was given by Levi-Civita [LC] and Segre [Seg].

Almost complete characterizations of the sphere have already been obtained
by [MSl, MS3] with the help of Aleksandrov’s sphere theorem [Alek], and some
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characterizations of the hyperplane have been given by $[$MS3]. In this note, we give
a characterization of the spherical cylinder in $\mathbb{R}^{3}$ . See Theorem 3.1 in Section 3.

2 A preliminary lemma

Before proceeding to the spherical cylinder in $\mathbb{R}^{3}$ , we consider general domains in
$\mathbb{R}^{N}$ with unbounded boundaries. Hereafter in this note, we assume the following: $\Omega$

satisfies the umiform exterior sphere condition; $\Gamma$ is a stationary isothermic surface
of $u$ ; there exists a domain $D$ in $\mathbb{R}^{N}$ with $\overline{D}\subset\Omega$ such that $\Gamma$ equals a connected
component of $\partial D$ ; dist $(\Gamma, \partial\Omega)=$ dist $(\overline{D}, \partial\Omega);D$ satisfies the interior cone condition
with respect to $\Gamma$ .

We recall that $\Omega$ satisfies the uniform exterior sphere condition if there exists
a number $r_{0}>0$ such that for every $\xi\in\partial\Omega$ there exists a ball $B_{r_{0}}(y)$ satisfying
$\overline{B_{r_{0}}(y)}\cap\overline{\Omega}=\{\xi\}$ , where $B_{r0}(y)$ denotes an open ball centered at $y\in \mathbb{R}^{N}$ and with
radius $r_{0}>0$ . Also, $D$ satisfies the interior cone condition with respect to $\Gamma$ if for
every $x\in\Gamma$ there exists a finite right spherical cone $V_{x}$ with vertex $x$ such that
$V\subset\overline{D}$ and $\overline{V_{x}}\cap\partial D=\{x\}$ .

Let $d=d(x)$ be the distance function defined by

$d(x)=$ dist $(x, \partial\Omega)$ , $x\in\Omega$ . (2.1)

We start with a lemma.

Lemma 2.1 The following assentons hold:

(1) There exists a number $R>0$ such that $d(x)=R$ for every $x\in\Gamma$ ;

(2) $\Gamma$ is a real analytic hypersurface;

(3) there exists a connected component $\gamma$ of $\partial\Omega$ such that $\gamma$ is also a real analytic

hypersurface, and the mapping: $\gamma\ni\xi\mapsto x(\xi)\equiv\xi+R\nu(\xi)\in\Gamma$ is a diffeomor-
phism, where $\nu(\xi)$ denotes the inward unit normal vector to $\partial\Omega$ at $\xi\in\gamma$ , that
is, $\gamma$ and $\Gamma$ are parallel hypersurfaces with distance $R$;

(4) the following inequality holds:

$- \frac{1}{r_{0}}\leq\kappa_{j}(\xi)<\frac{1}{R}(j=1, \cdots, N-1)$ for every $\xi\in\partial\Omega$ , (2.2)
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where $\kappa_{1}(\xi),$
$\cdots,$

$\kappa_{N-1}(\xi)$ denote the $pr^{v}incipal$ curvatures of $\partial\Omega$ at $\xi\in\gamma$ with

respect to the inward unit normal vector to $\partial\Omega$ , and where $r_{0}>0$ is the radius

of the uniform exterior sphere condition for $\Omega$ ;

(5) there enists a number $c>0$ satisfying

$\prod_{j=1}^{N-1}(\frac{1}{R}-\kappa_{j}(\xi))=c$ for every $\xi\in\gamma$ . (2.3)

Proof. Since $\Gamma$ is stationary isothermic, (1) follows from a result of Varadhan [Va]:

$- \frac{1}{\sqrt{s}}\log W(x, s)arrow d(x)$ as $sarrow\infty$ ,

where $W=W(x, s)(x\in\Omega, s>0)$ is defined by

$W(x, s)=s \int_{0}^{\infty}u(x, t)e^{-st}dt$ . (2.4)

The inequality - $\frac{1}{r_{0}}\leq\kappa_{j}(\xi)$ in (2.2) follows from the uniform exterior sphere con-
dition for $\Omega$ . See Lemma 2.2 of [MS3] together with Lemma 3.1 of [MSl] for the

remainder.
Finally, we illustrate an outline of the proof of (5), since it is helpful in under-

standing Theorem 3.2 in Section 3, which is the key to our characterization of the
spherical cylinder. We use a balance law stated as follows: Let $G$ be a domain in
$\mathbb{R}^{N}$ . For $x_{0}\in G$ , a solution $v=v(x, t)$ of the heat equation in $G\cross(O, +\infty)$ is such

that $v(x_{0}, t)=0$ for every $t>0$ if and only if

$\int_{\partial B_{r}(x_{O})}v(x, t)dS_{x}=0$
, for every $r\in[0$ , dist $(x_{0}, \partial G))$ and every $t>0$ . (2.5)

See [MSl] for a proof of this balance law. Let $P,$ $Q\in\gamma$ be two distinct points, and
let $p,$ $q\in\Gamma$ be the points such that

$\overline{B_{R}(p)}\cap\partial\Omega=\{P\}$ and $\overline{B_{R}(q)}\cap\partial\Omega=\{Q\}$ .

Consider the function $v=v(x, t)$ defined by

$v(x, t)=u(x+p,t)-u(x+q,t)$ for $(x, t)\in B_{R}(0)\cross(0, +\infty)$ .
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Since $v$ satisfies the heat equation and $v(O, t)=0$ for every $t>0$ , it follows from
(2.5) that

$\int_{B_{R}(p)}u(x, t)dx=\int_{B_{R}(q)}u(x, t)dx$ for every $t>0$ .

Therefore we obtain

$\int_{B_{R}(p)}W(x, s)dx=\int_{B_{R}(q)}W(x, s)dx$ for every $s>0$ . (2.6)

By using upper and lower barriers for $W$ near $\gamma$ in [MS3]:

$W_{\epsilon}^{\pm}(x, s)=\exp\{-\sqrt{s(1\mp\epsilon)}d(x)\}$ , $0<\epsilon<1$ , (2.7)

and by integrating on the level surfaces of $d$ with the co-area formula as in [MS2],
we have that as $sarrow\infty$

$\int_{B_{R}(p)}W(x, s)dx=C_{N}\{\prod_{j=1}^{N-1}(\frac{1}{R}-\kappa_{j}(P))\}^{-\frac{1}{2}}s^{-\frac{N+1}{4}}+o(s^{-\frac{N+1}{4}})$ (2.8)

for some positive constant $C_{N}$ depending only on $N$ . This together with (2.6) implies
(2.3). $\square$

3 A class of domains whose boundaries are un-
bounded surfaces of revolution and our main
theorem

In this section we consider a class of domains $\Omega$ where each boundary $\partial\Omega$ is an
unbounded surface of revolution in $\mathbb{R}^{3}$ . Precisely, let $r=r(x_{1})(x_{1}\in \mathbb{R})$ be a
continuous positive function on $\mathbb{R}$ , and consider a domain $\Omega$ defined by

$\Omega=\{x=(x_{1}, x_{2}, x_{3})\in \mathbb{R}^{3}:x_{2}^{2}+x_{3}^{2}<\{r(x_{1})\}^{2}\}$ . (3.1)

Then, in view of Lemma 2.1, since $\partial\Omega$ is connected, $\gamma=\partial\Omega$ and

$\Gamma=\{x\in\Omega:d(x)=R\}$ .
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Moreover, $r$ is real analytic and equation (2.3) is written as

$( \frac{1}{R}+\frac{\ddot{r}}{(1+(\dot{r})^{2})^{\frac{3}{2}}})(\frac{1}{R}-\frac{1}{(1+(\dot{r})^{2})^{\frac{1}{2}}r})=c$ on $\mathbb{R}$ , (3.2)

where $\dot{r}=\frac{d}{dx_{1}}r$ and $\ddot{r}=\overline{d}xd^{2}\pi_{1}r$ , and ODE analysis yields that only the following three
possibilities (I), (II), and (III) occur (see [MS4] for the details):

(I) $r$ is constant on $\mathbb{R}$ , that is, $\partial\Omega$ is a spherical cylinder;

(II) $c= \frac{1}{R^{2}},\ddot{r}>0$ on $\mathbb{R},$ $r$ has only one mminimum point, say $x_{1}=a$ , sat-
isfying $r(2a-x_{1})=r(x_{1})$ for all $x_{1}\in \mathbb{R}$ , the Gaussian curvature $K=$

$K(x)(=\kappa_{1}(x)\kappa_{2}(x))$ of $\partial\Omega$ is negative at $x=(a, x_{2}, x_{3}), \lim_{|x1|arrow\infty}r(x_{1})=\infty$ ,

and $\lim_{|x_{1}|arrow\infty}K(x)=0$ . Moreover, $\partial\Omega$ is parallel to a catenoid, namely, the

surface $\{x\in\Omega : d(x)=\frac{R}{2}\}$ is a catenoid;

(III) $c< \frac{1}{R^{2}}$ and $r$ is periodic on $\mathbb{R}$ . Precisely, there exist $a\in \mathbb{R}$ and $\ell>0$ satisfying

$r(x_{1}+2P)=r(x_{1})$ for all $x\in \mathbb{R},\dot{r}(a+k\ell)=0$ for all $k\in \mathbb{Z}$ ,

$\dot{r}(x_{1})<0$ if $x_{1}\in(a-\ell, a)$ , and $\dot{r}(x_{1})>0$ if $x_{1}\in(a, a+\ell)$ .

Moreover, the Gaussian curvature $K=K(x)$ of $\partial\Omega$ is negative at $x=$

$(a, x_{2}, x_{3})$ and positive at $x=(a+\ell, x_{2}, x_{3})$ .

We are in a position to state our main theorem:

Theorem 3.1 In cases (II) and (III), $\Gamma$ can not be a stationary $isothe7mic$ surface
of $u$ .

We will call several points $P\in\partial\Omega$ in cases (II) and (III) ”symmetric” as foUows:

In case (II), any point $(a, x_{2}, x_{3})\in\partial\Omega$ and any ideal point at infinity as $|x_{1}|arrow$

$\infty$ are called symmetric, since $\partial\Omega$ is symmetric with respect to the hyperplane

$x_{1}=a$ and $\partial\Omega$ becomes flatter and flatter as $|x_{1}|arrow\infty$ . In case (III), any point
$(a+k\ell, x_{2}, x_{3})\in\partial\Omega(k\in \mathbb{Z})$ is called symmetric, since $\partial\Omega$ is symmetric with respect

to the hyperplane $x_{1}=a+k\ell$ for any $k\in \mathbb{Z}$ .
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For two positive constants $c$ and $R$ in Lemma 2.1, we set

$T=cR^{2}$ and hence in cases (II) and (III) $0<T\leq 1$ . (3.3)

Then it follows from (2.3) that

$(1-R\kappa_{1})(1-R\kappa_{2})=T$ . (3.4)

Our main theorem is drawn from the following asymptotic formula for the integral
$\int_{B_{R}(p)}W(x, s)dx$ which is more precise than formula (2.8).

Theorem 3.2 For each symmetrtc point $P\in\partial\Omega$ in cases (II) and (III), let $p\in\Gamma$

be a unique point with $\overline{B_{R}(p)}\cap\partial\Omega=\{P\}$ . Then, as $sarrow\infty$ ,

$\int_{B_{R}(p)}W(x, s)dx=\frac{2\pi R}{T^{\frac{1}{2}}}s^{-1}+\Psi(K(P))s^{-\frac{3}{2}}+O(s^{-2})$ , (3.5)

where $\Psi=\Psi(K)$ is a quadratic function of $K$ satisfying

$\Psi’(K)<0$

More precisely, $\Psi$ is given by

if $K \leq\frac{1}{R^{2}}$ . (3.6)

$\Psi(K)=C(R, T)+\frac{\pi R^{2}}{12T^{a}2}[3R^{2}(21-T)K^{2}-(134+6T^{2})K]$ , (3.7)

where $C(R, T)$ is a constant depending only on $R$ and $T$ .

Remark. In order to apply Theorem 3.2 to any ideal point at infinity in case (II),
we use a kind of blowup argument to reduce the problem to the case where $\partial\Omega$ and
$\Gamma$ are parallel planes with distance $R$ . See [MS4] for the details.

4 Outline of the proof of Theorem 3.2

Throughout this section, see [MS4] for the details. For $\rho>0$ , we set

$\Gamma_{\rho}=\{x\in\Omega:d(x)=\rho\}$ . (4.1)

Let us begin with a purely geometrical lemma.
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Lemma 4.1 For each symmetric point $P\in\partial\Omega$ in cases (II) and (III), let $p\in\Gamma$ be
a unique point with $\overline{B_{R}(p)}\cap\partial\Omega=\{P\}$ . Then, as $\rhoarrow 0$ ,

$| \Gamma_{\rho}\cap B_{R}(p)|=\frac{2\pi R}{T^{\frac{1}{2}}}\rho+\psi(K(P))\rho^{2}+O(\rho^{3})$ , (4.2)

where $|\cdot|$ indicates the 2-dimensional Hausdorff measure of sets and $\psi=\psi(K)$ is a
quadratic function of $K$ given by

$\psi(K)=C_{1}(R, T)+\frac{\pi R^{2}}{24T^{\frac{6}{2}}}[3R^{2}(21-T)K^{2}-(134+30T^{2})K]$ , (4.3)

where $C_{1}(R, T)$ is a constant depending only on $R$ and $T$ .

We write
$\mathcal{N}=\{x\in\Omega:d(x)\leq\frac{R}{2}\}$ . (4.4)

By Lemma 2.1, for each point $x\in \mathcal{N}$ , there exits a unique point $z(x)\in\partial\Omega$ with
$B_{d(x)}(x)\cap\partial\Omega=\{z(x)\}$ . Then we set

$x(t)=z(x)+t\nu(z(x))$ for $0\leq t\leq d(x)$ , (4.5)

where $\nu(z(x))$ denotes the unit inward normal vector to $\partial\Omega$ at $z(x)\in\partial\Omega$ .
Let us introduce upper and lower barriers $U^{\pm}$ for $W$ in $\mathcal{N}$ which are more precise

than $W_{\epsilon}^{\pm}$ given by (2.7). By setting

$A_{0}(x)$ $=$ $\{\prod_{j=1}^{2}(1-\kappa_{j}(z(x))d(x))\}^{-\frac{1}{2}}$ and

$A^{\pm}(x)$ $=$ $\int_{0}^{d(x)}(\frac{1}{2}\Delta A_{0}\pm 1)(x(t))\exp\{-\frac{1}{2}\int_{t}^{d(x)}\Delta d(x(s))ds\}dt$,

we define $U^{\pm}=U^{\pm}(x, s)(x\in \mathcal{N}, s>0)$ by

$U^{\pm}(x, s)= \exp\{-\sqrt{s}d(x)\}(A_{0}(x)+\frac{1}{\sqrt{s}}A^{\pm}(x))\pm\exp\{-\frac{R}{4}\sqrt{s}\}$ . (4.6)

Then we have

Lemma 4.2 There eststs $s_{0}>0$ such that, for any $s\geq s_{0}$ and for any $x\in \mathcal{N}$,

$U^{-}(x, s)\leq W(x, s)\leq U^{+}(x, s)$ . (4.7)
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Another simple lemma is the following.

Lemma 4.3 For each symmetric point $P\in\partial\Omega$ in cases (II) and (III), let $p\in\Gamma$ be
a unique point with $\overline{B_{R}(p)}\cap\partial\Omega=\{P\}$ . Then, as $\rhoarrow 0$ ,

$\kappa_{j}(z(x))=\kappa_{j}(P)+O(\rho)$ for $x\in\Gamma_{\rho}\cap B_{R}(p)$ and for $j=1,2$ . (4.8)

This lemma follows $hom$ the fact that $\frac{\partial}{\partial}x_{1}arrow^{\kappa}(P)=0$ .

By the co-area formula, we have

$\int_{B_{R}(p)}W(x, s)dx=\int_{0}^{\frac{R}{2}}(I_{\Gamma_{\rho}\cap B_{R}(p)}^{W(x,s)}dS_{x})d\rho+\int_{B_{R}(p)\backslash N}W(x, s)dx$ .

Since the second term of the right-hand side decays exponentially as $sarrow\infty$ , it
suffices to consider the first term. We estimate the first term with the help of
Lemmas 4.1, 4.2, and 4.3, and hence we can prove Theorem 3.2.

Lemma 4.1 is purely geometrical, but we need hard computations to prove it
(see [MS4] for the details). Here, we introduce one simple and useful lemma.

Lemma 4.4 For each symmetric point $P\in\partial\Omega$ in cases (II) and (III), let $p\in\Gamma$ be
a unique point with $\overline{B_{R}(p)}\cap\partial\Omega=\{P\}$ . Then, for $0< \rho\leq\frac{R}{2}$ ,

$\int_{0}^{\rho}|\Gamma_{t}\cap B_{R}(p)|dt=\int_{0}^{\rho}|\Omega_{\rho}\cap\partial B_{R-\rho+t}(p)|dt$ , (4.9)

where
$\Omega_{\rho}=\{x\in\Omega:d(x)<\rho\}$ .

With the help of this lemma, we compute the right-hand side of (4.9) and then we
proceed to Lemma 4.1. Since each set $\Omega_{\rho}\cap\partial B_{R-\rho+t}(p)$ is a subset of the sphere
$\partial B_{R-\rho+t}(p)$ , it is easier to compute the integrand of the right-hand side of (4.9).

5 Concluding remarks

When $\Omega$ is outside an unbounded surface of revolution, that is, when $\Omega$ is defined
by

$\Omega=\{x=(x_{1}, x_{2}, x_{3})\in \mathbb{R}^{3} : x_{2}^{2}+x_{3}^{2}>\{r(x_{1})\}^{2} \}$ , (5.1)
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equation $($ 2.3 $)$ is written as

$( \frac{1}{R}-\frac{\ddot{r}}{(1+(\dot{r})^{2})^{2}2})(\frac{1}{R}+\frac{1}{(1+(\dot{r})^{2})^{\frac{1}{2}}r}I=c$ on $\mathbb{R}$ . (5.2)

Similarly, ODE analysis yields cases (I), (II), and (III), where in (III) $c< \frac{1}{R^{2}}$ is
replaced by $c> \frac{1}{R^{2}}$ . We also have Theorem 3.2. However, in case (III), we have
$T>1$ , and hence, in (3.7) of Theorem 3.2, we have possibilities: 3$R^{2}(21-T)<$

$0,$ $K> \frac{1}{R^{2}}$ . We might need a little bit more consideration to draw Theorem 3.1
from Theorem 3.2.

In higher dimensional case, $N\geq 4$ , we can consider for instance a domain $\Omega$ in
$\mathbb{R}^{N}$ defined by

$\Omega=\{x=(x_{1}, \cdots, x_{N})\in \mathbb{R}^{N}:x_{2}^{2}+\cdots+x_{N}^{2}<\{r(x_{1})\}^{2}\}$ .

In this case, equation (2.3) is written as

$( \frac{1}{R}+\frac{\ddot{r}}{(1+(\dot{r})^{2})^{\frac{3}{2}}}I(\frac{1}{R}-\frac{1}{(1+(\dot{r})^{2})^{\frac{1}{2}}r}I^{N-2}=c$ on $\mathbb{R}$ . (5.3)

Similarly, ODE analysis yields cases (I), (II), and (III), where $R^{2}$ is replaced by
$R^{N-1}$ . However, it seems harder to prove a theorem replacing Theorem 3.2.
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