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Existence of traveling waves
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Abstract We consider the nonlocal analogue of the Fisher-KPP equation
= pru—u-+ f(u),

where (1 is a Borel-measure on R with x(R) = 1 and f satisfies f(0) = f(1) =
O and f > 0in (0,1). We do not assume that p is absolutely continuous. The
equation may have a standing wave solution (a traveling wave solution with
speed 0) whose profile is a monotone but discontinuous function. We show
that there is a constant c, such that it has a traveling wave solution with
monotone profile and speed ¢ when ¢ > ¢, while no periodic traveling wave
solution with average speed ¢ when ¢ < c,. In order to prove it, we modify
a recursive method for abstract monotone discrete dynamical systems by
Weinberger. We note that the monotone semiflow generated by the equation
does not have compactness with respect to the compact-open topology.
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1 Introduction
We consider the following nonlocal analogue of the Fisher-KPP equation:

U= pxu—u+ f(u).
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Here, p is a Borel-measure on R with 4(R) = 1 and the convolution is defined
by

(w0 = [ _ ule = 1)duy)

for a bounded and Borel-measurable function u on R. The nonlinearity f is
a Lipschitz continuous function with f(0) = f(1) = 0 and f > 0 in (0, 1).
Then, we would show that there is a constant c, such that the nonlocal
monostable equation has a traveling wave solution with monotone profile
and speed ¢ when ¢ > c, while it has no periodic traveling wave solution
with average speed ¢ when ¢ < ¢,, if there is a positive constant A satisfying

/ eMdu(y) < +oo.
yER

Here, we say that the solution u(t, ) is a periodic traveling wave solution with
average speed c, if u(t + 7,-) = u(t,- + c7) holds for some positive constant 7
with 0 < u(t,-) < 1, u(t,+00) = 1 and u(t,-) # 1 for all t € R. In order to
prove this result, we employ the recursive method for monotone dynamical
systems introduced by Weinberger [22] and Li, Weinberger and Lewis [14].
We note that the semiflow generated by the nonlocal monostable equation
does not have compactness with respect to the compact-open topology. In
fact, there is a smooth and monostable nonlinearity f such that the equation
has a standing wave solution (i.e., a traveling wave solution with speed 0)
whose profile is a monotone but discontinuous function, if p satisfies the
extra condition [ JeR ydu(y) > 0. In our results, we do not assume that u is
absolutely contmuous with respect to the Lebesgue measure. For example,
not only the integro-differential equation

1
Zto) = [ ult.o =)y - ut2) + Flutt,z)
0
but also the discrete equation

%(t, z) = u(t,z — 1) — u(t,z) + f(u(t, z))

satisfies all the assumptions for the measure u.

For the nonlocal monostable equation, Schumacher [18, 19] proved that
there is the minimal speed ¢, and the equation has a traveling wave solution
with speed ¢ when ¢ > c,, if the nonlinearity f satisfies the extra condition

f(u) £ f(0)u.
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Recently, Coville, D4dvila and Martinez [5] showed that if the monostable
nonlinearity f € C*(R) satisfies f’(1) < 0 and the Borel-measure u has a
density function J € C(R) with

/ Ll +e7) I ()dy < +os

for some positive constant A, then there is a constant ¢, such that the nonlocal
monostable equation has a traveling wave solution with monotone profile and
speed ¢ when ¢ > ¢, while it has no such solution when ¢ < c.. The approach
employed in [5] is not of dynamical systems, but they directly solved the
stationary problem

Jxu—u—cuz+ f(u) =0, u(—o00)=0, wu(+oo)=1.

When ” 1. Introduction and main results” in [5] was read, it might be mis-
understood that Schumacher [18] and Weinberger [22] assumed the isotropy
of dynamical systems. The nonlocal equation is isotropic if and only if p is
symmetric with respect to the origin. Here, to make sure, we note that the
isotropy is not assumed in the results by [18] and [22]. Further, the result
by [22] is not limited at a linear determinate. If f(u) < f/(0)u holds, then it
is a linear determinate. See, e.g., [2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 20,
21, 23, 24] on traveling waves and long-time behavior in various monostable
evolution systems, [1, 3] nonlocal bistable equations and [17] Euler equation.

The proof of our results is given in [25] or [26], and it is self-contained.
We would believe that it might be rather simple than in [5].

2 Abstract theorems for monotone semiflows

In the abstract, we would treat a monostable evolution system. Put a set
of functions on R;

M := {u|u is a monotone nondecreasing

and left continuous function on R with 0 < u < 1}.

The followings are our basic conditions for discrete dynamical systems:

Hypotheses 1 Let Qg be a map from M into M.
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(i) Qo 1s continuous in the following sense: If a sequence {ug}ren C M
converges to u € M uniformly on every bounded interval, then the sequence
{Qolux]}xen converges to Qolu] almost everywhere.

(i) Qo is order preserving; i.e.,

uy < up = Qolu] < Qolus)

for all u; and u; € M. Here, u < v means that u(z) < v(z) holds for all
z € R.
(ili) Qo s translation invariant; i.e.,

TonO = QOTJ:Q

for all zo € R. Here, Ty, is the translation operator defined by (Ty,|u])(:) :=
’U.( - :130).
(iv) Qo is monostable; i.e.,

0<a<l=a< Qo

for all constant functions o.

The following states that existence of suitable super-solutions of the form
{vp(z + cn) }2,, implies existence of traveling wave solutions with speed c in
the discrete dynamical systems on M:

Proposition 2 Let a map Qo : M — M satisfy Hypotheses 1, and c € R.
Suppose there exists a sequence {v,}32., C M with (Qolvn])(z—c) < vpya(x),
infp_01.2. Vn(z) & 0 and liminf, . va(x) # 1. Then, there exists ¢y € M
with (Qo[¥])(z — ) = ¥(x), Y(—00) = 0 and ¢(+00) = 1.

In the discrete dynamical system on M generated by a map () satisfying
Hypotheses 1, if there is a periodic traveling wave super-solution with average
speed c, then there is a traveling wave solution with speed c:

Theorem 3 Let a map Qo : M — M satisfy Hypotheses 1, and c € R.
Suppose there erist T € N and ¢ € M with (Qo" [#])(z—cT) < ¢(x), ¢ # 0 and
¢ Z 1. Then, there exists v € M with (Qo[Y])(z — ¢) = ¢Y(z), Y(—o00) =0
and Y(+o0) = 1.

The infimum c, of the speeds of traveling wave solutions is not —oo, and
there is a traveling wave solution with speed ¢ when ¢ > c.:
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Theorem 4 Suppose a map Qo : M — M satisfies Hypotheses 1. Then,
there exists ¢, € (—00, +00] such that the following holds : ‘

Let ¢ € R. Then, there exists p € M with (Qo[¢])(z — ¢7) = Y(x),
Y(—o0) = 0 and Y(+o0) =1 if and only if c > c..

We add the following conditions to Hypotheses 1 for continuous dynamical
systems on M:

Hypotheses 5 Let Q° be a map from M to M for t € [0, +00).

(i) @ is a semigroup; i.e., Q" o Q° = Q'™ for allt and s € [0, +00).

(ii) Q is continuous in the following sense: Suppose a sequence {tx}ren C
[0, +00) converges to 0, and w € M. Then, the sequence {Q%*[u]}ren con-
verges to u almost everywhere.

As we would have Theorems 3 and 4 for the discrete dynamical systems,
we would have the following two for the continuous dynamical systems:

Theorem 6 Let Q be a map from M to M fort € [0,+00). Suppose Q*
satisfies Hypotheses 1 for all t € (0, +00), and Q Hypotheses 5. Then, the
Jfollowing holds :

Let c € R. Suppose there exist T € (0,+00) and ¢ € M with (Q7[P])(x —
ct) < ¢(z), ¢ £ 0 and ¢ £ 1. Then, there exists v € M with P(—o0) = 0
and P(+00) = 1 such that (Q*[¢])(z — ct) = ¥(x) holds for all t € [0, +00).

Theorem 7 Let Q° be a map from M to M for t € [0,+00). Suppose Q*
satisfies Hypotheses 1 for all t € (0, +00), and @ Hypotheses 5. Then, there
exists c. € (—o0o,+00] such that the following holds :

Let c € R. Then, there exists v € M with (—o0) = 0 and Y(+00) =1
such that (Q'[Y])(x — ct) = ¥(x) holds for all t € [0,+00) if and only if
C 2 Cy.

3 A key lemma to prove the abstract theo-
rems

To prove the theorems stated in Section 2, we would modify the recursive
method introduced by Weinberger [22] and Li, Weinberger and Lewis [14].
At that time, the following lemma becomes a key. It states that Hypotheses
1 imply more strong continuity than Hypothesis 1 (i):
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Lemma 8 Let a map Qg : M — M satisfy Hypotheses 1 (i), (ii) and (iii).
Suppose a sequence {ux}ren C M converges to u € M almost everywhere.
Then, limg_.o(Qoluk])(z) = (Qolu])(x) holds for all continuous points z € R

Of QQ[U]

4 The main results for the nonlocal monos-
table equation

Let a Lipschitz continuous function f on R be a monostable nonlinearity;
f(0) = f(1) =0 and f(u) > 0in (0,1). Let a Borel-measure p on R satisfy
1(R) = 1. (We do not assume that p is absolutely continuous with respect to
the Lebesgue measure.) Then, we consider the following nonlocal monostable
equation:

u = pxu—u-+ f(u), (4.1)
where (u * u)(z) := |, yer W(Z — y)du(y) for a bounded and Borel-measurable
function u on R. Then, G(u) := g *u — u + f(u) is a map from the Banach
space L*°(R) into L*°(R) and it is Lipschitz continuous. (We note that
u(r — y) is a Borel-measurable function on R?, and |jul|z~®) = O implies
e * ullprw) < fyem(fzen lu(z — y)|dz)du(y)=0.) So, because the standard
theory of ordinary differential equations works, we have well-posedness of

(4.1) and the equation generates a flow in L*°(R). Here, we recall that M
has been defined at the beginning of Section 2.

If the semiflow generated by (4.1) has a periodic traveling wave solution
with average speed c (even if the profile is not a monotone function), then it
has a traveling wave solution with monotone profile and speed c:

Theorem 9 Let a Borel-measure . have X € (0, +00) satisfying

/ IRe"""dp(y) < 400, (4.2)
ye

and ¢ € R. Suppose there exist T € (0,+00) and a solution {u(t,z) hher C
L>(R) to (4.1) with 0 < u(t,z) < 1, lim,,1ou(t,z) = 1 and ||u(t,z) —
1“L00(R) 7& 0 such that

u(t +7,2) = u(t,z + c7)

holds for allt and x € R. Then, there exists ¥ € M with ¥(—oc) = 0 and
Y(+00) = 1 such that {(z + ct) }:er s a solution to (4.1).
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The infimum c, of the speeds of traveling wave solutions is not 400, and
there is a traveling wave solution with speed ¢ when ¢ > c,:

Theorem 10 Let a Borel-measure pu have A € (0,+00) satisfying (4.2).
Then, there exists c,. € R such that the following holds :

Let c € R. Then, there exists v € M with ¥(—o0) = 0 and Y(+o00) = 1
such that {Y(x + ct) }ser s a solution to (4.1) if and only if ¢ > c,.
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