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Abstract We consider the nonlocal analogue of the Fisher-KPP equation

$u_{t}=\mu*u-u+f(u)$ ,

where $\mu$ is a Borel-measure on $\mathbb{R}$ with $\mu(\mathbb{R})=1$ and $f$ satisfies $f(0)=f(1)=$
$0$ and $f>0$ in $(0,1)$ . We do not assume that $\mu$ is absolutely continuous. The
equation may have a standing wave solution (a traveling wave solution with
speed $0$) whose profile is a monotone but discontinuous function. We show
that there is a constant $c_{*}$ such that it has a traveling wave solution with
monotone profile and speed $c$ when $c\geq c_{*}$ while no periodic traveling wave
solution with average speed $c$ when $c<c_{*}$ . In order to prove it, we modify
a recursive method for abstract monotone discrete dynamical systems by
Weinberger. We note that the monotone semfflow generated by the equation
does not have compactness with respect to the compact-open topology.
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1 Introduction
We consider the following nonlocal analogue of the Fisher-KPP equation:

$u_{t}=\mu*u-u+f(u)$ .
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Here, $\mu$ is a Borel-measure on $\mathbb{R}$ with $\mu(\mathbb{R})=1$ and the convolution is defined
by

$( \mu*u)(x)=\int_{y\in R}u(x-y)d\mu(y)$

for a bounded and Borel-measurable function $u$ on $\mathbb{R}$ . The nonlinearity $f$ is
a Lipschitz continuous function with $f(O)=f(1)=0$ and $f>0$ in $(0,1)$ .
Then, we would show that there is a constant $c_{*}$ such that the nonlocal
monostable equation has a traveling wave solution with monotone profile
and speed $c$ when $c\geq c_{*}$ while it has no periodic traveling wave solution
with average speed $c$ when $c<c_{*}$ , if there is a positive constant $\lambda$ satisfying

$\int_{y\in \mathbb{R}}e^{\lambda|y|}d\mu(y)<+\infty$ .

Here, we say that the solution $u(t, x)$ is a periodic traveling wave solution with
average speed $c$ , if $u(t+\tau, \cdot)\equiv u(t, \cdot+c\tau)$ holds for some positive constant $\tau$

with $0\leq u(t, \cdot)\leq 1,$ $u(t, +\infty)=1$ and $u(t, \cdot)\not\equiv 1$ for all $t\in \mathbb{R}$ . In order to
prove this result, we employ the recursive method for monotone dynamical
systems introduced by Weinberger [22] and Li, Weinberger and Lewis [14].
We note that the semiflow generated by the nonlocal monostable equation
does not have compactness with respect to the compact-open topology. In
fact, there is a smooth and monostable nonlinearity $f$ such that the equation
has a standing wave solution (i.e., a traveling wave solution with speed $0$ )
whose profile is a monotone but discontinuous function, if $\mu$ satisfies the
extra condition $\int_{y\in \mathbb{R}}yd\mu(y)>0$ . In our results, we do not assume that $\mu$ is
absolutely continuous with respect to the Lebesgue measure. For example,
not only the integro-differential equation

$\frac{\partial u}{\partial t}(t, x)=\int_{0}^{1}u(t, x-y)dy-u(t,x)+f(u(t,x))$

but also the discrete equation

$\frac{\partial u}{\partial t}(t, x)=u(t, x-1)-u(t, x)+f(u(t, x))$

satisfies all the assumptions for the measure $\mu$ .
For the nonlocal monostable equation, Schumacher [18, 19] proved that

there is the minimal speed $c_{*}$ and the equation has a traveling wave solution
with speed $c$ when $c\geq c_{*}$ , if the nonlinearity $f$ satisfies the extra condition

$f(u)\leq f^{l}(0)u$ .
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Recently, Coville, D\’avila and Mart\’inez [5] showed that if the monostable
nonlinearity $f\in C^{1}(\mathbb{R})$ satisfies $f’(1)<0$ and the Borel-measure $\mu$ has a
density function $J\in C(\mathbb{R})$ with

$/y\in \mathbb{R}(|y|+e^{-\lambda y})J(y)dy<+\infty$

for some positive constant $\lambda$ , then there is a constant $c_{*}$ such that the nonlocal
monostable equation has a traveling wave solution with monotone profile and
speed $c$ when $c\geq c_{*}$ while it has no such solution when $c<c_{*}$ . The approach
employed in [5] is not of dynamical systems, but they directly solved the
stationary problem

$J*u-u-cn_{x}+f(u)=0$ , $u$ ( $-$ oo) $=0$ , $u(+\infty)=1$ .

When ” 1. Introduction and main results” in [5] was read, it might be mis-
understood that Schumacher [18] and Weinberger [22] assumed the isotropy
of dynamical systems. The nonlocal equation is isotropic if and only if $\mu$ is
symmetric with respect to the origin. Here, to make sure, we note that the
isotropy is not assumed in the results by [18] and [22]. Further, the result
by [22] is not limited at a linear determinate. If $f(u)\leq f’(0)u$ holds, then it
is a linear determinate. See, e.g., [2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 20,
21, 23, 24] on traveling waves and long-time behavior in various monostable
evolution systems, [1, 3] nonlocal bistable equations and [17] Euler equation.

The proof of our results is given in [25] or [26], and it is self-contained.
We would believe that it might be rather simple than in [5].

2 Abstract theorems for monotone semiflows
In the abstract, we would treat a monostable evolution system. Put a set

of functions on $\mathbb{R}$ ;

$\mathcal{M}$ $:=\{u|u$ is a monotone nondecreasing

and left continuous function on $\mathbb{R}$ with $0\leq u\leq 1$ }.

The followings are our basic conditions for discrete dynamical systems:

Hypotheses 1 Let $Q_{0}$ be a map from $\mathcal{M}$ into $\mathcal{M}$ .
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(i) $Q_{0}$ is continuous in the following sense: If a sequence $\{u_{k}\}_{k\in N}\subset \mathcal{M}$

converges to $u\in \mathcal{M}$ uniformly on every bounded $intemal_{f}$ then the sequence
$\{Q_{0}[u_{k}]\}_{k\in N}$ converges to $Q_{0}[u]$ almost everywhere.

(ii) $Q_{0}$ is order preserving; i. e.,

$u_{1}\leq u_{2}\Rightarrow Q_{0}[u_{1}]\leq Q_{0}[u_{2}]$

for all $u_{1}$ and $u_{2}\in \mathcal{M}$ . Here, $u\leq v$ means that $u(x)\leq v(x)$ holds for all
$x\in \mathbb{R}$ .

(iii) $Q_{0}$ is translation invariant; i. e.,

$T_{x_{0}}Q_{0}=Q_{0}T_{x_{0}}$

for all $x_{0}\in \mathbb{R}$ . Here, $T_{x0}$ is the translation operator defined by $(T_{x_{0}}[u])(\cdot)$ $:=$

$u(\cdot-x_{0})$ .
(iv) $Q_{0}$ is monostable; i. e.,

$0<\alpha<1\Rightarrow\alpha<Q_{0}[\alpha]$

for all constant functions $\alpha$ .

The following states that existence of suitable super-solutions of the form
$\{v_{n}(x+cn)\}_{n=0}^{\infty}$ implies existence of traveling wave solutions with speed $c$ in
the discrete dynamical systems on $\mathcal{M}$ :

Proposition 2 Let a map $Q_{0}:\mathcal{M}arrow \mathcal{M}$ satisfy Hypotheses 1, and $c\in \mathbb{R}$ .
Suppose there exists a sequence $\{v_{n}\}_{n=0}^{\infty}\subset \mathcal{M}$ with $(Q_{0}[v_{n}])(x-c)\leq v_{n+1}(x)$ ,
$\inf_{n=0,1,2},\cdots v_{n}(x)\not\equiv 0$ and $\lim\inf_{narrow\infty}v_{n}(x)\not\equiv 1$ . Then, there eststs $\psi\in \mathcal{M}$

with $(Q_{0}[\psi])(x-c)\equiv\psi(x)_{f}\psi(-00)=0$ and $\psi(+\infty)=1$ .

In the discrete dynamical system on $\mathcal{M}$ generated by a map $Q_{0}$ satisfying
Hypotheses 1, if there is a periodic traveling wave super-solution with average
speed $c$ , then there is a traveling wave solution with speed $c$ :

Theorem 3 Let a map $Q_{0}$ : $\mathcal{M}arrow \mathcal{M}$ satisfy Hypotheses 1, and $c\in \mathbb{R}$ .
Suppose there exist $\tau\in \mathbb{N}$ and $\phi\in \mathcal{M}$ with $(Q_{0^{\mathcal{T}}}[\phi])(x-c\tau)\leq\phi(x),$ $\phi\not\equiv 0$ and
$\phi\not\equiv 1$ . Then, there exists $\psi\in \mathcal{M}$ with $(Q_{0}[\psi])(x-c)\equiv\psi(x),$ $\psi(-00)=0$

and $\psi(+\infty)=1$ .

The infimum $c_{*}$ of the speeds of traveling wave solutions is not $-\infty$ , and
there is a traveling wave solution with speed $c$ when $c\geq c_{*}$ :
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Theorem 4 Suppose a map $Q_{0}:\mathcal{M}arrow \mathcal{M}$ satisfies Hypotheses 1. Then,
there $e$ rzsts $c_{*}\in(-$oo $+\infty]$ such that the following holds:

Let $c\in \mathbb{R}$ . $Then_{f}$ there exists $\psi\in \mathcal{M}$ with $(Q_{0}[\psi])(x-c\tau)\equiv\psi(x)_{f}$

$\psi(-\infty)=0$ and $\psi(+\infty)=1$ if and only if $c\geq c_{*}$ .

We add the following conditions to Hypotheses 1 for continuous dynamical
systems on $\mathcal{M}$ :

Hypotheses 5 Let $Q^{t}$ be a map from $\mathcal{M}$ to $\mathcal{M}$ for $t\in[0, +\infty)$ .
(i) $Q$ is a semigroup; i. e., $Q^{t}oQ^{s}=Q^{t+s}$ for all $t$ and $s\in[0, +\infty)$ .
(ii) $Q$ is continuous in the following sense: Suppose a sequence $\{t_{k}\}_{k\in N}\subset$

$[0, +\infty)$ converges to $0_{f}$ and $u\in \mathcal{M}$ . Then, the sequence $\{Q^{t_{k}}[u]\}_{k\in N}$ con-
verges to $u$ almost everywhere.

As we would have Theorems 3 and 4 for the discrete dynamical systems,
we would have the following two for the continuous dynamical systems:

Theorem 6 Let $Q^{t}$ be a map from $\mathcal{M}$ to $\mathcal{M}$ for $t\in[0, +\infty)$ . Suppose $Q^{t}$

satisfies Hypotheses 1 for all $t\in(0, +\infty)$ , and $Q$ Hypotheses 5. Then, the
following holds:

Let $c\in \mathbb{R}$ . Suppose there exist $\tau\in(0, +\infty)$ and $\phi\in \mathcal{M}$ with $(Q^{\tau}[\phi])(x-$

$c\tau)\leq\phi(x),$ $\phi\not\equiv 0$ and $\phi\not\equiv 1$ . Then, there exists $\psi\in \mathcal{M}$ with $\psi(-\infty)=0$

and $\psi(+\infty)=1$ such that $(Q^{t}[\psi])(x-ct)\equiv\psi(x)$ holds for all $t\in[0, +\infty)$ .

Theorem 7 Let $Q^{t}$ be a map from $\mathcal{M}$ to $\mathcal{M}$ for $t\in[0,$ $+\infty)$ . Suppose $Q^{t}$

satisfies Hypotheses 1 for all $t\in(O, +\infty)_{f}$ and $Q$ Hypotheses 5. Then, there
exists $c_{*}\in(-\infty, +\infty]$ such that the following holds :

Let $c\in \mathbb{R}$ . Then, there enists $\psi\in \mathcal{M}$ with $\psi(-\infty)=0$ and $\psi(+\infty)=1$

such that $(Q^{t}[\psi])(x-ct)\equiv\psi(x)$ holds for all $t\in[0, +\infty)$ if and only if
$c\geq c_{*}$ .

3 A key lemma to prove the abstract theo-
rems

To prove the theorems stated in Section 2, we would modify the recursive
method introduced by Weinberger [22] and Li, Weinberger and Lewis [14].
At that time, the following lemma becomes a key. It states that Hypotheses
1 imply more strong continuity than Hypothesis 1 (i):

105



Lemma 8 Let a map $Q_{0}$ : $\mathcal{M}arrow \mathcal{M}$ satisfy Hypotheses 1 (i), (ii) and (iii).
Suppose a sequence $\{u_{k}\}_{k\in N}\subset \mathcal{M}$ converges to $u\in \mathcal{M}$ almost everywhere.
Then, $\lim_{karrow\infty}(Q_{0}[u_{k}])(x)=(Q_{0}[u])(x)$ holds for all continuous points $x\in \mathbb{R}$

of $Q_{0}[u]$ .

4 The main results for the nonlocal monos-
table equation

Let a Lipschitz continuous function $f$ on $\mathbb{R}$ be a monostable nonlinearity;
$f(0)=f(1)=0$ and $f(u)>0$ in $(0,1)$ . Let a Borel-measure $\mu$ on $\mathbb{R}$ satisfy
$\mu(\mathbb{R})=1$ . (We do not assume that $\mu$ is absolutely continuous with respect to
the Lebesgue measure.) Then, we consider the following nonlocal monostable
equation:

$u_{t}=\mu*u-u+f(u)$ , (4.1)

where $(\mu*u)(x)$ $:= \int_{y\in \mathbb{R}}u(x-y)d\mu(y)$ for a bounded and Borel-measurable
function $u$ on $\mathbb{R}$ . Then, $G(u)$ $:=\mu*u-u+f(u)$ is a map from the Banach
space $L^{\infty}(\mathbb{R})$ into $L^{\infty}(\mathbb{R})$ and it is Lipschitz continuous. (We note that
$u(x-y)$ is a Borel-measurable function on $\mathbb{R}^{2}$ , and $||u\Vert_{L}\infty(\mathbb{R})=0$ implies
$\Vert\mu*u\Vert_{L^{1}(R)}\leq\int_{y\in R}(\int_{x\in \mathbb{R}}|u(x-y)|dx)d\mu(y)=0.)$ So, because the standard
theory of ordinary differential equations works, we have well-posedness of
(4.1) and the equation generates a flow in $L^{\infty}(\mathbb{R})$ . Here, we recall that $\mathcal{M}$

has been defined at the beginning of Section 2.
If the semiflow generated by (4.1) has a periodic traveling wave solution

with average speed $c$ (even if the profile is not a monotone function), then it
has a traveling wave solution with monotone profile and speed $c$ :

Theorem 9 Let a Borel-measure $\mu$ have $\lambda\in(0, +\infty)$ satisfying

$\int_{y\in \mathbb{R}}e^{\lambda|y|}d\mu(y)<+\infty$ , (4.2)

and $c\in \mathbb{R}$ . Suppose there exist $\tau\in(0, +\infty)$ and a solution $\{u(t, x)\}_{t\in R}\subset$

$L^{\infty}(\mathbb{R})$ to $(4\cdot 1)$ with $0\leq u(t, x)\leq 1,$ $\lim_{xarrow+\infty}u(t, x)=1$ and $\Vert u(t, x)-$

$1\Vert_{L^{\infty}(R)}\neq 0$ such that

$u(t+\tau, x)=u(t, x+c\tau)$

holds for all $t$ and $x\in \mathbb{R}$ . Then, there $e$ vists $\psi\in \mathcal{M}$ with $\psi(-\infty)=0$ and
$\psi(+\infty)=1$ such that $\{\psi(x+ct)\}_{t\in \mathbb{R}}$ is a solution to $(4\cdot 1)$ .
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The infimum $c_{*}$ of the speeds of traveling wave solutions is not $\pm\infty$ , and
there is a traveling wave solution with speed $c$ when $c\geq c_{*}$ :

Theorem 10 Let a Borel-measure $\mu$ have $\lambda\in(0, +\infty)$ satisfying $(4\cdot 2)$ .
Then, there exists $c_{*}\in \mathbb{R}$ such that the following holds:

Let $c\in \mathbb{R}$ . $Then_{f}$ there eaists $\psi\in \mathcal{M}$ with $\psi(-\infty)=0$ and $\psi(+\infty)=1$

such that $\{\psi(x+ct)\}_{t\in R}$ is a solution to $(4\cdot 1)$ if and only if $c\geq c.$ .
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