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1 Introduction
Realization of ”Machine Translation (MT)” systems with humanlike capability has been the biggest
dream in the research field of natural language processing. In 1947 Warren Weaver pointed out
we can regard a decoder for decryption as a machine translation system, if we consider a foreign
language as a code language (Weaver 1955). Over the past 60 years, though much many researchers
and engineers in this field have tried building such a MT system, the complete one is still a dream.
However, recently statistical methods have innovated the technological framework of MT, in which all
translation rules are automatically estimated from vast amount of parallel text data (e.g. a collection
of English-Japanese translated sentences pairs) using recent high performance computing powers.

In the framework of “Statistical Machine TMranslation (SMT)” two problems should be solved. The
“modeling problem” is how to model and estimate a valid probability function of output candidate
sentences conditioned by an input sentences. The “decoding problem” is how to find the best output
sentence which maximizes the estimated probability function. The system to find the best output
is called ‘decoder’ after Weaver. The search space of a decoder is extremely large, so we have to
approximate the probability function and maximization process at multiple-stages.

In this paper, we will discuss an integer programming approach to solve a part of the decoding
problem: the phrase alignment problem.

2 Phrase-Based Statistical Machine Translation
If we have a probabilistic distribution, $P(e|f)$ , of a sentences $e$ in target (or output) language (e.g.
English) given a input sentence $f$ in source (or input) language (e.g. Hkench), we can make a chance of
translation error minimizing to find the output sentence $\hat{e}$ which maximizes the probability of $P(\hat{e}|f)$ .
This approach is called the “noisy channel model.”

$\hat{e}=arg\max_{\epsilon}P(e|f)$

$=arg \max_{\epsilon}\frac{P(e)P(f|e)}{P(f)}$

$=arg \max_{e}P(e)P(f|e)$

$P(e)$ and $P(f|e)$ are called a language model and a translation model, respectively. Note that the
direction of the translation model is inverse (i.e. probabilities of source sentences given a target
sentence). Language models are often approximated by the Markov models. A translation model is
decomposed into local translation models based on bilingual dictionaries. There are many variations
of the decomposition. Brown et al. (1993) proposed a basic model based on word-to-word alignment
style in their paper, which is the origin of all recent SMT researches. However, in the past decade,
the phrase-to-phrase alignment style has predominated, because its performance is much better than
word-to-word based models and it can capsulate complex local translation process in phrases into a
bilingual phrase dictionary (Koehn, Och and Marcu 2003).
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In phrase-based models, the translation model is decomposed into probabilities of phrase “segmen-
tations” of source and target sentences ( $\overline{f}$ and $\overline{e}$ , respectively), an probability of an ”alignment”
$(a)$ between segmented phrases in target and source sentences, and phrase translation probabilities
conditioned by the segmentations and alignment. Then it is marginalized.

$P(f|e)= \sum_{\overline{f}=f_{t}^{g,a}}P(f,\overline{f},\overline{e}, a|e)$

$= \sum_{\overline{f}=f,\overline{\epsilon}=\epsilon,a}P(\overline{e}|e)P(a|e,\overline{e})P(f\neg e,\overline{e}, a)P(f|\overline{f}, e,\overline{e}, a)$

Phrase segmentations $\overline{f}$ and $\overline{e}$ have complete information of the original source and target sentences
$f$ and $e$ .

$= \sum_{\overline{f}^{\epsilon,a}}P(\overline{\epsilon}|e)P(a|\overline{e})P(\overline{f}|\overline{e}, a)$

In the above model, a target sentence $e$ is segmented into a sequence of $I$ phrases $\overline{e}_{1}^{I}(=e)$ . An
alignment $a$ is a sequence of $a_{i}$ (that is, $a=a_{1}^{I}$ ) which represents a position of a souroe phrase
translated from a target phrase $\overline{e}_{i}$ . That is, each phrase $\overline{q}$ in $\overline{e}_{1}^{I}$ is translated into a phrase $\overline{f}_{a}.$ .

If we assume that the segmentation probabilities are uniform, the translation probability can be
decomposed into

$P(f|e) \propto\sum_{f,\epsilon,a}P(a|\overline{e})P(\overline{f}|\overline{e},a)$

$\propto\sum_{\overline{f},Z,a}P(a|\overline{e})\prod_{i=1}^{I}\phi(\overline{f}_{a_{i}}|\overline{e}_{i})$ .

Where $\phi(\overline{f}_{a}.|\overline{e}_{i})$ is a translation probability of aligned phrases in target and source sentences.
$P(a|\overline{e})$ is a reordering model which gives probabilities about position moving of phrases in a source

sentence. We can decompose a reordering model into

$P(a| \overline{e})=\prod_{i=1}^{I}P(eq|\overline{e},a_{1}^{i-1})$

$\approx\prod_{i=1}^{I}P(a_{t}|\overline{e}_{1},u_{-1})$ .

We call this model a “lexicahzed reordering model” because a decomposed probability is conditioned
by the actual phrases $\overline{e}_{i}$ ’s (Koehn et al. 2005). Avoiding the problem of sparse trainin$g$ data, we only
consider three reordering types: monotone order (m), swap with previous phrase (s), or discontinuous
(d). We define a function type$(j, k)$ as the following.

type $(j, k)=\{\begin{array}{ll}m if j=k-1s if j-1=kd others.\end{array}$

Using this function we get the final version of the reordering model.

$P(a| \overline{e})\approx\prod_{i=1}^{I}P(type(a_{i-1},a_{i})|\overline{e}_{i})$ .
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3 Phrase Alignment Problems
Since the search space to compute the best target sentence in the phrase-based SMT model described
in the previous section is large, the decoding problem is approximated as the following.

$\hat{e}=arg\max_{e}P(e)P(f|e)$

$=arg \max_{\epsilon}P(e)\sum_{\overline{f}=f,\epsilon=e,a}P(a|\overline{e})P(\overline{f}|\overline{e},a)$

$\approx arg\max_{e}P(e)mxP(a|\overline{e})P(\overline{f}|\overline{e}, a)P=f^{\frac{a}{e}}=e,a$

Inside maximization for $\overline{f},\overline{e}$ and $a$ in the last formula is called a “phrase alignment problem.” This
approximation of summing by maximization is justified by the intuitive fact that probability mass of
only a few correct segmentation and algnment is predominantly large and the other probability can
be ignored. However, although the search space was dramatically reduced by this approximation, it
remains too large to get the exact result. A real decoder uses a heuristic search algorithm and finds
out a pseudo best result from the very limited space over the four variables of $e,\overline{f},\overline{e}$ and $a$ . In the
next section, we will formulate the phrase alignment problem as an integer linear programming to
develop the algorithm to compute the exact best result for three variables of $\overline{f},\overline{e}$ and $a$ , but $e$ .

In the remains of this section, we define the realistic phrase alignment problem, because the current
model of SMT becomes a little bit more complicated. In real SMT systems, the noisy channel model is
extended to integrate the other information as effective for translation quality as possible using the log-
linear model. This approach is called the “discriminative model.” For example, in the noisy channel
model we used only $P(f|e)$ as the (inverse) translation model. But it is known that the original
translat\’ion model $P(e|f)$ is also effective for improving translation quality. For another example,
we used $P(type(a_{i-1}, *)|\overline{e}_{i})$ to compute a reordering probability. But we can improve translation
quality to use richer $\underline{c}onditioned$ probability $P(type(a_{i-1},a_{i})|\overline{e}_{i},\overline{f}_{ai})$ and reverse directional probability
$P(type(*,a_{i+1})|\overline{e}_{i}, f_{a_{*}}.)$ . We can integrate the basic model and such additional probabilities or features
into the log-linear model.

$logP(e|f)=C+ \sum_{i}w_{i}f_{i}(e, f)$

Where $f_{i}(e, f)$ is the i-th probability or feature, $w_{i}$ is the weight for it and $C$ is a normalization
constant which can be ignored in the maximization problem. The weights are determined by the
discriminative training method. In the case of SMT, we commonly use a minimum error rate training
(MERT) (Och and Ney 2003) which adjusts weights to maximize an automatic evaluation measure
for translation quality such as BLEU (Papineni et al. 2002).

An example of the realistic phrase alignment problem is the following.

$(f_{t}^{\frac{\hat}{}} \hat{\frac{}{\epsilon}},\hat{a})=arg\max P(a|\overline{e})P(\overline{f}|\overline{e}, a)$

$f,\overline{e},a$

$=arg \max w_{p1}\prod_{i=1}^{I}\phi(\overline{f}_{a_{i}}|\overline{e}_{i})\overline{f}^{\epsilon,a}xw_{p2}\prod_{i=1}^{I}\phi(\overline{e}_{i}|\overline{f}_{a:})$

$\cross w_{r1}\prod_{i=1}^{I}P(type(a_{i-1},a_{i})|\overline{e}_{1},\overline{f_{i}})xw_{r2}\prod_{i=1}^{I}P(type(a_{i,\Phi+1})|\overline{q},\overline{f_{i}})$

All parameters of weights and values of probability functions are given. Fortunately, we can compile
all given parameters for each phrase pair into two kinds of integrated parameters $p$ and $d$ indexed
by an entry for a phrase pair in the dictionary. The integrated parameters $p$ is determined by just a
phrase pair and $d$ is determined by a phrase pair and a reordering type.

When a phrase alignment system is given a sentence pair $f$ and $e$ , at the first it makes up a table
of candidates of phrase pairs to match partly to $f$ and $e$ looking up in the dictionary. Then, from the
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Figure 1: Candidates of phrase pairs for the input sentence pair.

table it computes a set of phrase pairs which covers all words in the sentence pair and maximizes the
object function. Note that a output set of phrase pairs from the table determines the phrase alignment
at the same time. To make a problem simple, we consider that the table of candidates of phrase pairs
is also given as the part of the problem. The solution of the problem is a set of selected phrase pairs
from the table.

The table of candidates of phrase pairs for the input sentence pair is defined as the following. We
assume that there are four phrase pairs shom in Figure 1 as candidates for the input sentence pair
$f=f_{1},$ $f_{2},$ $f_{3},$ $f_{4}$ and $e=e_{1},$ $e_{2},$ $e_{3}$ where $f_{i}$ and $e_{i}$ is words in source and target language, respectively.
In the Figure 1, boxes denote phrases in a input sentence and lines denote alIgnments between phrases
in source and target sentences. The table of candidate phrase pairs is represented by two matrices $F$

and $E$ . The i-th column vectors in $F$ and $E$ denote word sequences of phrases of the i-th phrase pair,
and words in the phrase are expressed with $1$ ’s and words out of the phrase with $0’ s$ . For example,
the next $F$ and $E$ correspond to four candidates of the phrase pairs in Figure 1.

$F=(\begin{array}{llll}1 1 0 01 0 1 00 0 0 10 0 0 1\end{array}),E=(\begin{array}{llll}1 0 1 01 1 0 00 0 0 1\end{array})$

In the next section, we fomulate phrase alignment problems as an integer linear programning when
the table and parameters are given.

4 Phrase Alignment as an integer programming problem

4.1 Simple Phrase Alignment Problems

In this subsection, we consider a simple phrase alignment problem, in which we assume the reordering
probability is unifom, that is the reordering model is ignored. At the first, we introduce binary
variables $x_{k}\in\{0,1\}$ which represent whether the k-th phrase pair in the table selected (1) or not (0)
as a member of an output set of phrase pairs. DeNero and Klein (2008) fomulate this simple version
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of the phrase alignment problem as the following.

maximize $\sum_{k=1}^{K}xkp_{k}$

subject to $Fx=1$ ,
$Ex=1$ ,
$x_{k}\in\{0,1\}$ $(1\leq k\leq K)$ .

Where $p_{k}$ is a compiled parameter of the k-th phrase pair, $K$ is the number of candidates of phrase
pairs and 1 is $($ 1 $\cdots 1)^{T}$ .

4.2 Full Phrase Alignment Problems
It’s difficult to extend the formulation in the previous subsection to one of incorporating the reordering
models, because auxiliary variables $xk$ have no information of position relationship between phrase
pairs. So we introduce a graph representation of the table of phrase pairs in the target side instead of
$E$ and the second auxiliary variables $y_{a}$ .

Figure 2 shows an example of the graph representation of the candidate phrases in the target side
sentence. Boxes denote phrases and lines denote connections between adjacent phrases. Using the
graph representation, we incorporate the compiled parameters for the reordering models as weights
$d_{a}$ on the connections. The feasible sets of phrases are expressed with paths starting $hom$ the node $s$

to the node $g$ . We can clearly ovserve two feasible paths on the graph in Figure 2.
New auxiliary binary variables $y_{a}$ means whether the a-th connection is on the feasible path $(y_{a}=1)$

or not $(y_{a}=0)$ . Using new auxiliary variables $y_{a}$ , we can formulate a full phrase alignment problem
as the following.

maximize $k=1 L^{\wedge}x_{k}p_{k}K+\sum_{a=1}^{A}y_{a}d_{a}$

subject to $Fx=1$ ,
$My=b$,
$Ny=x$,
$x_{k}\in\{0,1\}$ $(1 \leq k\leq K)$ ,
$y_{a}\in\{0,1\}$ $(1 \leq a\leq A)$ .

Where the parameters $d_{a}$ in the object function denotes the compiled parameters for the reordering
probabilities and its weights. We can regard $d_{a}$ as a weight on the a-th connection in the graph
representation. The equation $My=b$ represents the ”conservation law of flow,” which is the standard

Figure 2: An example of the graph representation of the target side phrase candidates in Figure 1.
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technique for guaranteeing valid paths. The equation $Ny=x$ represents the relationship between $x$

and $y$ . If the connection variable $y_{a}$ is 1, $x_{k}$ of both side of the connection must be 1. The symbol $A$

denotes the number of connections of the phrase graph in the target side.
For example, the “conservation law of flow” for Figure 2 is the following.

$(00001$ $-100001$ $-100001$ $\frac{0}{0001}1$ $-100001$ $-100001)(\begin{array}{l}y_{1}y_{2}y_{3}y_{4}y_{6}y_{6}\end{array})=(\begin{array}{l}-l00001\end{array})$

The first item is $M$ and each column corresponds to the nodes (phrase) $s$ , phrasel, ...phrase4 and $g$ .
The fifth line vector of $M$ represents the conservation law for the fourth phrase (node); $y_{4}+y_{6}=y_{6}$ .
An example of the equation $Ny=x$ for Figure 2 is the following.

$(\begin{array}{llllll}1 0 0 0 0 00 l 0 0 0 00 0 1 0 0 00 0 0 1 1 0\end{array})(\begin{array}{l}y_{1}y_{2}y_{3}y_{4}y_{5}y_{6}\end{array})=(\begin{array}{l}x_{1}x_{2}x_{3}x_{4}\end{array})$

5 Experiments and Conclusion
We build up a dictionary of phrase pairs the number of entries of wihch is 60 million from 2 million
parallel Japanese-English sentence pairs of the training data at the NTCIR-7 (Fujii et al. 2008) using
the script within Moses package (Koehn et al. 2007). We used CPLEX version 11.0 as the solver for
the integer programming and solved the full phrase alignment problem for a few hundred thousand
sentence pairs for the test. Figure 3 shows an example of a phrase alignment for a real Japanese-
English sentence pair computed by CPLEX. In spite of such realistic setting and data, average time to
compute the best alignment for one sentence pair was about a few hundred milliseconds. We plan to
apply the method in this paper to the reranking problem in order to improve the quality of statistical
machine translation.

Japanese (source langauge)

English (target langauge)

Figure 3: An example of a phrase alignment result for a Japanese-English sentence pair.
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