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ABSTRACT
In this paper, an approach to robust finite RHC (receding horizon control) problem of
constrained systems with structured uncertainties and bounded disturbances is developed.
The problem is formulated as a minimax optimization problem of quadratic cost function
with bounded constraint conditions. The proposed approach can be expected to solve
such problems effectively.
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1. Introduction
In last few decades, receding horizon control (RHC) based on the quadratic cost criterion
has been widely accepted in the process industry. In the standard RHC formulation, the
current control action is obtained by solving a finite or infinite horizon quadratic cost prob-
lem at every sample time using the current state of the plant as the initial state [GAR, 89].
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One of the significant merits of RHC is easy handling of constraints during the design and
implementation of the controller.

On the other hand, a drawback of RHC is its explicit lack of robust property with
respect to model uncertanties or disturbances since the on-line minimized cost function
is defined in temis of the nominal systems. Although many method of robust control
synthesis for linear systems have been proposed, the number of available work of robust
RHC with constrained systems is limited. The issue of robust RHC therefore still deserves
further attention[BEM, 99, MAY, 00].

A possible strategy for robust RHC is solving the so-called minimax problem, namely
minimization problem over the control input of the robust performance measure maxi-
mized by plant uncertainties or disturbances. One of the early works on robust RHC was
proposed by Campo and Morari [CAM, 87], and further developed by Zheng and Morari
[ZHE, 93] for SISO FIR plants.

Kothare et al. solve minimax RHC problems with state-space $unCe\mathfrak{n}aintieS$ through
LMIs [KOT, 96]. Cuzzola et al. improve the Kothare’s method [KOT, 96] to reduce
conservativeness in [CUZ, 01]. Furthermore other methods of minimax RHC for sys-
tems with model uncertainty can be found in [ALL, 92, LEE, 97]. There has been some
works of minimax RHC for systems with extemal dismrbances in [BEM, 98, BEM, 00,
SCO, 98]. Most these methods are, however, based on infinite horizon quadratic cost
functions, since it is rather hard to solve the minimax finite quadratic cost problems.

In this paper, therefore, we propose an approach to minimax finite RHC of constrained
systems with structured uncenainties and disturbance. The proposed approach using S-
procedure can solve finite horizon quadratic cost problem efficiently. Using this approach,
we can expect to reduce the conservativeness of control performance. Moreover, this
approach is one of the general Ramework of the minimax robust finite RHC problem of
bounded constrained systems.

2. Problem formulation

Consider the following discrete-time system with disturbances

$x(k+1)$ $=$ $(A+L\triangle R_{A})x(k)+(B+L\triangle R_{B})u(k)+\eta(k)$ (2.1)

$y(k)$ $=Cx(k)$ (2.2)

where $x(k),$ $u(k),$ $y(k)$ and $\eta(k)$ denote the state, input, measured output and disturbance
vector respectively, and where $\triangle$ is a diagonal structured uncertainties parameters matrix
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satisfied $\triangle^{\tau}\triangle\leq I$ . $L,$ $R_{A}$ and $R_{B}$ are constant matrices. All these vectors and matrices
have appropriate dimensions. Then, we can transform this system as

$x(k+1)$ $=Ax(k)+Bu(k)+Lw(k)+\eta(k)$ (2.3)

$z(k)$ $=R_{A}x(k)+R_{B}u(k)$ (2.4)

$y(k)$ $=Cx(k)$ (2.5)

where $w(k)(=\triangle z(k))$ . We assumed that the system is constrained with following con-
ditions;

$w^{T}(k+j)P_{w}w(k+j)$ $\leq$ 1
$\eta^{T}(k+j)P_{\eta}\eta(k+j)$ $\leq$ 1
$u^{T}(k+j)P_{u}u(k+j)$ $\leq$ 1 (2.6)
$z^{T}(k+J)P_{z}z(k+j)$ $\leq$ 1

$(j=0, \cdots, N-1)$

where $P_{w},$ $P_{\eta},$ $P_{u}(P_{w}, P_{u}, P_{\eta}\succ 0)$ are positive symmetric matrices for weights of con-
straints. For this systems, the quadratic performance measure with finite horizon with
positive weighting constant matrices $Q$ and $R(Q, R\succ O)$ as:

$J(k)= \sum_{j=0}^{N-1}||x(k+j+1|k)\Vert_{Q}^{2}+\Vert u(k+j|k)\Vert_{R}^{2}$ (2.7)

is used. $x(k+j|k),$ $y(k+j|k)$ and $u(k+j|k)$ are the predicted state of the plant, the
predicted output of the plant and the future control input at time $k+j$ respectively. Then,
the design problem is formulated as the following minimax optimization problem.

Since the saddle point may not exist in general, it is difficult to solve this problem. Hence,
the objective in this paper is to elimenate the maximization procedure and transform this
problem to simple minimaization problem which can be solved easily.
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3. Transformation of minimax finite RHC problem

At each step $k$ the following state feedback is employed;

$u(k+j|k)=\{\begin{array}{ll}0 (j=0)-F_{0}x(k+j|k) (j=1,2, \cdots N-1)\end{array}$ (3.1)

where $F_{0}$ is a constant feedback matrix. Then, introducing the following vectors

$X$ $:=$ $[x(k+1|k)$ $x(k+2|k)$ . . . $x(k+N|k)]^{T}$

$Z$ $;=$ $[z(k+1|k)$ $z(k+2|k)$ . .. $z(k+N|k)]^{T}$

$W$ $;=$ $[w(k|k)$ $w(k+1|k)$ . .. $w(k+N-1|k)]^{T}$

A $;=$ $[\eta(k|k)$ $\eta(k+1|k)$ ... $\eta(k+N-1|k)]^{T}$

and using state space equation, eqs. $(2.3)\sim(2.5)$ , recursively, we can derive

$X$ $=$ $\tilde{A}x(k)+\tilde{L}W+\Lambda$ (3.2)

$Z=$ $\tilde{R}_{F}\tilde{A}x(k)+\tilde{R}_{F}\tilde{L}W+\tilde{R}_{F}A$ (3.3)

where

$\tilde{R}_{F}$ $;=$ $R_{A}-R_{B}F$

$F$ $;=$ $\{\begin{array}{lllll}0 0 0 \cdots 0-F_{0} 0 0 \cdots 00 -F_{0} 0 \cdots 0\vdots \ddots \ddots \ddots \vdots 0 \cdots 0 -F_{0} 0\end{array}\}$

$\tilde{A}$

$;=$ $\{\begin{array}{l}A(A-BF_{0})A\vdots(A-BF_{0})^{N-2}A\end{array}\}$

$\tilde{L}$

$;=$ $[(A-B^{L}F_{0})^{N-2}L(A-BF_{0})L$ $(A-BF_{0})^{N-3}LL0$

.
$.\cdot.\cdot$

.

$L00]$

Hence, we can transform the minimax problem (2.8) to
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$\min_{F_{0}}\gamma$ (3.4)

subject to $\max_{W,\Lambda}\Pi$ $\leq\gamma$

$w^{T}(k+j)$ $P_{w}w(k+j)$ $\leq$ 1
$u^{T}(k+j)$ $P_{u}$ $u(k+j)$ $\leq$ 1
$\eta^{T}(k+j)$ $P_{\eta}$ $\eta(k+j)$ $\leq$ 1

$(j=0, \cdots, N-1)$

where $\gamma>0$ (scalar parameter) and where;

$\Pi$ $;=$ $\{\Vert\tilde{A}x(k)+\tilde{L}W+\Lambda\Vert_{Q}^{2}+\Vert FX\Vert_{\dot{R}}^{2}\}$ ,

$\hat{Q}$ $;=$ $\{\begin{array}{lll}Q 0 \ddots 0 Q\end{array}\}$ , $\hat{R}:=\{\begin{array}{lll}R 0 \ddots 0 R\end{array}\}$

To eliminate the maximaization procedure, we have to remove $W$ and $\Lambda$ terms in the
frst constraint. For this, in the first place, following basis for all variables and transfor-
mation matrices are defined.

$\zeta;=$ $[x(k)$ $W^{T}$ $\Lambda^{T}$ 1 $]^{T}$ (3.5)

$X$ $=$ $H_{x}\zeta$ $(H_{x}:=[\tilde{A} \tilde{L} I 0])$ (36)

$FX$ $=$ $H_{u}\zeta$ $(H_{u}:=[F\tilde{A} F\tilde{L} F 0])$ (3.7)

$Z$ $=$ $H_{z}\zeta$ $(H_{z}:=[\tilde{R}_{F}\tilde{A} \tilde{R}_{F}\tilde{L} \tilde{\Gamma} 0])$ (3.8)

A $=$ $H_{\eta}\zeta$ $(H_{\eta}:=[00 I 0])$ (3.9)

1 $=$ $(H_{1}\zeta)^{T}(H_{1}\zeta)(H_{1}:=[0 . . . 0 1])$ (3.10)

By using these, we can express the first constraint condition of problem (3.4);

$\max_{W,\Lambda}\{||H_{x}\zeta\Vert_{Q}^{2}+\Vert H_{u}\zeta\Vert_{\hat{R}}^{2}\}\leq(H_{1}\zeta)^{T}\lambda(H_{1}\zeta)$ (3.11)

Please take notice that both the left side and the right side of this inequality are expressed
by the quadratic forms and they have positive scalar values. Hence, if the inequality is
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hold by maximum values of $W$ and $\Lambda$ in left side, this inequality must be hold by any other
values of them. This fact means that we can eliminate the maximization procedure in the
first constraint. We can only check the following condition instead of the first constraint
of problem (3.4).

$\{\Vert H_{x}\zeta\Vert_{Q}^{2}+\Vert H_{u}\zeta\Vert_{\overline{R}}^{2}\}\leq(H_{1}\zeta)^{T}\lambda(H_{1}\zeta)$ (3.12)

In the second place, $H_{w}(j)$ is defined. This matrix pick out the suitable block ffom $W$

and satisfy the relation of $w(k+j)=H_{w}^{[j)}\zeta$. Then, we can derive

$(H_{w}^{0)}\zeta)^{T}P_{w}(H_{w}^{C)}\zeta)$ $\leq$ $(H_{1}\zeta)^{T}(H_{1}\zeta)$

(3.13)
$(j=0, \cdots, N-1)$ .

For the constraints of $\eta,$ $u$ and $z$ , we can derive the following relations in the same way.
$(H_{\eta}^{(j)}\zeta)^{T}P_{\eta}(H_{\eta}^{0)}\zeta)$ $\leq$ $(H_{1}\zeta)^{T}(H_{1}\zeta)$

$(H_{u}^{0)}\zeta)^{T}P_{u}(H_{u}^{0)}\zeta)$ $\leq$ $(H_{1}\zeta)^{T}(H_{1}\zeta)$ (3.14)

$(j=0, \cdots, N-1)$ .
Furthermore, by using $(3.5)\sim(3.10)$, all constraints in minimax problem (3.4) can be

transformed into

$\forall\zeta\neq 0$ ; $\zeta^{T}(H_{1}^{T}\lambda H_{1}-H_{x}^{T}\hat{Q}H_{x}-H_{u}^{T}\hat{R}H_{u})\zeta\geq 0$ (3.15)

subject to $\zeta^{T}(H_{1}^{T}H_{1}-(H_{w}^{C)})^{T}P_{w}H_{w}^{[j)})\zeta$ $\geq$ $0$

$\zeta^{T}(H_{1}^{T}H_{1}-(H_{u}^{0)})^{T}P_{u}H_{u}^{(j)})\zeta$ $\geq$ $0$

(3.16)
$\zeta^{T}(H_{1}^{T}H_{1}-(H_{\eta}^{0)})^{T}P_{\eta}H_{\eta}^{(j)})\zeta$ $\geq$ $0$

$(j=0, \cdots, N-1)$ .
Then, we can transform the original minimax problem (2.8) to the following one by using
S-procedure [BOY, 91].
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where
$S_{j}^{w}$ $=$ $(H_{1}^{T}H_{1}-(H_{w}^{(j)})^{T}P_{w}H_{w}^{(;)})$ ,
$S_{j}^{u}$ $=$ $(H_{1}^{T}H_{1}-(H_{u}^{(j)})^{T}P_{u}H_{u}^{(j)})$ ,
$S_{j}^{\eta}$ $=$ $(H_{l}^{T}H_{1}-(H_{\eta}^{C)})^{T}P_{\eta}H_{\eta}^{(j)})$ ,

and where $\tau_{j}^{w}$ . $\tau_{j}^{u_{2}}\tau_{j}^{\eta}$ and $\tau_{j}^{z}$ are positive semi-definite scalars. It must be noted that this
transformation satisfies only a sufficent condition of S-procedure, since S-procedure is not
the so-called ”lossless” in this case. We can not therefore avoid that the design results are
slightly conservative. Nevertheless, we can expect the reduction of conservativeness in
design result by this technique in contrast with the results by preexisiting methods. Be-
cause the conservativeness caused by S-procedure is too small to put a matter for practical
purposes.

Finally, using”Schur-complement‘ [ZHO, 96], we can transformed the minimization
problem (3.17) into the following problem which can be solved easily.

$\min_{F_{0},\tau}\gamma$ (3.18)

subJect to $\{\begin{array}{lll}H_{1}^{T}\gamma H_{l}-\Sigma H_{x}^{T} H_{u}^{T}H_{x} \hat{Q}^{-1} 0H_{u} 0 \hat{R}^{-1}\end{array}\}\succeq 0$

$\tau_{j}\geq 0(j=0, \cdots, N-1)$

where

$\Sigma;=\sum_{j=0}^{N-1}[\tau_{j}^{w}S_{j}^{w}+\tau_{j}^{u}S_{j}^{u}+\tau_{j}^{\eta}S_{j}^{\eta}]$ .

4. Conclusion
A new approach to minimax finite RHC of constrained systems with structured uncer-
tainties has been proposed. The proposed approach can be expected to solve the control
design problem with the finite horizon quadratic cost function efficiently.

The proposed approach is easily extended the systems with other constraints which are
specified by ellipsoidal bounds, for example, state estimation errors and so on as follows.

121



In the case that $x(k)$ is not full measured and we need to estimate $x(k)$ , where the
bound of estimation error $e(k)=x(k)-\hat{x}(k)$ is guranteed an ellipsoidal set as:

$e^{T}(k)P_{e}e(k)\leq 1$ ( $P_{e}$ : positive symmetric matrix for weight). (4.1)

This specification of estimation error is standard one. Now we introduce $H_{e}$ as:

$H_{e}:=[10\cdots 0-\hat{x}(k)]$ , (4.2)

then the relation of $e(k)=H_{e}\zeta$ is hold. And the conditien below is also hold.

$\zeta^{T}(H_{1}^{T}H_{1}-H_{e}^{T}P_{e}H_{e})\zeta\geq 0$ . (4.3)

Since this condition has same form as other constraints (3.16), we can include this condi-
tion into the condition of problem (3.17) by using a new variable $\tau_{e}$ . Furthermore, in this
case, a new output equation with measurement noise $\psi(k)$ is needed as follows in stead
of eq. (2.2).

$y(k)=Cx(k)+\psi(k)(\psi^{T}(k)P_{\psi}\psi(k)\leq 1)$ . (4.4)

We can also include this consffaint into the condition of problem (3.17) by using a new
variable $\tau_{\psi}$ .

Although every constraint used in this paper has been specified by the ellipsoidal
bound which has one single center, it can be extended to the intersection of ellipsoidal
bounds, for example:

$z(k) \in\bigcup_{l=1\cdots N_{1}}\{z:\{\begin{array}{l}z1\end{array}\}P_{z,l}\{\begin{array}{l}z1\end{array}\}\leq 1\}$ .

However, it should be noted that this extension cause the rise of computaional complexity
due to the increase of the number of variables $(\tau_{*})$ of S-procedure.

References

[GAR, 89] C.E. Garcia, D.M. Prett and M. Morari. $\cdot$‘Model Predictive Contrl: Theory
and Practice- a survey”, Automatica, 25(3), pp. 335-348, 1989.

[BEM, 99] A. Bemporad and M. Morari, “Robust Model Predictive Control: A Survey”
In A. Gamlli, A. Tesi and A. Vicino editors, Robusmess in Identification and Control,
(Lecture Notes in Control and Information Sciences, Vol.245), Springer-Verlag, pp.
207-226, 1999.

122



[MAY, 00] D.Q. Mayne, J.B. Rawlings, C.V. Rao and M. Scokaert, “Constrained model
predictive control: Stability and optimality”, Automatica, 36(6), pp. 789-814, 2000.

[CAM, 87] P.J. Campo and M. Morari, ”Robust Model Predictive Control”, in Proc. 1987
American Contr Conf., pp. 1021-1026, 1987.

[ZHE, 93] Z.Q. Zheng and M. Morari, “Robust Stability ofConstrained Model Predictive
Control”, Proc. 1993 American Contr. Conf. , pp. 379-383, 1993.

[KOT, 96] M.V. Kothare, V. Balaknshnan and M. Morari, “Robust Constrained Model
Predictive Control using Linear Matrix Inequalities“, Automatica, 32(10), pp. 1361-
1379, 1996.

[CUZ, 01] F.A. Cuzzola, J.C. Geromel and M. Morari, “An Improved Discrete-time Ro-
bust Approach for Constrained Model Predictive Control”, in Proc. 2001 European
Contr. Conf., 2001 (Pre-print).

[ALL, 92] J.C. Allwright and G.C. Papavasiliou, “On linear programming and robust
model-predictive control using impulse-responses”, Syst. Control Lett., 18, pp.159-
164, 1992.

[LEE, 97] J.H. Lee and Z. Yu, ”Worst-case Formulation of Model Predictive Control for
Systems with Bounded Parameters”, Automatica, 33(5), pp. 768-781, 1997.

[BEM, 98] A. Bemporad, “Reducing Conservativeness in Predictive Control of Con-
strained Systems with Disturbances”, Proc. 37th IEEE Conf. Decision and Contr.,
pp. 1384-1389, 1998.

[BEM, 00] A. Bemporad and A. Garulli, “Output-feedback Predictive Control of Con-
strained Linear Systems via Set-membership State Estimation”, Int. Joumal ofCon-
trol, 73(8), pp. 655-665, 2000.

[SCO, 98] P.O.M. Scokaert and D.Q. Mayne, ”Min-Max Feedback Model Predictive
Control for Constrained Linear Systems”, IEEE Trans. Automat. Contr., 43(8), pp.
1136-1142, 1998.

[BOY, 91] S. Boyd and C.H. Barratt, “Linear ControllerDesign: Limits ofPeffomance”.
Prentice-Hall, 1991.

[BOY, 94] S. Boyd, L.El Ghaoui, E. Feron and V. Balaknishnan, “Linear Matrix Inequal-
ities in System and Control Theory”, SIAM studies in Applied Mathematics, 1994.

123



[ZHO, 96] K. Zhou, J.C. Doyle and K. Glover, “Robust and optimal control”, Prentice-
Hall, 1996.

[WIE, 92] B. Wie and D.S. Bersteins, “Benchmark problems for robust control design”,
J. Guidance, Contr. Dyn., 15, pp. 1057-1059, 1992.

124


