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This paper discusses about product possibility spaoe and independent fuzzy variables.
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1 Introduction

Fuzzy set was first introduced by Zadeh [24] in 1965. This notion has been very useful in human decision

making under uncertainty. We can see lots of papers which use this fuzzy set theory in K.Iwamura and

B.Liu [3] [4], B.Liu and K.Iwamura [18] [19] [20], X.Ji and K.Iwamura [9], X.Gao and K.Iwamura [2],

G.Wang and K.Iwamura [22], M.Wen and K.Iwamura [23] and others. We also have some books on fuzzy

decision making under fuzzy environments such as D.Dubois and H.Prade [1], H-J.Zimmermann [26],

M.Sakawa [27], J.Kacprzyk [10], B.Liu and A.O.Esogbue [17].

Recently B.Liu has founded a frequentionist fuzzy theory with huge amount of applications in fuzzy

mathematical programming. We see it in books such as B.Liu $[$ 12] [16] [13]. In his book $[$13] published

in 2004, B.Liu [13] has succeeded in establishing an axiomatic foundation for uncertainty theory, where

they proposed a notion of independent fuzzy variables.

In this paper, we discuss on possibility axioms, $\infty nstmct$ product possibility space and show that we
not only have finitely many independent fuzzy variables $[$6$]$ but also we have finitely many independent

fuzzy vectors in a wide sense.
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The rest of the paper is organized as follows. The next section provides a brief review on the results
of possibility measure axioms with definitions of fuzzy variables, fuzzy vectors, independence of the two.
Section 3 presents how we can get finitely many mdependent fuzzy vectors under possibility measures.

2 Possibility Measure and Product Possibility Space

We start with the axiomatic definition of possibility measure given by B. Liu [13] in 2004. Let $\Theta$ be an
arbitrary nonempty set, and let $\varphi(e)$ be the power set of $\Theta$ .
The three axioms for possibility measure are listed as follows:

Axiom 1. Pos$\{\Theta\}=1$ .

Axiom 2. Pos$t\emptyset\}=0$ .

Axiom 3. Pos$\{\bigcup_{t}A_{i}\}=\sup_{i}$ Pos $\{A_{\iota}\}$ for any collection $\{A_{i}\}$ in $\varphi(\Theta)$ .

We call Pos a possibility measure over $\Theta$ if it satisfies these three axioms. We call the triplet
$(\Theta,$ $\varphi(\Theta)$ , Pos $)$ a possibility space.

Theorem 2.1 $(B. Liu, 2004)$ . Let $e_{i}$ be nonempty sets on which $Pos_{i}\{\cdot\}SatiS\mathfrak{h}r$ the three axioms,

$i=1,2,$ $\cdots,$ $n$ , respectively, and let $\Theta=\Theta_{1}\cross\Theta_{2}\cross\cdots x\Theta_{n}$ . Define Pos$\{\cdot\}$ by

$Pos\{A\}=$

(1)
$\sup_{(\theta_{1},\theta_{2},\cdots,\theta_{n})\in A}Pos_{1}\{\theta_{1}\}\wedge Pos_{2}\{\theta_{2}\}\wedge\cdots\wedge Pos_{n}\{\theta_{n}\}$

for each $A\in\varphi(e)$ . Then Pos $\{\cdot\}$ satisfies the three axioms for possibility measure.

Therefore, a newly defined triplet $(\Theta,$ $\varphi(\Theta)$ , Pos $)$ is a possibility space. Pos $\{\cdot\}$ is a possibility measure
on $\varphi(e)$ . We call it product possibility measure derived from $(\Theta_{i}, Pos_{i}\{\cdot\}, \varphi(\Theta_{i})),i=1,$ $\cdots$ , $n$ . We call
$(e,$ $\varphi(e)$ , Pos $)$ the product possibility space derived from $(\Theta_{i}, Pos_{i}\{\cdot\}, \varphi(\Theta_{i})),$ $i=1,$ $\cdots$ , $n$ .

Lemma 2.1 Let $0\leq a_{i}\leq 1$ and let $\epsilon>0$ , for $1\leq i\leq n$ . Then we get

$(\epsilon+a_{1})\wedge(\epsilon+a_{2})\wedge\cdots\wedge(\epsilon+a_{n})\leq\epsilon+a_{1}\wedge a_{2}\wedge\cdots\wedge a_{n}$ (2)

Lemma 2.2 Let $A_{i}\in\varphi(e_{i})$ for $1\leq i\leq n$ . Then we get $A_{1}\cross\cdots\cross A_{n}\in\varphi(\Theta)$ and

Pos$\{A_{1}\cross\cdots\cross A_{n}\}=$ Posl $\{A_{1}\}\wedge Pos_{2}\{A_{2}\}\wedge\cdots\wedge Pos_{n}\{A_{n}\}$ . (3)

Lemma 2.3 Pos $\{\}$ on $\varphi(e)$ at (1) is monotone with $7tspect$ to set inclusion, i. e., for any sets $A,$ $B\in$

$\varphi(\Theta)$ with $A\subset B$ , we get

Pos$\{A\}\leq$ Pos $\{B\}$ . (4)
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A fuzzy variable is defined as a function from $\Theta$ of a possibility space $(\Theta,$ $\varphi(\Theta)$ , Pos $)$ to the set of reals
$\mathcal{R}$ . An $n$ -dimensional fuzzy vector is defined as a function from $e$ of a possibility space $(\ominus,$ $\varphi(\Theta)$ , Pos$)$

to an $n$ -dimensional Eucledian space $\mathcal{R}^{n}$ . Let $\xi$ be a fuzzy variable defined on the possibility space
$(\Theta,$ $\varphi(e)$ , Pos$)$ .

Then its membership function is derived through the possibility measure Pos by

$\mu(x)=Pos\{\theta\in e|\xi(\theta)=x\}$ , $x\in\Re$ . (5)

Theorem 2.2 $(B. Liu, 2004)$ . Let $\mu$ : $\Rearrow[0,1]$ be a function utth $\sup\mu(x)=1$ . Then there is a fuzzy

variable whose membership function is $\mu$ .

The fuzzy variables $\xi_{1},$ $\xi_{2},$ $\cdots$ , $\xi_{m}$ are said to be independent if and only if

Pos$\{\xi_{i}\in B_{1}, i=1,2, \cdots, m\}=\min_{1\leq:\leq m}$Pos$\{\xi_{i}\in B.\}$

for any subsets $B_{1},$ $B_{2},$ $\cdots,$ $B_{m}$ of the set of reals $\mathcal{R}$ . The fuzzy vectors $\xi_{i}(1\leq i\leq m)$ are said to be

independent if and only if

Pos$\{\xi_{i}\in B_{i},i=1,2, \cdots,m\}=\min_{1\leq:\leq m}$Pos$\{\xi_{i}\in B_{\dot{*}}\}$

for any subsets $B_{i}\in \mathcal{R}^{n_{*}}(1\leq i\leq m)$ . Here after we use $a\wedge b$ in place of $\min\{a, b\}$ .

Note 2.1 : We have fuzzy variables $\xi_{1},$ $\xi_{2}$ which are not independent$(Liu[1SJ)$ . Let $\Theta=\{\theta_{1}, \theta_{2}\}$ , Pos$\{\theta_{1}\}=$

$1$ , Pos$\{\theta_{2}\}=0.8$ and define $\xi_{1},$ $\xi_{2}$ by

$\xi_{1}(\theta)=\{\begin{array}{l}0, if \theta=\theta_{1}1, if \theta=\theta_{2},\end{array}$ $\xi_{2}(\theta)=\{\begin{array}{l}1, if \theta=\theta_{1}0, if \theta=\theta_{2}\end{array}$

Then we have Pos$\{\xi_{1}=1,\xi_{2}=1\}=$ Pos $\{\emptyset\}=0\neq 0.8$ A $1=$ Pos$\{\xi_{1}=1\}$ A Pos$\{\xi_{2}=1\}$ .

3 Finitely Many Independent Fuzzy Vectors

Let $\xi$ . be a fuzzy vector from a possibility space $(e_{i},$ $\varphi(e_{i})$ , Pos: $)$ to the $l_{i}-$th dimensional Eucledian

space $\mathcal{R}^{l_{i}}$ , for $i=1,2,$ $\cdots$ , $n$ . Define $e$ by

$e=e_{1}x\Theta_{2}\cross\cdots\cross\Theta_{n}$ (6)

and $\tilde{\xi}_{1}$ on $e$ by

$\overline{\xi}_{i}(\theta)=\xi_{i}(\theta_{i})$ for any $\theta=(\theta_{1}, \theta_{2}, \cdots, \theta_{n})\in e,$ $1\leq i\leq n$ . (7)

For any subset B. of $\mathcal{R}^{\iota_{l}}$ , we get([8])
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Theorem 3.1 The fuzzy vectors $\tilde{\xi}_{i}(1\leq i\leq n)$ given above are independent fuzzy vectors, i. e.,

Pos $\{\tilde{\xi}_{i}(\theta)\in B_{i}(1\leq i\leq n)\}=$ Pos $\{\tilde{\xi}_{1}\in B_{1}\}\wedge$ Pos$\{\tilde{\xi}_{2}\in B_{2}\}\wedge\cdots\wedge$ Pos $\{\tilde{\xi}_{n}\in B_{n}\}$ (8)

4 Conclusion

We have shown that Axiom. 4 in B.Liu([13]) can be proved through Axiom. 1 ,2 and 3. We have proved

the fact that there exists finitely many independent fuzzy vectors. Through these prooh we have shown

that for possibility measures existence of finitely many independent fuzzy vectors depends on product

possibility space. Although the notion of independence was discovered by L.A.Zadeh and others([25])

under the term of”noninteractiveness” or ‘’unrelatedness”, our notion of independence through product

possibility space have brought about a grand world of fuzzy process, hybrid process and uncertain process

of B.Liu([15]).
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