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1. INTRODUCTION
The purpose of this paper is to understand the shock wave structure of conservation
laws that come from the extraction of petroleum.

An oil reservoir is a subsurface pool of hydrocarbons contained in porous rock
foririations. If the underground pressure of in the reservoir is sufficient, tlien the oil is
naturally forced to the surface and extracted by valves on the well. This is called the
primary recovery and usually about 20% of the oil in a oil reservoir can be extracted.

Over the lifetime of the well, the underground pressure will be insufficient to force
the oil to the surface. Secondary recovew techniques increase the reservoir pressure by
injecting water and gas (air or CO2). Generally 25% to 35% of the oil in a oil reservoir
can be extracted by primary and secondary recovery together.
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Water-Alternating-Gas (WAG) Enhanced Oil Recovery: Although the watcr
injection $\}_{1’\ }$ good sweep cfficiericy, 40 to $60^{(}f_{(}/$ of the original oil on-site is left behind
at the end of the injection. The gas injection has good displacement eff\’iciency but is
an expensive operation. Hence the injection of gas after water followed by water and
gas injection causes significant redistribution of fluids in the reservoir and will be more
efficient than injection of water or gag alone.

Because of the gravity, three $I$) $\}_{1d6}es^{\backslash }$ : oil, gas and water are separated frorii one
another away from the WAG injector and it is only near the injector where three phase
flow actually occurs. Mathernatical structure of the three phase flows has been inves-
tigated by many authors (for example, Marchesin-Plohr [7], Medeiros [8], Schaeffer-
Shearer [10] $)$ and, in this paper, we shall confine ourselves particularly to their shock
wave structure.

Stone’s Model: Ill order to simplify $t1_{1}etfiree- p1_{1R}e$ flow in a porous medium, we
neglect the gr\‘avity and assume that the inedium is homogeneous and the flow is in-
compressible and immiscible. Let us denote:

water gas oil
Volume Fractioiis: $S\eta r$ ニ $u$ $s_{G}=v$ $so=1-u-\prime u$

Permeability Functions: ん w ん G $k_{O}$

Fluid Viscosity: $\mu_{W}$ $\mu_{G}$ $\mu_{O}$

Fluid Velocity: $v_{W}-$ $v_{G}$ $\uparrow)0$

Pressure: $p_{W}$ $p_{G}$ $p_{O}$

The relationship between the flow rate and the pressure gradient is expresse$(1$ by Darcy’.s
Law

$v_{i}=- \frac{k_{i}}{\mu_{i}}\nabla p_{i}$ , $i=W,$ $G,$ $O$ .

It is usually assumed tbat the water and gas permeability functions depend only on
the water \‘and gas volume fraction

$k_{W}=k_{W}(u)$ , $k_{G}=k_{G}(v)$

which is called Stone’s assumption. We finally $a_{\iota}ssume$ that the flow is one dimensional
and the capillary pressure is negligible.

By using relative permeability functions

$f(u)= \frac{k_{W}(u)}{\mu_{l}w}$ , $g(v)= \frac{k_{G}(v)}{\mu_{G}}$ $h(u, v)= \frac{k_{O}(u,v)}{\mu_{W}}$

the mass conservation laws are expressed in the form

Water: $\frac{\partial’u}{\partial t}+\frac{\partial’}{\partial x}[\frac{f(u)}{f(u)+g(v)+h(u,v)}]$ $=$ $0$ , (1)

Gas: $\frac{\partial’v}{\partial’t}+\frac{\partial}{\partial x}[\frac{g(v)}{f(u)+g(v)+h(u,v)}]$ $=$ $0$ (2)
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in $\Omega$ : $0<u+v<1,$ $u,$ $t)>0$ ([7],[8], [10]). These equations constitute a system of
conservation laws that is discussed in this paper.

Hyperbolicity: We say that the system of equations (1) and (2) is hyperbolic, when
tlie Jacobian matrix of tfie flux function has real eigenvalues $\lambda_{1}(U),$ $\lambda_{2}(U)$ for any $U\in$

$\zeta)$ . If, in particular, tfiese eigenvalues are distinct: $\lambda_{1}(U)<\lambda_{2}(U)$ , the system is calle$(1$

strictly hyperbolic at $U$. Corresponding right eigenvectors are denoted by $R_{1}(U),$ $R_{2}(U)$

respectively. A state $U^{*}\in\Omega$ is called an umbilic point, if $\lambda_{1}(U^{*})=\lambda_{2}(U^{*})$ and
the Jacobian matrix is diagonalizable, hence a scalar matrix. Marchesin, Paes-Leme,
Schaeffer and Shearer have shown in [10].

Theorem 1 (Existence of Umbilic Point) Assume that $h(u, v)=h(1-u-v)$ and
$f(O)=g(O)=h(O)=0,$ $f”(u),$ $g”(v),$ $h”(w)>0$ . Then the system of equations (1), (2)
is hyperbolic and has a unique urnbilic point in $\zeta l$ .

After the change of unknown functions, we may assume that $U^{*}=O$ and $F(O)=O$ .
$T\}ius$ we fiave the Taylor expansion of the flux function $F(U)$ near $U=O$ :

$F(U)=\lambda^{*}U+Q(U)+O(1)|U|^{3}$

where $\lambda^{*}=\lambda_{1}(U^{*})=\lambda_{2}(U^{*})$ and $Q$ : $R^{2}arrow R^{2}$ is a homogeneous quadratic mapping.
After the Galilean change of variables: $xarrow x-\lambda^{*}t$ , we observe that the system of
equations (1) and (2) is reduced to

$U_{t}+Q(U)_{x}=O$ , $(x_{t}t)\in R\cross R_{+}$ ,

modulo Iligfier order terrns. By a cliange of unknown fuiictions $V=S^{-1}U$ with a
regular constant matrix $S$, we have a new system of equations $V_{f}+P(V)_{x}=0$ with
$P(V)=S^{-1}Q(SV)$ . Hence we say that two quadratic mappings $Q_{1}(U)$ and $Q_{2}(U)$ are
equivalent, if there is a constant matrix $S\in GL_{2}(R)$ such

$Q_{2}(U)=S^{-1}Q_{1}(SU)$ for all $U\in R^{2}$ .

Scliaeffer-Shearer [10] shows that every hyperbolic quadratic mapping $Q(U)$ with an
isolated umbilic point $U=O$ is equivalent to

$Q(U)= \frac{1}{2}(\begin{array}{l}au^{2}+2buv+v^{2}bu^{2}+2u^{r}\{j\end{array})=\frac{1}{2}\nabla C(U)$, (3)

$C(U)= \frac{1}{3}au^{3}+bu^{2}v+uv^{2}$ . (4)

wfiere $a$ and $b$ are two real parameters satisfying $a\neq 1+b^{2}$ . For Stone’s model, either

Case I: $a< \frac{3}{4}b^{2}$ or Case II: $\frac{3}{4}b^{2}<a<1+b^{2}’$ .

A constant characteristic vector field $\Xi={}^{t}(1,$ $\xi)$ exists if and only if
$\xi^{3’}+2b\xi^{2}+(a-2)\xi-b=-\Xi^{\perp}\nabla Q(\Xi)\Xi=0$

Three district (real) roots are denoted by $\mu_{1},$ $\mu_{2},$ $\mu_{3}$ and Medians are defined by $\Lambda l_{j}$ :
$v=\mu_{j}u,$ $j=1,2,3$ . Medians play an important role in the following discussion.
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Gomes’ Paper [4] and our aim: M. E. S. Gomcs has proved the existence of
viscous shock profiles for shock waves in Case I by topological metliods and also sliowii
an exarnple of compressive shock wave without viscous shock profiles. The airn of this
paper is to complete her results by using both topological and analytical methods:
existence of viscous profiles in Case I and II and general condition for non-existence of
viscous profiles. We shall show in this paper only outline of proof and details will be
published in Asakura-Yarnazaki [2].

2. UNDERCOMPRESSIVE AND OVERCOMPRESSIVE SHOCK WAVES

Rankine-Hugoniot condition: A jump discontinuity defined by

$U(x, t)=\{\begin{array}{l}U_{L} for x<st,U_{R} for x>st,\end{array}$ (5)

with a real constant $s$ , is a piecewise constant weak solution to the the conservation
laws (3), if and only if these quantities satisfy the Ranんine-Hugoniot condition:

$s(U_{R}-U_{L})=Q(U_{R})-Q(U_{L})$ . (6)

The weak solution (5) satisfying (6) is often called a shock wave of speed $s$ joining the
state $U_{L}$ , on the left, to the state $U_{R}$ , on the right.

Compressive shock wave: The shock wave is said to be a j-compressive $(j=1,2)$
if tfie speed satisfies the Lax entropy conditions:

$\lambda_{j}(U_{R})<6<\lambda_{j}(U_{L}),$ $\lambda_{j-1}(U_{L})<s<\lambda_{j+1}(U_{R})$

Here we adopt the convention $\lambda_{0}=-\infty$ and $\lambda_{3}=\infty$ .

l-compressive $2- com\rho ressive$

$Fi_{b^{I}}iii\cdot(-12:C_{0111}^{t})1^{\cdot}(ss\backslash ir$ Slio $(k$ waves
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Undercompressive shock wave: Undercompressive if $\sigma$
. satisfies

$\lambda_{1}(U_{R})<_{(6^{\text{・}}}<\lambda_{2}(U_{R}),$ $\lambda_{1}(U_{L})<_{\iota}s<\lambda_{2}(U_{L})$

Undercompressive

$Fi_{b^{111(}’\backslash }3:\iota\dagger_{11t}1Y..Jt.,|\zeta_{)}^{t}$ wi $\iota ve$

Overcompressive shock wave: Overcompressive if.$s$ satisfies

$\lambda_{1}(U_{R})<s<\lambda_{1}(U_{L}),$ $\lambda_{2}(U_{R})<s<\lambda_{2}(U_{L})$

Overcompressive

$Fi_{r)}^{1}t’.\iota 11^{\cdot}(4:()1..)1^{\cdot}\mathfrak{k}_{1}\backslash (t_{)}^{\{1_{1()(}\cdot k\backslash \backslash \cdot \mathfrak{c}11t^{\iota}}r\cdot$
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Stability and Admissibility of Shock Waves: It is generally believed

$\bullet$ Compressive shock waves are generally stable and admissibility is independent of
diffusion matrices in a generic class.

$\bullet$ Undercompressive shock waves are stable with additional (kinetic) $con(lition$ and
admissibility depends on diffusion matrices.

$\bullet$ Overcompressive shock waves are generally unstable.

Admissibility is defined in next section.

3. VISCOUS SHOCK PROFILES

Admissibility: The jump discontinuity is said to be admissible if $tIiere$ exists a
travelling wave solution $U_{\epsilon}(x, t)= \hat{U}(\frac{x-st}{\epsilon})$ to $tI_{1}e$ parabolic systeni

$U_{t}+Q(U)_{x}=\epsilon U_{x}$
丁’

$\epsilon>0$ (7)

satisfyirig $U_{\epsilon}(+\infty, t)=U_{R},$ $U_{\epsilon}(-\infty, t)=U_{L}$ . Tlie vector fuiiction $\hat{U}=\hat{U}(\xi)$ is called a
viscous shock $prof\dot{\ddagger}le$ .

Differential Equations and Vector Field: By integrating (7), $\hat{U}(\xi)$ satisfies a
system of nonlinear differential equations

$\frac{d\hat{U}}{d\xi}$

$=$ $-6^{\backslash }(\hat{U}-U_{L})+F(\hat{U})-F(U_{L})$

$=$ $X_{s}(U, U_{L})$

Note that $U_{L}$ is a critical point of $X_{s}(U, U_{L})$ and by Rankine-Hugoniot condition $U_{R}$

is also a critical point. Since the flux functions has a potential $C(U)$ , by setting

$\phi_{s}(U_{L}, U)=C(U)-\nabla C(U_{L})\cdot(U-U_{L})-s|U-U_{L}|^{2}$ ,

the differential equations turn out to be

$\frac{d\hat{U}}{d\xi}=\frac{1}{2}\nabla\phi_{\theta}(U_{L},\hat{U})$ . (8)

Hence the adinissibility is equivalent to the existence of solution of this equations
satisfying tfie boundary conditions at infinity:

$\lim_{\xiarrow-\infty}\hat{U}(\xi)=U_{L},\lim_{\xiarrow\infty}\hat{U}(\xi)=U_{R}$

or to finding flow connecting two critical points $U_{L}$ and $U_{R}$ of the vector field $\nabla\phi_{s}(U_{L}, U)$

(or $\phi_{s}$ equivalently),
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4. EXISTENCE OF VISCOUS SHOCK PROFILES

Critical Points: Classification of compressive, undercompressive and overcompres-
sive shock waves corresponds to that of critical points:

There are at most four critical points in the finite plane (intersection of two conics).
In four critical point case:

Case I: one node and three saddles [4], $C$ \‘ase II: two nodes and two saddles [1]

Saddle-Saddle Connection: Flow of a saddle-saddle connection lies on $M_{j},$ $j=$
$1,2,3$ ([3],[4]). If $U_{L}\in\Lambda jf_{j’},$ $j=1,2,3$ , The equation of viscous shock profile turns out
to be the Burgers equation

$\frac{du}{d\xi}=\frac{b+2\mu_{j}}{2\mu_{j}}(u-u_{1})(u-u_{L}),$ $u_{1}=-u_{L}+ \frac{2\mu_{j}}{b+2\mu_{j}}s$ .

By direct computations we have

Theoreni 2 ([2]) Undereompressive shock.$\sigma$ with viscous profile exist only on $M_{1}\cup$

$M_{2}’\cup M_{3}$ in Case $I$ $ar\iota d$ on $\Lambda l_{1}\cup A/l_{3}$ in Case $\Pi$. Overcornp$\gamma\cdot e66^{\prime ive}$ shocks with viscous
profile exist only on $M_{2}$ in Case $\Pi$.

Existence of Viscous Profiles: If there are no saddle-saddle connection, the con-
nection problem is settled as the following:

Theorem 3 ([2], Case I) If $U_{L}$ is a node, then for each single saddle point there
exists a viscous shock profile between $U_{L}$ and the saddle point.

Theorem 4 ([2], Case II) Two nodes consist of one attractor and one repeller. If
$U_{L}$ is a node, then for each of two saddle points, there exists a viscous shock profile
shock profile between $U_{L}$ and the saddle point. Moreover there exist infinitely many
viscous shock profiles from the repeller to the attractor.

Proof of the above both theorems is based on a generalization of the first theorem of
Morse to non-compact level sets: if $|\nabla\phi_{s}(U, U_{L})|^{2}\geq m$ for any $U\in\phi_{s}^{-1}[p, q]$ , then

$\phi_{s}^{-1}[p, q]=\bigcup_{U_{p}\in 4^{1}J_{\beta}(p)}1(U_{p})$
: Morse foliation,
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$Fi_{h)}\backslash .\backslash AI_{(1\backslash (}|\backslash$ Foliation

where $I(U_{\rho})$ : integral curves of the equation (8) connecting $U_{p}\in\phi_{8}^{-1}(p)$ and a certain
point on the level set $\phi_{n}^{-1}(q)$ .
Case I: We inay assume tliat $U_{L}$ is a repeller. Figure 7 to 9 show nine level curves
of $\phi_{s}$ for $a=0.5,$ $b=1,$ $s=-3.5$ and $U_{L}=\ell(1,1)$ . Let $\epsilon$ be a positive small constant.
$T1_{1}e$ level set $\{\phi_{s}=\epsilon\}$ is composed of a small closed curve enclosing $U_{L}$ and three
unbounded regular curves $($ Fig 7: $\phi_{\theta}=10.00)$ . Suppose that a critical point $U_{1}$ exists
on the level set $\{\phi_{s}(U)=p_{1}\}$ , $($ Fig.7: $p_{1}=25.88)$ such that there is no critical point
in $\{\epsilon\leq\phi_{s}(U)\leq p_{1}-\epsilon\}$ . By the Morse lemma, we find that $\phi_{s}^{-1}[\epsilon,p_{1}-\epsilon]$ is a Morse
foliation. When the level curve meets a critical point for $\phi_{s}(U)=p_{1}$ , an integral curve
connects two critical points $($Fig.7: $\phi,$ $=25.88)$ . Repeating this argument, we have
three trajectories connecting critical points (Fig 8, 9).

Figure 6: Flow af a $C_{/I}^{1}\cdot itit_{f}\iota 1$ Poiiit

Case II: We may assume that $U_{L}$ is a repeller. Figure 10 to 12 show nine level
curves of $\phi_{s}$ for $a=1.5,$ $b=1,$ $s=-1$ and $U_{L}={}^{t}(1,1)$ . The level set { $\phi_{s}=\epsilon$ : small}
is composed of a small closed curve enclosing $U_{L}$ and a single unbounded regular
curves in this case $($Fig 10: $\phi_{s}=0.150)$ . Suppose that the first critical point $U_{1}$

exists on $t\}_{1}e$ level set $\{\phi_{R}(U)=p_{1}\}$ , $($ Fig.10: $p_{1}=0.800)$ such that there is no
critical point in $\{\epsilon\leq\phi_{s}(U)\leq p_{1}-\epsilon\}$ . By the same argument as above, we find a
trajectory connecting $U_{L}$ and the first critical point $($ Fig 10: $\phi_{s}=0.800)$ . Repeating
this argument $($ Fig $11:\phi_{s}=1.000$ to $12:\phi_{s}=20.00)$ , we have the second trajectory.
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Above the second critical point, we have a closed curve and a single unbounded curve
(Fig 12: $\phi_{s}=21.00$ , 27.00). Since the closed curve encloses an attractor, we conclude
that there are infinitely many trajectories issuing from $U_{L}$ and drawn into the attractor.

Figure 7: $c/’)_{\backslash }$. $=1(].(\}(). 23.()(). 2_{\iota}^{\ulcorner}).88$

$\lrcorner 0^{--}\overline{v}^{-}$

$-$

$\lrcorner 0|$

$\aleph$
$|$

$0$

Figure 8: $(/’J.\backslash =\backslash \sigma).()(). ()_{t}^{\ulcorner}).()()$ . $8_{l})_{t}).)$

$h^{\urcorner}i_{b^{ll1t^{\prime();(/).,=}}}\cdot.1()().()$ . $118$ . $t$ . $14().()$
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5. COMPRESSIVE SHOCK WITHOUT VISCOUS SHOCK PROFILE

Liu-Oleinik Condition: Let us denote: $\mathcal{H}(U_{L})$ : $U=U(\xi;U_{L})$ the Hugoniot curve
issuing from $U_{L};s(\xi)$ : the shock speed at $U(\xi);U_{R}=U(\xi_{1})$ . We say that $U_{L}$ and $U_{R}$

satisfy tlie (strict) $Liu- Oleir\iota ik$ condition if $s(\xi_{1})<s(\zeta)$ for all $0\leq\xi<\xi_{1}$ ([9]).
For strictly hyperbolic systems, as long as $U_{R}$ is sufficiently close to $U_{L}$ , there exists

a viscous shock profile connecting these states if and only if they satisfy the Liu-Oleinik
condition ([6]).

56



$Figltl\cdot(|$ $L$3: $]_{\lrcorner}i_{1}\iota-()1\epsilon i_{11}ik\zeta^{1}oii(1itioi1$

State $U_{L}$ on a Median (Case I): In this case, the Hugoniot curves are composed
of the median and a hyperbola, and their intersection points are $U_{L}$ (first bifurcation
poiIit) and $U_{*}$ (secon(1 bifurcation poirit). We can deduce by TheoreIn 2 that tliere is
a saddle-saddle connection (Fig. 14: left).

Theorern 5 ([2]) Suppose that the medians and the inflection curves inter.sect only at
the origin $O$ and that $U_{L}\in M_{j}\backslash \{O\}.(j=1,2,3)$ . Then $tf\iota er\cdot e$ exists one branch $\mathcal{H}_{*}$ of
the hyperbola $\mathcal{H}_{j}(U_{L})$ issuing $fro7nU_{*}$ such that the state $U_{L}$ , on the left, can be joined
to any $state\in \mathcal{H}_{*}$ sufficiently close to $U_{*}$ , on the right, by an inadmissible, compressive
Liu-Oleinik shock. In this case, there exists a saddle-saddle connection along $M_{j}$ .

Outline of proof: Let $U_{L}\in M_{1}$ and $u_{L}>0$ . We find by direct computation that the
2-shock curve issuing frorn $U_{L}$ is composed of the segment $\overline{U_{L}U_{*}}$ and one branch of the
hyperbola $\mathcal{H}_{j}$ issuing from $U_{*}$ .

Figure 14: Hugoniot $I_{J((11b\dot{c}\mathfrak{l}11(1^{\zeta_{)}^{t}}1_{1t(}\cdot]^{\zeta_{)}^{\tau}}\backslash }vI\backslash ^{r}\llcorner 1)1^{t}((1$

Since $\sigma\cdot=\lambda_{2}$ and $\dot{s}\neq\dot{\lambda}_{2}$ at $U_{*}$ , one branch of hyperbola containing $U_{*}$ is a com-
pressive branch of the 2-shock curve. Hence by choosing the shock speed $s$ close to $s_{*}$

we have a 2-cornpressive shock conriecting $U_{L}$ and a st\‘ate $U_{R}$ that is close to $U_{*}$ . As we
have noticed there is a saddle-saddle connection from $U_{L}$ to a certain state $U_{1}\in M_{1}$
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which is close to $U_{*}$ , hence close to $U_{R}$ . Thus we conclude from the configuration of
trajectories tliat it is impossible.

Figure 14 is the Hugoniot curves and the graph of shock speed for $a=0.1$ ,
$b=1,$ $U_{L}={}^{t}(0.5,0.5\mu_{1}),$ $\mu_{1}=-2.65004,$ $\mu_{2}=-0.369954,$ $\mu_{3}=1.02,$ $U_{*}=$

${}^{t}(-0.0484773$ , 0.128465 $)$ , $s_{*}=0.653999$ ; the par\‘ameter of the shock speed is $\xi=\underline{v}\underline{-}v$

$u-u_{\iota}$
.

In the graph of shock speed, $s$ decreases from $\lambda_{2}(U_{L})$ to $\lambda_{*}$ along $\xi=\mu_{1}$ . then the
compressive blanch goes to the right. It is clear from this figure, the Liu-Oleinik con-
dition actually holds. Figure 15 shows the level curves of the potential function for

「$\overline{\prime\prime}|i|$ $r$ $\prime’’-\neg$
$\text{ノ^{}\prime}$

$arrow–\cdot\cdot’-\cdot\simarrow\sim\cdots-\cdot--$ $arrow..-\cdot\sim-\cdot-\cdots\cdot,\ldots\ldots-$

$|$

’

$L–$ $\text{沖_{}-\vee\cdot-arrow-}\rfloor$

Figure $1_{\backslash )}^{\ulcorner}:\backslash \cdot=().r)4C),$ $\phi\backslash \backslash =(\}.47_{\backslash }^{\cdot}\backslash ()78_{t}^{r_{J}}$ (left): $\phi_{l},$ $=(I.47’)()8()$ (riglit)

$s=0,646$ . The left figure: $\phi_{s}=0.4730785$ shows the connection of $U_{L}$ and a certain
state on the median $M_{1}$ , hence the existence of an undercompressive shock wave. The
right one shows a small closed level curve that encloses an attractor.
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