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1 Introduction
LOGCFL is the class of sets which are LOGSPACE reducible to context free lan-

guages. This class lies between NL and $AC^{1}$ and has several alternative characterizations
based on different computational concepts.

Such concepts include Boolean circuits (semi-unbounded fan-in logarithmic depth cir-
cuits), algebraic structure (word problem for finite groupoids), database theory (acyclic
conjunctive queries) and graph theory (acyclic graph embedding problem).

It had been open whether there exists a theory of weak arithmetic which capture this
class, that is, a theory whose provably total functions precisely correspond to functions
bitwise computable in LOGCFL.

The author gave the first such theory V-$Q$ $(\Sigma_{0}^{B})$ based on the circuit based char-
acterization of LOGCFL, while it is still open to construct similar theories based on
other characterizations of the class.

Another aspect of complexity theory is the complexity of propositional proofs. Many
natural complexity classes are known to correspond to natural propositional proof sys-
tems. So it is likely that LOGCFL also has a natural counterpart in propositional proof
systems.

One such system is the Frege system enhanced to manipulate SACl circuits in place
of Boolean formulae. It is known that Frege with polynomial size circuits is equivalent
to polynomial size extended Frege system, which corresponds to P. Similarly, we can
prove that SACl-Frege corresponds to the theory V-$Q$ $(\Sigma_{0}^{B})$ .

In connection with propositional complexity, the above characterizations of LOGCFL
might give lots of information. For example, the concept needed to define word problem
for groupoids can be translated to a family of propositional formulae. So it is an inter-
esting problem which propositional proof system has or does not have polynomial size
proof of such a concept.

This note aims to give a guideline for the research of LOGCFL in terms of proof
theory as stated above. We give several results obtained so far without mentioning
proofs. We will further give some informal ideas for the future research.
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2 The class LOGCFL
In this section we overview fundamental properties of the class LOGCFL. We will

assume that readers are familiar with basic concepts of computational complexity and
formal language theory.

Definition 1 LOGCFL is the class of sets which are logspace reducible to some context
free language.

An altemative characterization is known for this class based on Boolean circuits. A
semi-unbounded fan-in circuit is a Boolean circuit with basis $t\wedge,$ $\vee,$ $\neg$ } where $\wedge$ gates
receive at most two inputs and $\neg$ gates appear only at the input level.

Definition 2 SACl is the class of sets which are decidable by some semi-unbounded
fan-in circuit family with $O(\log n)$ depth and $n^{O(1)}$ size.

Theorem 1 (Venkateswaran [9]) A set is in LOGCFL if and only if it is decidable
by an $U_{E}^{*}$ -uniform SACl circuit family.

From this characterization we obtain the following inclusion relation neither of which
is known to be proper.

Corollary 1 NL $\subseteq$ LOGCFL $\subseteq$ ACl.
Several complete problems are known for LOGCFL.
A groupoid is a set with a (not necessarily be associative) binary operation. For a

groupoid $G$ , work problem for $G$ is the problem of given a finite word $w=a_{1}a_{2}\cdots a_{l}$

over $G$ , decide whether there exists a bracketing of $w$ for which it is multiplied out to
an element in given $S\subseteq G$ .

Proposition 1 The word problem for finite groupoids is complete for LOGCFL under
constant depth reductions.

The following complete problem is also noteworthy.

Theorem 2 (Gottlob et.al. [5]) The acyclic conjunctive query problem is complete

for LOGCFL under constant depth reductions.

3 Theories for LOGCFL
Bounded arithmetic gives a logical framework for investigating complexity classes.

There are several versions of such theories and two-sort systems gains much popularity
recently. In particular, Cook, Kolokolova and Nguyen developed two sort theories which
corresponds to complexity classes below $P$ (see for example [6]).

In this section we give two theories of two sort which correspond to LOGCFL. Let
us first give some definitions.

The language $\mathcal{L}_{2}$ of two sort systems consists of the followings:
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. number variables: $x,$ $y,$ $z,$ $\ldots$ ,

$\bullet$ string variables: $X,$ $Y,$ $Z,$
$\ldots$ ,

$\bullet$ constant: $0$ ,

$\bullet$ function symbols: $s(x)=x+1,$ $x+y,$ $x\cdot y,$ $|X|$ ,

$\bullet$ predicate symbols : $x<y,$ $x=y,$ $x\in X$ .
Note that the intended model of $\mathcal{L}_{2}$ is $(\mathbb{N}, \Sigma^{*})$ where $\Sigma=\{0,1\}$ .

Quantifiers of the form $(\forall x)$ and $(\exists x)$ are called number quantifiers and $(\forall X)$ and
$(\exists X)$ are called string quantifiers. We define bounded string quantifiers as follows:

$(\forall X<t)\varphi$ $\equiv$ $(\forall X)(|X|<tarrow\varphi)$

$(\exists X<t)\varphi$ $\equiv$ $(\exists X)(|X|<t\wedge\varphi)$

Definition 3 $\Sigma_{0}^{B}$ is the set of $\mathcal{L}_{2}$ formulae in which all quantifiers are bounded number
quantifiers. $\Sigma_{1}^{B}$ is the set of $\mathcal{L}_{2}$ formulae whose quantifiers are either bounded num-
$ber$ quantifiers, positive appearances of bounded existential string quantifiers or negative
appearances of bounded universal string quantifiers.

We are interested in the computational complexity of definable functions of a given
$\mathcal{L}_{2}$ theory.

Definition 4 A number function is a function of the form $f$ : $\mathbb{N}^{k}\cross(\Sigma^{*})^{l}arrow N.$ A string
function is a function of the form $f$ : $\mathbb{N}^{k}\cross(\Sigma^{*})^{l}arrow\Sigma^{*}$ .

Definition 5 Let $T$ be a $\mathcal{L}_{2}$ theory and $\Phi$ be a class of $\mathcal{L}_{2}$ formulae. A string function
$F$ is $\Phi$ definable in $T$ if there exists $\varphi\in\Phi$ such that

$T\vdash(\forall\overline{x})(\forall\overline{X})(\exists!Y)\varphi(\overline{x},\overline{X}, Y)$

and $(\mathbb{N}, \Sigma^{*})\models(\forall\overline{x})(\forall\overline{X})\varphi(\overline{x},\overline{X}, F(\overline{x},\overline{X}))$ .

3.1 A theory for SACl
In [8], the author defined a theory whose provably total functions correspond to SACl.

Here we briefly overview this system.
Given an input to a Boolean circuit, we call a path an alternating path which gives

a witness that the circuit accepts the input. Strictly, alternating paths are defined by
induction on the depth of circuits.

For an $\mathcal{L}_{2}$-formula $\varphi$ we define the predicate symbol $Q_{\varphi}^{SAC}$ by

$Q_{\varphi}^{SAC}(n, t)\Leftrightarrow$ there exists an alternating path with the root $t$

in the circuit defined by $\varphi$ with the input length $n$ .

and let V- $Q^{}$ $(\Sigma_{0}^{B})$ be the system with bit comprehension axioms for $\{Q_{\varphi}^{SAC}(n,t)$ :
$\varphi\in\Sigma_{0}^{B}\}$ . Then we have
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Theorem 3 (Kuroda [8]) V-$Q^{}$ $(\Sigma_{0}^{B})$ captures LOGCFL.

The essential part of the proof of Theorem 3 is to show that $Q^{SAC}(\Sigma_{0}^{B})$ is strongly
closed and, in particular, it is not obvious that SACl is closed under complementation.
Borodin et.al. [2] used the inductive counting to show this and we can formalize their
argument inside V- $Q^{}$ $(\Sigma_{0}^{B})$ .

3.2 A theory for permutation word problem

Our new theory for LOGCFL is based on a version of word problem for groupoids.
The idea of defining this version of word problem is that we fix trees denoting the
bracketing of a given word $w$ and attach some permutation of $w$

‘ to leaves of the tree.
For a node $v$ of a tree let label(v) denote the label assigned to $v$ . We also denote the

left and right offsprings of $v$ by le$ft(v)$ and right(v). The Permutation Word Problem
(PWP) is the following decision problem:

Definition 6 Let $\mathcal{T}=T_{1},$ $T_{2},$
$\ldots$ be a family of rooted binary trees so that $T_{n}$ has $n$

leaves. Let $G$ be a finite groupoid and $S\subseteq G$ . The pemutation word problem for $(G;S)$ ,
denoted by $PWP(\mathcal{T}, G, S)$ , is the set of finite words $w$ over $G$ such that there enists a
permutation $w$

‘ of $w$ satisfying the following condition;

if we assign elements of $w’$ to leaves of $T_{|w|}$ and compute each label of non-leaf
node $v$ by

label $(v)=label(left(v))oc$ label (right $(v)$ )

then the label of the root of $T_{|w|}$ belongs to $S$ .

Deflnition 7 $BPWP$ is the problem $PWP$ with the restriction that the family $\mathcal{T}$ of
binary trees consists of balanced trees.

Theorem 4 $BPWP$ is LOGCFL complete under constant depth reductions.

Our system for LOGCFL is based on the problem BPWP. The essential axiom for
the system expresses the computation of the word problem. In order to describe it, we
need several functions and predicates which are definable in the base theory.

Definition 8 $V^{0}$ is the $\mathcal{L}_{2}$ theory with the following axioms;. $BASIC_{2}$ ; a finite set of axioms which define symbols in $\mathcal{L}_{2}$ .. $\Sigma_{0}^{B}$ -COMP ; $(\exists X<a)(\forall y<a)(y\in Xrightarrow\varphi(y))$ , where $\varphi\in\Sigma_{0}^{B}$ .

It is known that we can freely add $\Sigma_{1}^{B}$ definable functions and $\Delta_{1}^{B}$ definable predicates
in $V^{0}$ . Using this fact we introduce several functions and predicates in $V^{0}$ .

A two dimensional array $X$ defines a finite function so that

$X[y]= \min\{z:X(y, z)\}$ .
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A finite groupoid is coded by a three dimensional array $n\cross n\cross n$ . We will denote the
binary operation $x\circ cy$ by

$G[x, y]= \min\{z:G(x, y, z)\}$

The following formula asserts that any given word can be multiplied out to a single
element according to a balanced tree:

$\delta_{GWP}(a, G, W)Y)\Leftrightarrow$

$(\forall x<a)(Y[x+a]=W[x]\wedge 0<xarrow(Y[x]=G[Y[2x], Y[2x+1]]))$ .

Next we define functions and predicates which manipulate permutations. First define

Perm$(F, n)$ $\Leftrightarrow$ $(\forall x<n)(\exists y!<n)F(x, y)\wedge$

$(\forall x<n)(\forall y<n)(\forall z<n)(F(x, z)\wedge F(y, z)arrow x=y)$ .

Perm$(X, n)$ asserts that a permutation $X$ of $n$ is a bijection $[n]arrow[n]$ and we have

Proposition 2 Perm(X, n) is $\triangle_{1}^{B}$ definable in $V^{0}$ .

Next we define the application of a permutation to words.

Trans $(F, X, n)=Y\Leftrightarrow$

$($Perm$(F,$ $n)arrow(\forall i<n)(Y[F[i]]=X[i]))\wedge(\neg Perm(Fmn)arrow X=Y)$ .

Proposition 3 Trans $(F, X, n)$ is $\Sigma_{1}^{B}$ definable in $V^{0}$ .

Now we can define a single axiom which states that for a given groupoid $G$ and a word
$W$ on $G$ there exists a sequence which codes all elements of $G$ so that some permutation
of $W$ can be multiplied out to it by a balanced tree. BPWPG (for Balanced Permutation
Word Problem for Groupoids) is the following axiom:

$(\forall G)(\forall W)(\exists S)(\forall i<n)$

$(S(i)rightarrow(\exists F)(\exists Y)(Perm(F, n)\wedge\delta_{GWP}(n, G, Trans(F, W, n), Y)\wedge Y[n-1]=i))$ .

Deflnition 9 T-PWP is the $\mathcal{L}_{2}$ theory whose axioms are

$\bullet$ all axioms for $V^{0}$ ,

$\bullet$ BPWPG.

Theorem 5 A function is $\Sigma_{1}^{B}$ definable in T-PWP if and only if it is bitwise com-
putable in LOGCFL.

Problem 1 Show that T-PWP is identical to V-$Q^{}$ $(\Sigma_{0}^{B})$ . That is, show that for all
$\mathcal{L}_{2}$ formulae $\varphi T- PWP\vdash\varphi$ if and only if V-$Q^{}$ $(\Sigma_{0}^{B})\vdash\varphi$ .
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4 Propositional proof system for LOGCFL
It is known that many complexity classes have its counterpart in propositional proofs.

A natural candidate for for LOGCFL is SACl Frege proof system.

Definition 10 Circuits $C$ and $D$ are similar (written as $C\simeq D$) if they are unfolded
into the same formula.

Deflnition 11 A Circuit Frege $(CF)$ proof system is defined as follows: Let $\mathcal{B}$ be a basis
of Boolean fomiulae and $\mathcal{R}$ be a sound and implicationally complete set of Frege rules
over $\mathcal{B}.$ A $CF$ proof is a sequence $A_{0},$

$\ldots,$
$A_{k}$ of $\mathcal{B}$-circuits such that each $A_{i}$ is either. obtained by some $\mathcal{R}$ rule from $A_{j_{1}},$ $\ldots A_{j_{l}}$ for some $j_{1},$

$\ldots,$ $j_{l}<i$ , or

$\bullet$ $A_{j}\simeq A_{i}$ for some $j<i$ .

Deflnition 12 $A$ SAC$1_{-hege}$ proof is a $CF$ proof where circuits in the proof are re-
stricted to SACl circuits.

Theorem 6 There exists a translation $\varphi(\overline{X})\mapsto\Vert\varphi(\overline{X})\Vert_{\overline{m}}$ of $\Sigma_{0}^{B}$ formulae into propo-
sitional formulae such that if V-$Q^{}$ $(\Sigma_{0}^{B})\vdash(\forall\overline{X})\varphi(\overline{X})$ where $\varphi\in\Sigma_{0}^{B}$ then $\Vert\varphi(\overline{X})\Vert_{\overline{m}}$

has polynomial size SAC$1_{-Frege}$ proofs.

Theorem 7 V-$Q^{}$ $(\Sigma_{0}^{B})$ proves the reflection principle for SAC $1_{-R^{\wedge}ege}$ .

5 Future research and open problems
In this note we present two theories for LOGCFL based on different characterization.

Another interesting feature of this class is acyclic conjunctive queries defined in section
2. So it is plausible to define another system based on this characterization.

Problem 2 Define a natural astom A which expresses the concept of acyclic conjunctive
queries so that $V^{0}+A$ captures LOGCFL.

A similar problem can be considered in the context of propositional proofs. Atserias
et.al. [1] defined constraint based proof system called CSP-proofs.

Definition 13 Let $\sigma$ be a signature for finite models and $\mathcal{A}$ and $\mathcal{B}$ be $\sigma- stn4ctures$ . The
homomorphism problem is to decide whether there exists an homomorphism $\mathcal{A}arrow \mathcal{B}$ .

It is easily seen that the homomorphism problem is equivalent to constraint satisfaction
problem, which is in tum equivalent to conjunctive query problem.

Now the objective of CSP-proof is, given two structures $\mathcal{A}$ and $\mathcal{B}$ , show that whether
there is no homomorphism $\mathcal{A}arrow \mathcal{B}$ in the following manner.
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Definition 14 A constraint is a pair $(\overline{x}, R^{\mathcal{B}})$ where $\overline{x}=x_{1},$ $\ldots$ , $x_{l}$ is a tuple of elements
of $\mathcal{A}$ and $R^{\mathcal{B}}$ is a relation over $\mathcal{B}$ of the arity $l$ . For two relations $R,$ $S$ we denote their
join by $R\mathbb{N}S$ .

A $CSP(\mathcal{B})$ -proof from $\mathcal{A}$ is a finite sequence of constraints such that each constraint
is either one of the followings:

1. $(\overline{x}, R^{\mathcal{B}})$ : $R\in\sigma$ and $\overline{x}\in R^{A}$ ,

2. $(\overline{x}\cup\overline{y}, RNS)$ : $(\overline{x}, R)$ and $(\overline{y}, S)$ appears previously,

3. $(\overline{x}, \pi_{\overline{x}-y}(R))$ : $(\overline{x}, R)$ appears previously,

4. $(\overline{x}, S)$ : $(\overline{x}, R)$ appears previously and $R\subseteq S$ .

A $CSP(\mathcal{B})$ -refutation $of\mathcal{A}$ is a $CSP(\mathcal{B})$ -prooffrom $\mathcal{A}$ whose last constraint has an empty
relation.

It is easily seen that CSP-refutation is sound and complete. However, this proof
system itself cannot be Cook-Reckhow system as it does not satisfy the P-verifiability
condition.

In order to overconie this problem, the notion of representation class is introduced:

Definition 15 Let $B$ be a finite set. A representation class for Boolean valued functions
with domain $B^{k}$ is the tuple $\mathcal{R}=(Q, I, S)$ where

$\bullet$ $Q$ is the set of representations,

$\bullet$ I is a mapping $Qarrow\{f : B^{k}arrow\{0,1\}\}$ called interpretation,

$\bullet$ $S$ is a mapping $Qarrow \mathbb{N}$ called size function.
Taking some computation model as the set of representation $Q$ we obtain P-verifiable

versions of CSP-proof system.

Definition 16 Let $\pi$ be an order on Boolean variables. A $\pi$ -OBDD is a binary decision
diagram in which all paths have labels which are consistent with $\pi$ ,

Definition 17 Let $\pi$ be an order on variables. Then $\pi$ -OBDD proof system is the $CSP$

proof system where the representation class for constraints is $\pi$ Ordered Binary Decision
Diagram (OBDD).

Since basic operations for OBDDs (such as the equivalence of two OBDDs etc) are
polynomial time computable (see [3]), this proof system is known to be a Cook-Reckhow
system.

However Kraj\’i\v{c}ek [7] proved an exponential lower bounds to OBDD-proofs. So we ask
the following question:
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Problem 3 Is $ther\cdot e$ a representation class for which CSP-proof corresponds to LOGCFL,
$P$ etc?

Apart from the relation to LOGCFL, CSP proof itself is interesting. We close this
note by posing a question about CSP proofs.

Definition 18 A Free $BDD$ (FBDD) is a $BDD$ such that in each path from the root to
an end node, each variable is checked at most once.

Given two FBDDs it is not known to be polynomial time computable to check whether
they are identical. However, by introducing the notion of type (see [4]), we can check in
polynomial time the equivalence of two given FBDDs of the same type. This leads to
the definition of FBDD proofs as follows:

Definition 19 Let $\tau$ be a type of Free BDDs. A $\tau$ -FBDD is a FBDD with type $\tau$ . $A$

$\tau$ -FBDD proof is a CSP-proof whose representation class is $\tau$ -FBDDs.

As models of computations, FBDD have exponential speed-up over OBDD. So the
author conjectures

$Co\dot{w}ecture1$ FBDD-proofs have exponential speed-up over OBDD-proofs.
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