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1 Introduction and statement of the main result
Let us consider the quasilinear ordinary differential equation

$(t^{\beta}|u’|^{\alpha-1}u’)’+t^{\sigma}(1+o(1))|u|^{\lambda-1}u=0$ , near $+\infty$ , (A)

where $o(1)$ denotes a continuous function going to $0$ as $tarrow\infty$ . Furthermore we assume
that $\beta>$ a $>0,$ $\lambda>\alpha$ and $\sigma\in$ R. In what follows a positive $C^{1}$ -function $u$ defined
near $+\infty$ is called positive solution of (A) if $t^{\beta}|u’|^{\alpha-1}u’$ is continuously differentiable and
it satisfies (A).

Let $u$ be a positive solution of (A). Since $t^{\beta}|u’|^{\alpha-1}u’$ is decreasing, it is shown [8,
p. 133] that every positive solution $u$ of (A) satisfies one of the following three asymptotic
properties as $tarrow\infty$ :

$u(t)\sim c_{1}$ for some constant $c_{1}>0$ ; $($ 1.1 $)$

$u(t)\sim c_{2}t^{-(\beta-\alpha)/\alpha}$ for some constant $c_{2}>0$ ; (1.2)

and
$u(t)arrow 0$ and $\frac{u(t)}{t^{-(\beta-\alpha)/\alpha}}arrow\infty$ . (1.3)

(Here and in the sequel the symbol “$f(t)\sim g(t)$ as $tarrow\infty$” means that $\lim_{tarrow\infty}f(t)/g(t)=$

$1.)$ Qualitative properties of solutions satisfying (1.1) or (1.2) have been deeply investi-
gated, because asymptotic forms of such solutions are explicitly given by definition. On
the other hand, as far as the author knows, very little is known about asymptotic forms of
solutions satisfying (1.3). Motivated by this fact, we have been studying on this subject.
In the talk, we refer positive solutions $u$ satisfying (1.3) as slowly decaying solutions.

When
$( \beta-\alpha)-1<\sigma<\frac{\lambda}{\alpha}(\beta-\alpha)-1$ ,
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it is shown [5] that, under suitable conditions on the term $(o(1)$ ”, every slowly decaying
solutions $u$ of (A) has the asymptotic form

$u(t)\sim Ct^{-\gamma}$ as $tarrow\infty$

for some constants $C=C(\alpha, \beta, \lambda, \sigma)>0$ and $\gamma=\gamma(\alpha, \beta, \lambda, \sigma),$ $0<\gamma<(\beta-\alpha)/\alpha$ . (These
constants can be written down explicitly; see [5]. $)$ Accordingly, in this talk we consider
equation (A) for the critical case $\sigma=\beta-\alpha-1$ ; that is, we will treat the equation:

$(t^{\beta}|u’|^{\alpha-1}u’)’+t^{\beta-\alpha-1}(1+\epsilon(t))|u|^{\lambda-1}u=0$ , near $+\infty$ . (E)

The following conditions are assumed throughout the talk:

$(A_{1})\lambda>\alpha>0$ and $\beta>\alpha$ are positive constants;
$(A_{2})6(t)$ is a $C^{1}$ -function satisfying $\lim_{tarrow\infty}\epsilon(t)=0$ .

Remark 1.1. When condition $(A_{1})$ is replaced by $0<\lambda<\alpha$ and $\beta>\alpha$ , asymptotic
forms of slowly decaying solutions of (E) have been obtained completely [6].

Equations of the form (E) appear in the study of quasilinear elliptic equations as seen
below.

Example 1.2. Let $N>m>1$ and $\lambda>m-1$ . Consider the following elliptic equation
near $\infty$ of $R^{N}$ :

$div(|Du|^{m-2}Du)+|x|^{-m}(1+o(1))u^{\lambda}=0$ .
Here $o(1)$ denotes a radial smooth function going to $0$ at $\infty$ . Radial solutions $u=u(r),$ $r=$
$|x|$ , satisfy the ODE

$(r^{N-1}|u_{r}|^{m-2}u_{r})_{r}+r^{N-m-1}(1+o(1))u^{\lambda}=0$ near $+\infty$ , (1.4)

which is of the form (E). A solution $u(r)$ is a slowly decaying solution if

$u(r)arrow 0$ and $r^{\frac{N-m}{m-1}}u(r)arrow\infty$ as $rarrow+\infty$ .

To state the results we must introduce some notation. Put $\rho=\alpha/(\lambda-\alpha)$ and $A=$
$[\rho^{\alpha}(\beta-\alpha)]^{1/(\lambda-\alpha)}$ . Define

$u_{0}(t)=A(\log t)^{-\rho}$ . (1.5)

We note that $u_{0}$ is a slowly decaying solution of an ODE of the form (E) with some $\epsilon(t)$ .
Hence we conjecture that slowly decaying solutions of equation (E) may behave like $u_{0}(t)$

under suitable conditions on $\epsilon(t)$ . We can answer this conjecture affirmatively. This is
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the main result of the talk:

Theorem 1.3. Let $\alpha\geq 1$ and

$\int^{\infty}|\epsilon^{l}(t)|dt<\infty$ . (1.6)

Then every slowly decaying solution $u$ of equation (E) has the asymptotic form $u(t)\sim u_{0}(t)$

as $tarrow+\infty$ , where $u_{0}$ is given by (1.5).

Theorem 1.3 enable us to determine the asymptotic form of slowly decaying solution of
equation (1.4):

Example 1.4. Consider equation (1.4) with $(o(1)=r^{-\tau},$ $\tau=$ const $>0.$ ” and $m\geq 2$ :

$(r^{N-1}|u_{r}|^{m-2}u_{r})_{r}+r^{N-m-1}(1+r^{-\tau})u^{\lambda}=0$ near $+\infty$ .

Theorem 1.3 asserts that every slowly decaying solution $u$ of this equation has the asymp-
totic form

$u(r)\sim B(\log r)^{-\frac{m-1}{\lambda-m+1}}$ as $rarrow\infty$ ,

where $B=B(N, m, \lambda)>0$ is a constant.

Remark 1.5. (i) Existence results of slowly decaying solutions of equation (1.4) are
discussed in $[$7$]$ .

(ii) When $m=2$ , the asymptotic forms of slowly decaying solutions of equation (1.4)
are obtained in $[$9$]$ .

(iii) The reader may have a question: For the case $\sigma=\frac{\lambda}{\alpha}(\beta-\alpha)-1$ , the other critical
case, how do slowly decaying solutions of equation (E) behave? However, in this case
equation (A) does not have positive solutions at all [8].

(iv) Related results are found in [1, 2, 3, 4, 8].

2 Proof of the main results
To see Theorem 1.3 we must give several preparatory considerations.

Lemma 2.1. Let $u$ be a slowly decaying solution of equation (E). Then the following
statements hold:

(i) $\lim_{tarrow\infty}t^{\beta}|u’(t)|^{\alpha}=\infty$;
(ii) $u(t)=O(u_{0}(t))$ and $u’(t)=O(|u_{0}’(t)|)$ as $tarrow\infty$ .

Proof. (i) Since $t^{\beta}|u’|^{\alpha-1}u’$ decreases, $\lim_{tarrow\infty}t^{\beta}|u’|^{\alpha-1}u’\in[-\infty$ , oo $)$ exists. If this
limit is finite, it is easily seen that $u$ satisfies (1.1) or (1.2).

102



(ii) An integration of the both sides of equation (E) on $[t_{0}, t]$ gives

$t^{\beta}(-u’(t))^{\alpha} \geq\int_{t_{0}}^{t}r^{\beta-\alpha-1}(1+\epsilon(r))u^{\lambda}dr$ ,

where $t_{0}$ is a sufficiently large number. Since $u$ is a decreasing function, we have

$t^{\beta}(-u’(t))^{\alpha} \geq u(t)^{\lambda}\int_{t_{0}}^{t}r^{\beta-\alpha-1}(1+\epsilon(r))dr$;

that is,

$-u’(t)u(t)^{-\lambda/\alpha} \geq(t^{-\beta}\int_{t_{0}}^{t}r^{\beta-\alpha-1}(1+\epsilon(r))dr)^{1/\alpha}$ .

One more integration of the both sides gives the estimates for $u$ .
To get the estimates for $u’$ , it suffices to notice the inequality

$t^{\beta}(-u’(t))^{\alpha} \leq C_{1}\int_{t_{0}}^{t}r^{\beta-\alpha-1}u(r)^{\lambda}dr$ ,

where $C_{1}>0$ is a constant. Note that, to get this inequality, we must use (i).

Lemma 2.2. Let $u$ be a slowly decaying solution of equation (E). Introduce the change
of variables $t=e^{s}$ and $v(s)=(\log t)^{\rho}u(t)$ , and put $\delta(s)=\epsilon(e^{s})$ and $\cdot=d/ds$ . Then, $we$

have the following statements $near+\infty$ :
(i) pv–sv $>0$ ;
(ii) $v(s)=O(1)$ , and $\dot{v}(s)=O(s^{-1})$ as $sarrow\infty$ ;
(iii) $v(s)$ satisfies the ODE

$\alpha s\ddot{v}+\{(\beta-\alpha)s-2\alpha\}\dot{v}-(\rho(\beta-\alpha)-\frac{\alpha\rho(\rho+1)}{s})v$

$+(\rho v-s\dot{v})^{1-\alpha}(1+\delta(s))v^{\lambda}=0$. (2.1)

In the sequel, for simplicity, we often rewrite (2.1) as

$\alpha s\ddot{v}+(A_{1}s-A_{2})\dot{v}-(B_{1}-\frac{B_{2}}{s})v+(\rho v-s\dot{v})^{1-\alpha}(1+\delta(s))v^{\lambda}=0$. (2.2)

Here $A_{1},$ $A_{1},$ $B_{1}$ and $B_{2}>0$ are appropriate constants defined by (2.1) and (2.2).

The statement of (i) of Lemma 2.2 is equivalent to $u’(t)<0$ . The estimates in (ii) of
Lemma 2.2 are direct consequences of (ii) of Lemma 2.1.

Lemma 2.3. Let $\alpha\geq 1$ and $v(s)$ be as in Lemma 2.2. Then, $\int^{\infty}s\dot{v}(s)^{2}ds<\infty$.
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Proof. Since $\alpha\geq 1$ . we get $(\rho v-s\dot{v})^{1-\alpha}\dot{v}\geq\rho^{1-\alpha}v^{1-\alpha}\dot{v}$ . Therefore, multiplying equation
(E) by $\dot{v}$ , we havc

$\alpha s\ddot{v}\dot{v}+(A_{1}s-A_{2})\dot{v}^{2}-B_{1}v\dot{v}+\frac{B_{2}}{s}v\dot{v}+\rho^{1-\alpha}(1+\delta(s))v^{1+\lambda-\alpha}\dot{v}\leq 0$. (2.3)

Note that condition (1.6) is equivalent to the condition $\int^{\infty}|\dot{\delta}(s)|ds<\infty$ . An integration
of (2.3) on the interval $[s_{0}, s]$ with $s_{0}$ being a constant, gives

$\frac{\alpha}{2}s\dot{v}^{2}+\int_{s0}^{s}(A_{1}r-A_{2}-\frac{\alpha}{2})\dot{v}^{2}dr-\frac{B_{1}}{2}v^{2}+B_{2}\int_{s0}^{s}\frac{v\dot{v}}{r}dr+\frac{\rho^{1-\alpha}}{2+\lambda-\alpha}v^{2+\lambda-\alpha}$
一

Const.

By using (ii) of Lemma 2.2, we can show this lemma.

Outline of the proof of Theorem 1.3. Let $v(s)$ be as in Lemma 2.2. It suffices to
show that $\lim_{tarrow\infty}v(s)=A$ . Introduce the auxiliary function $\Phi(s)$ by

$\Phi(s)=[\frac{\rho^{\alpha-1}}{1+\delta(s)}(B_{1}-\frac{B_{2}}{s})]^{1/(\lambda-\alpha)}$ .

Then, $\lim_{sarrow\infty}\Phi(s)=A$ , and $\Phi(s)$ has the following important properties:

In the region $0<v<\Phi(s)$ $[$resp. $v>\Phi(s)]$ , the solution curve

$v=v(s)$ attains only local minimums $[$resp. local maximums$]$ . (2.4)

As the first step, we show that $\lim_{sarrow\infty}v(s)\in[0, \infty)$ exists as a finite nonnegative
number. Put $\underline{L}=\lim\inf_{sarrow\infty}v(s)$ and $\overline{L}=\lim\sup_{sarrow\infty}v(s)$ . To see this claim we suppose
to the contrary that $0\leq\underline{L}<\overline{L}$ . Let us introduce the auxiliary function $F(v),$ $v\geq 0$ , by

$F(v)= \frac{\rho^{1-\alpha}}{2+\lambda-\alpha}v^{2+\lambda-\alpha}-\frac{B_{1}}{2}v^{2}$ .

On the interval $[0, A],$ $F(v)$ decreases; on the interval $[A, \infty),$ $F(v)$ increases. So the only
global minimum of $F(v),$ $v\geq 0$ , is attained at $v=A$ . The proof is divided into several
cases according to the order relations between $\underline{L},\overline{L}$ and $A$ . For example, let us suppose
that $A<\underline{L}<\overline{L}$ . But it is impossible because of the property (2.4). Next, suppose that
$\underline{L}\leq A<\overline{L}$ . Then, we can find two sequences $\{\overline{s}_{n}\}$ and $\{\xi_{n}\}$ satisfying

$\xi_{n}<\overline{s}_{n}<\xi_{n+1}<\overline{s}_{n+1}<\cdots,\lim_{n-arrow\infty}\overline{s}_{n}=\lim_{narrow\infty}\xi_{n}=\infty$ ; and

$\dot{v}(\overline{s}_{n})=0;v(\xi_{n})\equiv\Phi(\xi_{n});\lim_{narrow\infty}v(\overline{s}_{n})=\overline{L}(>A)$ .

Integrating (2.3) on $[\xi_{n},\overline{s}_{n}]$ , we find that

$F(v(\overline{s}_{n}))\leq F(A)+o(1)$ as $narrow\infty$ .
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Here we have used Lemmas 2.2 and 2.3. Letting $narrow\infty$ , we have $F(\overline{L})\leq F(A)$ ; that is,
$\overline{L}=A$ , a contradiction. The other cases can be treated similarly.

Secondly we claim that $\lim_{sarrow\infty}v(s)>0$ . The proof of this fact is done by contradiction.
Suppose to the contrary that $\lim_{sarrow\infty}v(s)=0$ . Then $v(s)$ decreases to $0$ by (2.4). We
rewrite equation (2.2) in the form

$..+$ $( \frac{A_{1}}{\alpha}$
一 $\frac{A_{2}}{\alpha s})\dot{v}\equiv h(s, v(s),\dot{v}(s))\equiv h(s)$ .

By the variation of constant formula we have

$v(s)=c_{1}+c_{2} \psi(s)+\int_{s_{0}}^{s_{\underline{A}A_{\Delta_{r}}}}r^{-1}\alpha e^{-}\alpha\psi(r)h(r)dr-\psi(s)\int_{s0}^{s}\underline{A}_{2\lrcorner}\alpha\alpha r$ , (2.5)

where $c_{1}$ and $c_{2}$ are some constants, and $\psi(s)=\int_{s}^{\infty}r^{A_{2}/\alpha}e^{-A_{1}r/\alpha}dr$ . We find that $\psi(s)\sim$

$c_{3}s^{A_{2}/\alpha}e^{-A_{1}s/\alpha}$ for some constant $c_{3}>0$ . Furthermore, by using condition $\alpha\geq 1$ , we can
estimate $h(s)$ as follows:

$\alpha h(s)\geq\frac{v}{s}\{(B_{1}-\frac{B_{2}}{s})-\rho^{1-\alpha}(1+\delta(s))v^{\lambda-\alpha}\}$ .

Here the reader recall that $\dot{v}(s)\leq 0$ and the inequality $(\rho v-s\dot{v})^{1-\alpha}\leq\rho^{1-\alpha}v^{1-\alpha}$ . This
estimate implies that $h(s)\geq 0$ , and $\lim_{sarrow\infty}h(s)=0$ . Therefore the last term on the right
hand side of (2.5) tends to $0$ as $sarrow\infty$ . $b^{\neg}rom$ these facts and the boundedness of $v(s)$ and
$\psi(s)$ , we find that the first integral on the right hand side of (2.5) converges as $sarrow\infty$ .
Therefore, (2.5) can be rewritten in the form

$v(s)=c_{4} \psi(s)-\int_{s}^{\infty}\alpha^{r}\int_{s_{0}}^{s_{\underline{A}}}-a^{A}\alpha$ , (2.6)

for some constant $c_{4}>0$ . Since $h(s)\geq 0$ , this formula implies that $v(s)=O(\psi(s))$ as
$sarrow\infty$ . Returning to the original t-variable, this is equivalent to $u(t)=O(t^{(\beta-\alpha)/\alpha}(\log t)^{\rho})$

as $tarrow\infty$ . Finally, returning to equation (E), we have $u(t)=O(t^{(\beta-\alpha)/\alpha})$ as $tarrow\infty$ .
This is an obvious contradiction to the definition of slowly decaying solution. Hence
$0< \lim_{sarrow\infty}v(s)<\infty$ .

Finally, we must show that $\lim_{sarrow\infty}v(s)=A$ ; or equivalently $\lim_{tarrow\infty}u(t)/u_{0}(t)=1$ .
Put $L= \lim_{tarrow\infty}u(t)/u_{0}(t)\in(0, \infty)$ . Since $u(t),$ $u_{0}(t)arrow 0,$ $L’ H6spital$ ’s rule implies that
$L= \lim_{tarrow\infty}u’(t)/u_{0}’(t)$ . Repeating this procedure, we find that

$L= \lim_{tarrow\infty}(\frac{t^{\beta}(-u’(t))^{\alpha}}{t^{\beta}(-u_{0}(t))^{\alpha}})^{1/\alpha}=\lim_{tarrow\infty}(\frac{(t^{\beta}(-u’(t))^{\alpha})^{l}}{(t^{\beta}(-u_{0}(t))^{\alpha})’})^{1/\alpha}$

$= \lim_{tarrow\infty}(\frac{-t^{\beta-\alpha-1}(1+\epsilon(t))u(t)^{\lambda}}{-t^{\beta-\alpha-1}(1+o(1))u_{0}(t)^{\lambda}}I^{1/\alpha}=L^{\lambda/\alpha}$ .

Here we have used the fact that $u_{0}(t)$ satisfies an ODE of the form (E). Since $L\neq 0$ , we
get $L=1$ . This completes the proof of Theorem 1.3.
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