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ABSTRACT. A slow-fast system in $R^{2+2}$ has 4-dimensional duck solutions under some
conditions which will be described in this paper. A time scaled reduced system for
the original system gives some essential conditions for having such singular solutions,
Through blowing up the system, it is transformed to a local model approximated as
square-linear equations. The local model has exact solutions with no singularity, and
it ensures the existence of the singular solutions as an approximation.

1. INTRODUCTION
In the coupled FitzHugh-Nagumo system, S.A.Campbell and the author have

already proved the existence of the winding duck solutions using an indirect method.
As the associated slow-fast system (or singular perturbation problem) has a 2-
dimensional slow manifold (constrained surface), the system can be reduced to the
slow-fast one in $R^{3}$ . It turns to have two kinds of projected slow-fast systems in
$R^{3}$ .

In a direct method, giving a generalized transversality condition and also doing a
condition on the fast vector field, it will be shown that there exists a duck solution
in $R^{4}$ . Under these conditions, two local models with an explicit duck solution will
be provided.

2. $SLOW$-FAST SYSTEM IN $R^{4}$

Now, let us consider a slow-fast system(2.1):

$\epsilon dx_{1}/dt=h_{1}(X1,$ $X_{2y_{1},y_{2},\epsilon)}$ ,
$\epsilon dx_{2}/dt=h_{2}(x_{1}, x_{2}, y_{1}, y_{2}, \epsilon)$ ,

(2.1)
$dy_{1}/dt=f_{1}(x_{1}, x_{2}, y_{1}, y_{2}, \epsilon)$ ,
$dy_{2}/dt=f_{2}(x_{1}, x_{2}, y_{1}, y_{2}, \epsilon)$ ,

where $f=(f_{1}, f_{2})$ and $h=(h_{1}, h_{2})$ are standard defined on $R^{4}\cross R^{1}$ and $\epsilon$ is infinit
small.

First, we assume the following condition $(A1)$ to get an explicit solution.
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$(A1)f$ is of class $C^{1}$ and $h$ is of class $C^{2}$ .
Furthermore, we assume that the system(2.1) satisfies the following generic con-

ditions $(A2)-(A5)$ :
$(A2)$ The set $S_{2}=\{(x, y)\in R^{4}|h(x, y, 0)=0\}$ is a 2-dimensional differentiable

manifold and the set $S_{2}$ intersects the set $T_{2}=\{(x, y)\in R^{4}|det[\partial h(x, y, 0)/\partial x]=$

$0\}$ , which is a 3-dimensional differentiable manifold, transversely so that the gener-
alized pli set $GPL=\{(x, y)\in S_{2}\cap T_{2}\}$ is a 1-dimensional differentiable manifold.

$(A3)$ The value of $f$ is nonzero at any point $p\in GPL$ .
$(A4)$ The rank $[\partial h(x, y, 0)/\partial x]=2$ for any $(x, y)\in S_{2}\backslash GPL$ , and the rank $[\partial h(x$ ,

$y,$ $O)/\partial y]=2$ for any $(x, y)\in S_{2}$ . Then, the surface $S_{2}$ can be expressed as $y=$
$\varphi(x)$ in the neighborhood of $GPL$ . On the set $GPL,$ $\partial h_{1}(x, y, O)/\partial x_{2}\neq 0$ or
$\partial h_{2}(x, y, O)/\partial x_{1}\neq 0$ , then $x_{2}=\psi_{2}(x_{1}, y)$ and $x_{1}=\psi_{1}(x_{2}, y)$ , where we use the
notations $x=(x_{1}, x_{2})$ , and $y=(y_{1}, y_{2})$ .

Let the latter of $(A4)$ be satisfied, then the following two projected systems (2.2),
(2.3) in $R^{3}$ are induced under the condition. We assume that $dx_{1}/dt,$ $dx_{2}/dt$ are
limited, that is, $\epsilon|dx_{1}/dt-dx_{2}/dt|$ tends to zero as $\epsilon$ tends to zero.

$\epsilon dx_{1}/dt=h_{2}(x_{1}, \psi_{2}(x_{1}, y), y, \epsilon)$ ,

(2.2) $dy_{1}/dt=f_{1}(x_{1}, \psi_{2}(x_{1}, y), y, \epsilon)$ ,
$dy_{2}/dt=f_{2}(x_{1}, \psi_{2}(x_{1}, y), y, \epsilon)$ ,

since the relation $x_{2}=\psi_{2}(x_{1}, y)$ is established from the above assumption. First, we
can analyze the vector field of the system(3.2) on the constrained surface. Then, we
use $h_{2}(x_{1}, x_{2},y_{1}, y_{2}, \epsilon)$ instead of $h_{1}(x_{1}, \psi_{2}(x_{1}, y_{1}, y_{2}), y_{1}, y_{2}, \epsilon)$ as an approximation.
Because, we have to avoid redundancy for the system as is using $h_{1}$ . Actually, we
need the above condition: $dx_{1}/dt,$ $dx_{2}/dt$ are limited, in such a case. Therefore, this
approach is called an indirect method. In the case, we can use $h_{2}(x_{1}, x_{2}, y_{1}, y_{2}, \epsilon)$

itself, see Remark in the Section5.
Using the other relation $x_{1}=\psi_{1}(x_{2}, y)$ , we can get the following:

$\epsilon dx_{2}/dt=h_{1}(\psi_{1}(x_{2}, y), x_{2}, y, \epsilon)$ .
(2.3) $dy_{1}/dt=f_{1}(\psi_{1}(x_{2}, y), x_{2}, y, \epsilon)$ ,

$dy_{2}/dt=f_{2}(\psi_{1}(x_{2}, y), x_{2}, y, \epsilon)$ .

Assume $y=\varphi(x)$ . On the set $S_{2}$ , differentiating both sides of $h(x, \varphi(x), 0)=0$

with respect to $x$ ,

(2.4) $[h_{x}]+[h_{y}]D\varphi=0$ ,

where $D\varphi$ is a derivative with respect to $x$ , thus the following (2.5) is established:

(2.5) $D\varphi(x)=-[h_{y}]^{-1}[h_{x}]$ .

On the other hand,

(2.6) $dy/dt=D\varphi(x)dx/dt$ ,

because of $y=\varphi(x)$ . We can reduce the slow system to the following:

(2.7) $D\varphi(x)dx/dt=f(x, \varphi(x))$ .
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Using (2.5), the system (2.7) is described by

(2.8) $[h_{x}]dx/dt=-[h_{y}]f(x, \varphi(x))$ .

Put $A=[h_{x}]=[h_{ij}]$ simply, then

(2.9) $dx/dt=-B[h_{y}]f(x, \varphi(x))$ ,

where $B$ is a cofactor matrix of $A$ , that is, $B=[A_{ji}]$ . $A_{ij}$ is a cofactor of $h_{ij}$ .
The system(2.9) is the time scaled reduced system projected into $R^{2}$ . Again, we

assume the set $T_{2}=\{(x, y)\in R^{4}|detA=0\}\neq\phi$ .
$(A5)$ All the singular points of the system(2.9) are nondegenerate, that is, the

matrix induced from the linearized system of (2.9) at a singular point has distinct
nonzero eigenvalues.

Remark. All these points are contained in the set $GPS=\{(x, y)\in GPL|detA=$
$0\}$ , which is called the set of generalized pseudo singular points.

As this approach transforms the original system to the time scaled reduced sys-
tem directly, it is called a direct method.
Deflnition2.1. Let $p\in GPS$ and $\mu_{1},$ $\mu_{2}$ be two eigenvalues of the matrix associ-
ated with the linearized system of (2.9) at $p\in R^{4}$ . The point $p$ is called generalized
pseudo singular saddle if $\mu_{1}<0<\mu_{2}$ and called generalized pseudo singular node
if $\mu_{1}<\mu_{2}<0$ or $\mu_{1}>\mu_{2}>0$ . It is called generalized pseudo singular focus if they
are compex conjugate.
Deflnition2.2. If there exists a duck in the both systems (2.2) and (2.3) at the
common pseudo singular point in $R^{4}$ , it is called a total duck in $R^{4}$ . If there exists
a duck in only one of the above systems, it is called a partial duck in $R^{4}$ .

Now, we have to give a description on the definition of the duck solution in $R^{4}$

along the direct method.

Deflnition2.3. Let a point $p$ be in GPS. If a trajectory follows first the attractive
surface before this point and the saddle one at the point $p$ , and then it goes along
the slow manifold, which is not infinit small, it is called a duck solution in $R^{4}$ .

Furthermore, we assume that the following.
$(A6)$ We assume that there exists the set co-GPL, which may contain GPS and

then the transversality condition is also established on co-GPL. In the situation,
we assume that the invariant manifold through GPS intersects GPL and co-GPL
transversely.

Deflnition2.4. If the trajectory near the point of GPS passes through along the
slow manifold with not infinit small and after that it jumps away, it is called a single
duck solution. If there exists a co-GPL in $(A6)$ within the interval, it is called $a$

double duck solution.

Remark. The first part of Definition2.4 ensures that only one of the eigenvalues of
the matrix $[h_{x}(x, \phi(x))]$ on the slow manifold takes zero on GPS, because the fast
vector field has saddle after GPS. On another GPL, however, the other eigenvalue
takes zero. Note that these two eigenvalues of $[h_{x}(x, \phi(x))]$ are negative when the
fast vector field is attractive, and are positive when it is repulsive. It occurs such a
state satisfying the assumption $(A6)$ . When they have different sign, it is saddle.
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3. THEOREMS

In this section, we shall give the following two theorems through a local model
in $R^{2+2}$ . See [8].

Theorem3.1. Let $0\in GPS$ be saddle or node. If the matrix $[h_{x}(0, \phi(0))]$ has
one zero eigenvalue and the other one has negative with a local model satisfying
the conditions: (1) $\partial h_{1}(0)/\partial x_{2}=0,$ $\partial h_{2}(0)/\partial x_{2}=0,$ (2) $f_{1}(0)\not\simeq 0,$ $f_{2}(0)\not\simeq 0$ , there
exists a duck solution in $R^{4}$ .

(Proof) As only one of the eigenvalues of the matrix $[h_{x}(x, \phi(x))]$ on the slow
manifold takes zero on GPS, the assumptions $(A2),$ $(A4)$ ensure that two eigenvalues
of $[h_{x}(x, \phi(x))]$ are negative in the fast vector field before GPS. They are maybe it
is meant negative, respectively positive after GPS. When each coefficient on GPS is
limitted, a local model shows a precise structure as an approximation of the original
system. Then, the property on GPS reflects directly the whole system. It can be
shown that the time scaled reduced system $(\epsilon=0)$ is an apprximated one with a
singular solution of the whole system $(\epsilon\neq 0)$ , because the corresponding solutions
are very close each other under the only two conditions. Therefore, we can cnclude
that there exists a duck solution.

Let $0\in GPS$ be saddle or node. When changing the variables correspond to
microscopes $(\alpha\simeq 0):x_{1}=\alpha^{p}u_{1},$ $x_{2}=\alpha^{q}u_{2},$ $y_{1}=\alpha^{r}v_{1},$ $y_{2}=\alpha^{s}v_{2},$ $p,$ $q,$ $r,$ $s\in N$ ,
the original system is reduced to the system with variables $u_{1},$ $u_{2},$ $v_{1},$ $v_{2}$ . Then
there exist local models which describe the 4-dimensional duck solutions.
Theorem3.2. If the system has a square-linear solution in a local model, for any
$p,$ $q,$ $r,$ $s\in N$ , there exist essentially two local models describing the explicit duck
solutions, .

(Proof)
In the case $p=2,$ $q=1,$ $r=2,$ $s=2$ , changing variables:

(3.1) $x_{1}=\alpha^{2}u_{1},$ $x_{2}=\alpha u_{2},$ $y_{1}=\alpha^{2}v_{1},$ $y_{2}=\alpha^{2}v_{2}$ ,

we reduce the system as well in (3.2) as well in (3.3).

$\epsilon du_{1}/dt=h_{1}(\alpha^{2}u_{1}, \alpha u_{2}, \alpha^{2}v_{1}, a^{2}v_{2}, \epsilon)/\alpha^{2}$ ,
$\epsilon du_{2}/dt=h_{2}(\alpha^{2}u_{1}, \alpha u_{2}, \alpha^{2}v_{1}, \alpha^{2}v_{2}, \epsilon)/\alpha$,

(3.2)
$dv_{1}/dt=f_{1}(\alpha^{2}u_{1}, \alpha u_{2}, \alpha^{2}v_{1}, \alpha^{2}v_{2}, \epsilon)/\alpha^{2}$ ,

$dv_{2}/dt=f_{2}(\alpha^{2}u_{1}, \alpha u_{2}, \alpha^{2}v_{1}, \alpha^{2}v_{2}, \epsilon)/\alpha^{2}$ .

Multiplying the right hand side of the system(3.2) by $\alpha^{2}$ ,

$(\epsilon/\alpha^{2})du_{1}/dt=h_{1}(\alpha^{2}u_{1}, \alpha u_{2}, \alpha^{2}v_{1}, \alpha^{2}v_{2}, \epsilon)/\alpha^{2}$

$(\epsilon/\alpha^{2})du_{2}/dt=h_{2}(\alpha^{2}u_{1}, \alpha u_{2}, \alpha^{2}v_{1}, \alpha^{2}v_{2}, \epsilon)/\alpha$ ,
(3.3)

$dv_{1}/dt=f_{1}(\alpha^{2}u_{1}, \alpha u_{2},\alpha^{2}v_{1}, \alpha^{2}v_{2}, \epsilon)$ ,
$dv_{2}/dt=f_{2}(\alpha^{2}u_{1}, \alpha u_{2},\alpha^{2}v_{1}, \alpha^{2}v_{2}, \epsilon)$ .

In fact, doing time scaling $t=\alpha^{2}\tau$ , then $dt=\alpha^{2}d\tau$ . It is easily shown that the
formula(3.3) is equivalent to (3.2).
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By using the assumptions $(A1)$ and $(A4)$ , we construct a local model under the
most simple conditions:

(1) $\partial h_{1}(0)/\partial x_{2}=0,$ $\partial h_{2}(0)/\partial x_{2}=0$ ,
(3.4)

(2) $f_{1}(0)\not\simeq 0,$ $f_{2}(0)\not\simeq 0$ .

Putting $\epsilon/\alpha^{2}$ infinit small to $\epsilon$ simply, the local model reduced from the system(l.l)
is obtained.

$\epsilon du_{1}/dt=Au_{1}+Bv_{1}+Cv_{2}+Du_{2}^{2}/2+O(\epsilon)$ ,
$\epsilon du_{2}/dt=Eu_{2}+O(\epsilon)$ ,

(3.5)
$dv_{1}/dt=f_{1}(0)+O(\epsilon)$ ,

$dv_{2}/dt=f_{2}(0)+O(\epsilon)$ ,

where $A=\partial h_{1}(0)/\partial x_{1},$ $B=\partial h_{1}(0)/\partial y_{1},$ $C=\partial h_{1}(0)/\partial y_{2},$ $D=\partial^{2}hJ(0)/\partial x_{2}^{2}$ ,
$E=\partial h_{2}(0)/\partial x_{2}$ .

Note that the conditions $A=\partial h_{1}(0)/\partial x_{1}<0$ and $E=\partial h_{2}(0)/\partial x_{2}=0$ imply
that $0\in GPS$ is saddle. See Definition3.3. The corresponding solutions in the local
model are as follows: when $\epsilon=0$ ,

$u_{1}=-(Bf_{1}(0)+Cf_{2}(0))t/A-Dt^{2}/(2A),$ $u_{2}=t$ ,(3.6)
$v_{1}=f_{1}(0)t,$ $v_{2}=f_{2}(0)t$ ,

when $\epsilon\neq 0$ ,

$u_{1}=-(Bf_{1}(0)+Cf_{2}(0))t/A-Dt^{2}/(2A)+O(\epsilon),$ $u_{2}=t+O(\epsilon)$ ,(3.7)
$v_{1}=f_{1}(0)t+O(\epsilon),$ $v_{2}=f_{2}(0)t+O(\epsilon)$ .

In the case $p=2,$ $q=1,$ $r=3,$ $s=2$ , changing variables:

(3.8) $x_{1}=\alpha^{2}u_{1},$ $x_{2}=\alpha u_{2},$ $y_{1}=\alpha^{2}v_{1},$ $y_{2}=\alpha^{2}v_{2}$ ,

we construct a local model under the conditions:

(1) $\partial h_{1}(0)/\partial x_{2}=0,$ $\partial h_{2}(0)/\partial x_{2}=0$ ,
(3.9)

(2) $f_{1}(0)=0,$ $f_{2}(0)\not\simeq 0$ .

The corresponding local model is

$\epsilon du_{1}/dt=Au_{1}+Bv_{2}+Cu_{2}^{2}/2+O(\epsilon)$ ,
$\epsilon du_{2}/dt=Du_{2}+O(\epsilon)$ ,

(3.10)
$dv_{1}/dt=Eu_{2}+O(\epsilon)$ ,
$dv_{2}/dt=f_{2}(0)+O(\epsilon))$

where $A=\partial h_{1}(0)/\partial x_{1},$ $B=\partial h_{1}(0)/\partial y_{2},$ $C=\partial^{2}h_{1}(0)/\partial x_{2}^{2},$ $D=\partial h_{2}(0)/\partial x_{2}$ ,
$E=\partial f_{1}(0)/\partial x_{2}$ .
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Notice that we assume again that $A<0$ and $D=0$ , because the fast vector field
has one zero eigenvalue and the other one is negative.. The corresponding solutions
in the local model are as follows: when $\epsilon=0$ ,

$u_{1}=-Bf_{2}(0)t/A-Ct^{2}/(2A),$ $u_{2}=t$ ,
(3.11)

$v_{1}=Et^{2}/2,$ $v_{2}=f_{2}(0)t$ ,

when $\epsilon\neq 0$ ,

$u_{1}=-Bf_{2}(0)t/A-Ct^{2}/(2A)+O(\epsilon),$ $u_{2}=t+O(\epsilon)$ ,
(3.12)

$v_{1}=Et^{2}/2+O(\epsilon),$ $v_{2}=f_{2}(0)i+O(\epsilon)$ .

In another case, it is impossible to get an explicit solution with a square-linear
one but a cubic-linear (or much higher order) one.

In this approach, an invertible affine transformation must be needed for a general
point $p\in GPS$ , because the conditions (3.4), (3.9) are assumed at only $0\in GPS$ .
These conditions may not be satisfied at the general pseudo singular point. We
have to change the coordinates from the point $p$ to $0$ . Notice that we do not know
if the corresponding affine transformation keeps the conditions(3.4). In many cases,
however, it is feasible.

Remark. It is easily to find that any solutions $(u_{1}, u_{2}, v_{1}, v_{2})$ at the same time
$t$ in (3.6) and (3.7) are very near. This fact implies that the time scaled reduced
system is an approximated one.
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