
Constant-Working-Space Algorithms

Tetsuo Asano
School of Information Science, JAIST, Japan

This talk presents a new direction of algorithms which do not use any extra
working array. More formally, our goal is to design efficient algorithms
which require no extra array of size depending on input size but use only
constant working storage cells (variables), each having $\log n$ bits. This paper
presents some new ideas for several problems related to binary image and
computational geometry in the above-stated framework.

1 Introduction

Recent progress in computer systems has provided programmers with unlimited amount
of working storage for their programs. Nowadays there are full of space-inefficient
programs which use too much storage and becomes too slow if sufficiently large storage
is not available. The author believes that there is high demand for space-efficient
algorithms.

Another requirement of limuited working storage comes from applications to built-in
or embedded software in intelligent hardware. Digital cameras and scanners are good
examples of intelligent hardware. We measure the space efficiency of an algorithm by
the number of working storage cells (or the amount of working space) used by the
algorithm. Ultimate efficiency is achieved when only constant number of variables are
used in addition to input array(s).

We call such an algorithxn a constant-working-space algorithm. Strictly speaking,
there are two types of such algorithms. One should be rather referred to as an in-place
algorithm. In this type of algorithms, input data are given by some constant number of
arrays. Those arrays can be used as working space although there must be some upper
limit on values to be stored in those arrays. Heap sort is a typical in-place algorithm.
Ordinary implementation of mergesort requires a working array of the same size as the
input array and thus it is not ui-place. Quicksort does not require any array, but it is
not in-place in the strict sense since its recursion depth depends on input size $(O(\log n)$

in average) which should be viewed as a part of the working space.
The other type of constant-working-space algorithms $satis\phi$ that condition in a

more strict sense. That is, it should not use any working space of size depending on
input size and an array storing input data is given as read-only memory so that any

数理解析研究所講究録
第 1641巻 2009年 38-44 38

value in the array caimot be changed. Constant-working-space algorithms for image
processing in [1, 2, 3] are in-place algorithms in this sense. The algorithm for image
scan with arbitrary angle [2] is a constant-working-space algorithm with input in read-
only memory. The same hamework has been studied in the complexity theory. A
typical problem is a so-called ”st-connectivity“ problem: given an undirected graph G

of n vertices in read-only memory and specified two arbitrary vertices s and t in G ,
determine whether they are connected or not using only constant number of variables
of $O(\log n)$ bits. Reingold [7] succeeded in proving that the problem can be solved in
polynoniial time. It is a great break-through in this direction.

In this paper we briefly describe constant-working space algorithms for several prob-
lems on binary images, and some open problems concerning computational geometry.

2 Simple Example

Here is a simple example which explains a constant-working-space algorithm. Suppose
we are given a linear array $a[]$ with n numbers, $a[1],$ $\ldots,a[n]$. Sum of consecutive
elements in an interval $[i,j]$ with $1\leq i\leq j\leq n$ is the sum of elements $a[i]$ through $a[i]$,
that is, $\sum_{k=i}^{J}a[i]$. Given such an array, find the largest sum of consecutive elements.
This is the problem addressed here.

Define another array by $s[i]= \sum_{k=1}^{i}a[k]$. Then, for any interval $[i,j]$ with $1\leq$

$i\leq j\leq n$, the corresponding sum is given by sb] $-s[i-1]$ since $a[i]+\cdots+a$ la$]=$
$(a[1]+\cdots+a\triangleright])-(a[i-1]+\cdots+ab])$. Since our objective here is to find the largest sum,
for each value of j we are only interested in an index i such that $[i]$ is smallest in the
interval $[1,j-1]$, which is sometimes called the left-turight minima. If we maintain
the left-to-right minima for each index $j=2,3,$ \ldots,n , we can find in constant time
the index i in the interval $[1, j-1]$ that minimizes $s[i]$. Thus, we have a linear-time
algorithm.

The linear algorithm uses a working array of size n . Is it possible to implement the
same idea without using any extra array? The answer is yes. A key observation is that
we do not need all the values in the array $a[]$ but just one value that is smallest so far.
In each iteration of the loop for $j=2,$ \ldots , n , we compute the sum $a[1]+\cdots+aU]$ using
the sum in the previous iteration and then if it is smaller than the previous minim
then we update the minima. It is done in constant time and hence the running timme
remains linear. Note that we have used no extra array and $aJ\infty$ that we have never
changed any value in the array. The input array was treated as a read-only array.

In this example, we had a linear-time algorithm under the constraint that the
number of variables allowed is a constant. i.e., the size of the working space is a constant
(or $O(\log n)$ bits) and an input array should be treated as a read-only array. As will
be described later, the median-finding problem is also solved in linear time using $O(n)$

working space, but no linear-time algorithm is known if only constant $work\dot{u}lg$ space is
allowed. Is there any essential difference between the two problem$s^{}$ It is $sti\mathbb{I}$ open.

39

3 Known Results

In this section we introduce three major results in this hamework.

Median Finding: Given a read-only array of n numbers, find their median using
constant working space. A constant-working space algorithm is known for this
problem which runs in $O(n^{1+\epsilon})$ time for any small constant $\epsilon>0$ although it
needs working space $O(1/\epsilon)$. This is a results by Munro and Raman in 1996 [6].

st-connectivity in graph: Given an undirected graph using a read-only array, deter-
mine whether two arbitrarily given vertices belong to the same connected com-
ponent. Reingold [7] finally solved the long-standing open problem by giving a
polynomial-time algorithm for this problem in 2005.

st-connectivity in binary image: Given a read-only array of a binary image, de-
termine whether two arbitrarily specified pixels of the same value belong to the
same connected component. This problem is quite similar to the st-connectivity
in graph, but it is much simpler in the sense that the corresponding graph is 2-
regular. A simple but efficient algorithm was given by Malgouyresa and Moreb [5]
in 2002.

4 Median Finding

Median finding is one of the most fundamental problems in algorithms. It is well known
that the median among n numbers can be computed in linear time [4]. In 1996, Mumo
and Raman [6] designed an almost linear-time algorithm using a constant amount of
working space. More precisely, their algorithm runs in $O(n^{1+\epsilon})$ time for any small
constant $\epsilon>0$ using working space $O(1/\epsilon)$.

What happens if we can use $O(\sqrt{n})$ working space? We can design an $O(n\log n)$

time algorithm in this case. First, we partition an array into \sqrt{n} blocks $B_{1},B_{2},$
$\ldots,$ $B_{\sqrt{n}}$

each contains $O(\int n\urcorner$ elements. In each block we apply the linear-tine algorithm [4]
to find a block median. We store \sqrt{n} block medians in a working array and then find
their median m_{1} again using the same algorithm. Then, we compute the rank of m_{1}

by counting the number of elements smaller than m_{1} while scanning the entire input
array. If the rank is greater $n/2$ then all the elements greater than $m1$ can be discarded
from further search. Otherwise, we discard all the elements smaller than m_{1} . Since m_{1}

is the median of block medians, the number of discarded elements is at least $n/4$. We
apply the same algorithm to the $re\ovalbox{\tt\small REJECT}$ elements. Then, aeain we can discard at
least quarter of the $rema\ddot{m}ng$ elements. Thus, after $\log n$ iteration we can locate the
median. The $\ovalbox{\tt\small REJECT}$ time of the algorithm is $O(n\log n)$ since each iteration is done in
$O(n)$ time and the number of iteration is $O(\log n)$.

It is not known whether there is a lmear-time algorithm for median finding using
only constant working space.

40

5 Some Problems on Binary Images
We start with the st-connectivity problem in a binary image listed above. Figure 1
shows an example of a binary image with each pixel having a value 0 or 1. There is a
natural definition of a connected components of pixels valued 1, i.e., two pixels of value
1 are said to be connected if there is any sequence of pixels of value 1 interconnecting
the two pixels in such a way that any two consecutive pixels in the sequence are hor-
izontally or vertically adjacent. A $\max\dot{u}$nal subset of mutually connected pixels forms
a connected components.

Figure 1: An example of a binary image containing two connected components of pixels
valued 1. Extemal boundaries are oriented in a counter-clockwise way while internal
ones clockwisely ordered.

The first and most fumdamental question is to ask whether two arbitrarily given
pixels belong to the same connected component. It is rather easy to answer this question
if sufficient working space is available. However, it is not trivial whether we can answer
it in polynomial-time or not in the constant working space model with read-only arrays.
Fortunately, Malgouyresa and Moreb [5] gave a polynomial-time algorithm. The idea is
to define a canonical edge on each boundary. When we assume each boundary between
0 and 1 pixels is oriented so that ‘1’ pixel always lies to its left, any external boundary
of a connected component is oriented in a counter-clockwise order and any internal
boundary is ordered clockwisely. Now, a canonical edge on a boundary is defined as
an edge on the boundary which is lexicographically smallest in its y and x coordinates.
With this convention, we are ready to describe the algorithm by Malgouyresa and
Moreb [5].

Given a 1’ pixel s , we keep walking horizontally to the left until we encounter a
0 ’ pixel. Then, we follow the boundary from the edge until we return to the original
place. Once we follow the boundary, we check whether it is external or internal. If it is
external one, then we are done. Otherwise, we find its canonical edge and then again
keep walking horizontally to the left until the first 0 ’ pixel. After visiting some number
of internal boundaries, we eventually arrive at an edge on an external boundary. Now,
we associate the pixel s with the canonical edge of the external boundary. We repeat
the same process for the other pixel t . The two pixels s and t belong to the same

41

component only if they are associated with the same canonical edge.
Note that we can follow a boundary following a local rule arid also it is easily

seen that constant number of $\backslash ariablae$ are enough to deternune the orientation of a
boundary. Thus, the algorithm runs in $O(n)$ time for a binary image of n pixels.

Based on the idea behind the algorithm we can solve the following problems using
only constant working space.

Connected Components Counting: Given a binary image, count the number of
connected components of white pixels (of value 1) under $4arrow$ or&connectivity.

Computing Level of Component: A level of a connected component C_{i} is the num-
ber of connected components that enclose C_{i} . In a similar way we can define a
level of a boundary B_{j} (internal or external) by the number of boundaries that
enclose B_{j} .

Lowest Common Ancestor: Given two pixels of value 1, the problem is to find a
connected component which is the lowest common ancestor in the corresponding
inclusion tree.

6 Some Open Problems

A considerable amount of works have been done in the complexity theory under the
name of LogSpace. It seems like that their interest is in deciding whether a given
problem belong to lw space or not, in other words, whether there is a polynomial-
time algorithni for solving it using only working space of $O(\log n)$ bits. In this sense
the median finding problem described earlier obviously belongs to $l\eta$ space since a
naive algorithm runs in quadratic time. The author is interested in how fast we can
implement such polynomial-time algorithms using constant working space with $O(\log n)$

bits in total. So, the median finding algorithm by Mumo and Raman [6] is one typical
example.

The following problems also belong to $l\eta$ space, but no subquadratic algorithm is
known:

Min-gap: Given a read-only array of n numbers, find the minimum gap, which is the
smallest difference between two consecutive numbers in their sorted order.

Max-gap: Given a read-only array of n numbers, find the maximum gap, which is the
largest difference between two consecutive numbers in their sorted order.

Element Uniqueness Given a read-only array of n numbers, determine whether any
two of them are equal or not.

Related geometric problems are as folTows:

42

Diameter: Given a read-only array of n points in the plane, find a farthest pair of
points.

Minimum Enclosing Circle: Given a read-only array of n points in the plane, find
a circle of the smallest possible radius such that it encloses all given points in its
interior and its center lies in the convex hull of those given points.

7 Conclusions and Future Works

In this paper we have proposed a new framework characterized by constant working
space and read-only arrays. In the complexity theory this hamework has been studied in
a different name, i.e., log-space. Because of these constraints we have only polynomial-
time algorithms. It is a main concern in the complexity theory whether a problem
belongs to the class or not, in other words, whether there is any polynomial-time
algorithm for a give problem or not. We are interested in how fast we can solve such a
problem. This is one distinction.

8 Acknowledgement

Recently I have started to work on constant-working-space algorithms. This article
refers to ongoing projects jointly with many researchers. Sinoe there are too many of
them, I have omitted their names from the authors. I would like to express my sincere
gratitude to Sergey Bereg (Univ. of Ttixas at Dallas), Lilian Buzer (Univ. of Pairs,
Est), Danny Chen (Notre Dame Uiiiv.), Siu-Wing Cheng (Hong Kong UST), Otfried
Cheong (KAIST), Alon Efrat (Univ. of Arizona), Xavier Goaoc (INRIA, Nancy),
David Kirkpatrick (UBC), Masashi Kiyomi (JAIST), Jack Snoeyink (Univ. of North
Carolina), and Hiroshi Tanaka (JAIST).

References
[1] T. Asano, S. Bitou, M. Motoki and N. Usui, “In-place algorithm for image $rota_{r}$

tion,” Proc. ISAAC 2007, pp.704-715, Sendai, Dec. 2007.

[2] T. Asano, “Constant-working-space image scan with a given angle,” Proc. 24th
European Workshop on Computational Geometry, pp. 99-102, March 2008.

[3] T. Asano and H. Tanaka, “Constant-Working-Space Algorithm for Connected
Component Labeling,” Technical Report $COMP-2(n\ 01$ of IEICE of Japan, 2008.

[4] M. Blum, R.W. Floyd, V. Pratt, R. Rivest and R. Tbrjan, “Time bounds for
selection,” J. Comput. System Sci., 7, pp.448-461, 1973.

43

[5] R. $Malgouyraea_{f}$ M. Moreb, “On the computational complexity of reachability in
2D binary images and some basic problems of 2D digital topology,” Theoretical
Computer Science 283, pp.67-108, 2002.

[6] J. I. Munro and V. Raman, “Selection from read-only memory and sorting with
minimum data movement,” Theoretical Computer Science 165, pp.311-323, 1996.

[7] Omer Reingold, “Undirected st-connectivity in log-space,” Proc. ACM Symp. on
Theory of Computing, pp.376-385, 2005.

44

