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1. INTRODUCTION

For a given convex body, find a “small” wall hole through which the
convex body can pass. This type of problems goes back to Zindler [14] in
1920, who considered a convex polytope which can pass through a fairly
small circular holes. A related topic known as Prince Rupert’s problem can
be found in [2]. Here we concentrate on the case when the convex body is
a regular tetrahedron or a regular n-simplex.

For a compact convex body $K\subset \mathbb{R}^{n}$ . let diam$(K)$ and width$(K)$ denote the
diameter and width of $K$, respectively. For $d>0$ let $dK$ denote the convex
body with diameter $d$ and homothetic to $K$ . Let $S_{n},$ $Q_{n}$ , and $B_{n}$ denote
the n-dimensional regular simplex, the n-dimensional hypercube, and the
n-dimensional ball, respectively. Thus, $1S_{n}$ has side length 1, 1 $Q_{n}$ has side
length $1/\sqrt{n}$, and 1 $B_{n}$ has radius 1/2.

Let $H\subset \mathbb{R}^{n-1}$ be a convex body, which we will call a hole. Let $\Pi$ be
the hyperplane containing $H$, which divides $\mathbb{R}^{n}$ into $\Pi$ and two (open) half
spaces $\Pi^{+}$ and $\Pi^{-}$ . We want to push $1S_{n}$ ffom $\Pi^{+}$ to $\Pi^{-}$ through $H$. In
this situation, we are interested in two types of “small” holes, namely,

$\gamma(n,H)$ $:= \min${ $d:1S_{n}$ can pass through the hole of $dH$ in $\mathbb{R}^{n}$ },

and
$\Gamma(n,H):=\min\{d:1S_{n}\subset(dH)\cross \mathbb{R}\}$ .

Notice that $\gamma(n,H)$ and $\Gamma(n,H)$ do not depend on diam$(H)$ . For given $H$, we
resize $H$ so that $1S_{n}$ can pass through the hole $H$. We will try to find a hole
homethetic to $K$ with minimum diameter, which will give $\gamma$ or $\Gamma$ . (Recall
that $dH$ is homothetic to $H$ and diam$(dH)=d.)$ By definition, $1S_{n}$ can pass
through a hole $H$ by translation perpendicular to the hyperplane containing
the hole iff diam$(H)\geq\Gamma(n,H)$ . Thus we have $\gamma(n,H)\leq\Gamma(n,H)$ .

We have width$(1Q_{n})=1/\sqrt{n}$ and width$($ 1 $B_{n})=1$ . Steinhagen [12] de-
termined the width of $S_{n}$ as follows.

width $(1S_{n})=\{\begin{array}{ll}\sqrt{\frac{2}{n+1}} if n is odd,\sqrt{\frac{2n+2}{n(n+2)}} if n is even.\end{array}$ (1)

If $1S_{n}$ can pass through a hole $dH$ by translation, then

width(dH) $\geq$ width$(1S_{n})=(\sqrt{2}-o(1))/\sqrt{n}$. (2)

Let $n\geq 3$ . If $1S_{n}$ can pass through a hole $dH$, then $d\geq$ width$(1S_{2})=\sqrt{3}/2$ .
This gives $\gamma(n,H)\geq\sqrt{3}/2$ .
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Brandenberg and Theobald [1] proved the following.

$\Gamma(n,B_{n-1})=\{\begin{array}{ll}\sqrt{\frac{2(n-1)}{n+1}} if n is odd,\frac{2n-1}{\sqrt{2n(li+1)}} ifn is even.\end{array}$ (3)

2. IN THE 3-SPACE
Itoh, Tanoue, and Zamfirescu [6] proved

$\gamma(3,Q_{2})=\Gamma(3,Q_{2})=1$ , $\gamma(3,B_{2})=2r=0.8956\ldots$ , (4)

where $r\in(O, 1)$ is a unique root of the equation $216x^{6}-9x^{4}+38x^{2}-9=0$ .
We note that $\gamma(3,B_{2})<\Gamma(3,B_{2})=1$ .

In [9], the following is proved.

$\gamma(3,S_{2})=\Gamma(3,S_{2})=\frac{1+\sqrt{2}}{\sqrt{6}}=0.9855\ldots$

Zamfirescu [13] proved that most convex bodies can be held by a circular
ffame. Using (4), one can show that a square ffame of diagonal length $d$

can hold $1S_{3}$ iff $1/\sqrt{2}<d<1$ , and a circular Rame ofdiameter $d$ can hold
$1S_{3}$ iff $1/\sqrt{2}<d<\gamma(3,B_{2})$ , see [6].

On the other hand, it is shown in [9] that

no triangular ffame can hold a convex body. (5)

This is a special property for triangular ffames, and in fact, we have the
following.

Theorem 1. [9] Every non-triangularfi $ame$ holds some tetrahedron in $\mathbb{R}^{3}$ .

Debrumer and Mani-Levitska [3] proved that any section ofa right cylin-
der by a plane contains a congruent copy of the base, see also [7]. This
together with (5) implies the following: if a convex body, not necessarily
smooth, can pass through a triangular hole, then the convex body can pass
through the hole by translation perpendicular to the wall, see [9].

Itoh and Zamfirescu [5] found a hole $H\subset \mathbb{R}^{2}$ with diam$(H)=$ width $($ 1 $S_{2})=$

$\sqrt{3}/2$ and width$(H)=$ width$(1S_{3})=\sqrt{2}/2$ , such that $1S_{3}$ can pass through
$H$.

3. HIGHER DIMENSIONS

3. 1. The hole $S_{n-1}$ . Recall that any plane section ofa right triangular prism
contains a congment copy of a base of the prism [3, 7]. The situation in
higher dimension is different. In [3], it is proved that if $n>3$ , then for any
right cylinder with convex polytope base, one can find a hyperplane section
which does not contain a congruent copy ofthe base. Nevertheless, we have
the following.
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Theorem 2. [9] Let $K\subset \mathbb{R}^{n}$ be a compact convex body, and let $\Delta_{n-1}$ be a
general $(n-1)$ -simplex. $IfK$ can pass through the hole $\Delta_{n-1}$ , then this can
be done by transtation only.

Problem 1. Is itpossible to take the translotion in Theorem 2perpendicular
to the wall? Or equivalently, do $\gamma(n,S_{n-1})$ and $\Gamma(n,S_{n-1})$ coincide?

Theorem 3.

$\gamma(n,S_{n-1})\geq\{\begin{array}{ll}\sqrt{1-\frac{1}{n}} ifn is odd,\sqrt{1-\frac{1}{n+2}} ifn is even.\end{array}$

Proof Suppose that $1S_{n}$ can pass through the hole of $dS_{n-1}$ . By Theorem 2,
this can be done by translation only. Thus we can apply (2) with (1), which
implies the desired inequality. a

The above result together with $\gamma(n,S_{n-1})\leq\Gamma(n,S_{n-1})\leq 1$ gives

$\lim_{narrow\infty}\gamma(n,S_{n-1})=\lim_{narrow\infty}\Gamma(n,S_{n-1})=1$ .

If the simplex does pass through a hole, then in particular the volume of
some central hyperplane section of that simplex is no bigger than the vol-
ume ofthe hole. After the RIMS workshop, Ji\v{r}\’i Matou\S ek suggested show-
ing $\gamma(n,S_{n-1})arrow 1$ by using this simple observation. He also told us the
information ffom Keith Ball: it is conjectured that the smallest central hy-
perplane section of $S_{n}$ is obtained by a hyperplane parallel to a facet of the
simplex. According to Keith Ball’s suggestion, we asked Matthieu Fradelizi
about the volume of central slices of a simplex. Then, Fradelizi told us that
a result in [4] implies that the volume of the smallest central hyperplane
section of $S_{n}$ is more than vo$1(S_{n-1})/(2\sqrt{3})$ , and this is enough for proving
$\gamma(n,S_{n-1})arrow 1$ .

Since the diameter of circumsphere of $1S_{n}$ is $\sqrt{2(n-1)}/n$, we have

$\Gamma(n,S_{n-1})\sqrt{\frac{2(n-1)}{n}}\geq\Gamma(n,B_{n-1})$ .

This together with (3) implies

$\Gamma(n,S_{n-1})\geq\sqrt{1-\frac{1}{n+1}}$

for $n$ odd. (For $n$ even, Theorem 3 gives a better lower bound for $\Gamma(n,S_{n-1}).$)

Actually $S_{n}$ can pass through a hole smaller than its facet.

Theorem 4. $\Gamma(n,S_{n-1})<1$ for all $n\geq 2$ .

Let us try the case $n=3$ to get a feel. Let $S_{2}=A_{0}A_{1}A_{2},A_{0}=(0,1/2),A_{1}=$

$(0, -1/2),A_{2}=(\sqrt{3}/2,0)$ , and let $\mathcal{P}$ be the right triangular prism with base
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$A_{0}A_{1}A_{2}$ . We put the unit regular tetrahedron $S_{3}=B_{0}B_{1}B_{2}B_{3}$ in the prism,
namely, we set

$B_{0}=\{0,1/2,0),B_{1}=(0, -1/2,0),B_{2}=(1/\sqrt{2},0,1/2),B_{3}=(1/\sqrt{2},0, -1/2)$.

Now we move the tetrahedron very slightly keeping it inside $\mathcal{P}$ so that all
vertices are offthe faces of $\mathcal{P}$ . This can be done by rotating the tetrahedron
along the x-axis, and push it in the direction ofx-axis. This gives $\Gamma(3,S_{2})<$

1.

3.2. The hole $Q_{n-1}$ . In [8] the following is proved: for every $\epsilon>0$ there
is an $N$ such that for every $n>N$ one has

$1S_{n}\subset(2+\epsilon)Q_{n}$ .
This gives

$\lim_{narrow\infty}\Gamma(n,Q_{n-1})\leq 2$ .

Clearly we have $\Gamma(n,Q_{n-1})\geq\Gamma(n,B_{n-1})$ , and we get a lower bound
for $\Gamma(n,Q_{n-1})$ ffom (3). Here we include a simple proof of the following
slightly weaker bound.

Theorem 5. We have

$\Gamma(n, Q_{n-1})\geq\sqrt{\frac{2(n-1)}{n+1}}$ , (6)

with equality holding iffthere exists an Hadamard matrix oforder $n+1$ .

Proof Let $d=\Gamma(n,Q_{n-1})$ . Then $1S_{n}$ can pass through a hole of $dQ_{n-1}$ by
translation. So (2) and (1) imply

width$(dQ_{n-1})= \frac{d}{\sqrt{n-1}}\geq$ width $($ 1 $S_{n})\geq\sqrt{\frac{2}{n+1}}$ ,

which gives (6). Moreover, if $1S_{n}\subset\ell Q_{n}$ , then we have

$\ell\geq\frac{\sqrt{n}}{\sqrt{n-1}}\Gamma(n,Q_{n-1})\geq\sqrt{\frac{2n}{n+1}}$ .

It is known that $\ell=\sqrt{(2n)}/(n+1)$ iffthere exists an Hadamard mabix of
order $n+1$ , see e.g., [11]. $\square$

Problem 2.
$\gamma(n,Q_{n-1})=\Gamma(n,Q_{n-1})=\sqrt{2}-o(1)$?
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3.3. The hole $B_{n-1}$ . We have $\Gamma(n,B_{n-1})arrow\sqrt{2}$ by (3). On the other hand,
the following result shows $\gamma(n,B_{n-1})arrow 3/(2\sqrt{2})$ . Namely, “rotation” does
help for escaping ffom the ball hole.

Theorem 6. [10]
(i) For $n$ even,

$\gamma(n,B_{n-1})=\frac{3}{2\sqrt{2}}(1+\frac{1}{n})^{-1/2}=\frac{3}{2\sqrt{2}}(1-\frac{1}{2n}+\frac{3}{8n^{2}}-\frac{5}{16n^{3}}+O(n^{-4}))$ .

(ii) Let $r^{2}$ be a unique real root ofthe cubic equation
$8(n+1)n^{3}X^{3}+a2X^{2}+a_{1}X+a0=0$ ,

where
$a_{0}$ $=$ $-(9/256)(n^{2}-1)^{2}(n^{4}-4n^{3}+2n^{2}+4n+13)$ ,

$a1$ $=$ (1/16) $(n^{2}-1)(2n^{6}-6n^{5}-15n^{4}+38n^{3}+42n^{2}+48n-29)$ ,

$a2$ $=$ (1/4) $(8n^{6}-8n^{5}-41n^{4}-28n^{3}-10n^{2}+36n+27)$ .
Then, for $n$ odd,

$\gamma(n,B_{n-1})=2r=\frac{3}{2\sqrt{2}}(1-\frac{1}{2n}+\frac{3}{8n^{2}}-\frac{13}{16n^{3}}+O(n^{-4}))$ .

3.4. Hole having minimum volume. In [5], the following problem is posed.

Problem 3. Find the minimum $(n-1)$ -dimensional volume ofa compact
hole in a hyperplane of$\mathbb{R}^{n}$ such that $1S_{n}$ can pass thrvugh it.

The following variation seems to be easier.

Problem 4. Find the minimum $(n-1)$-dimensional volume of a compact
hole in a hyperplane of$\mathbb{R}^{n}$ such that $1S_{n}$ can pass through it by anslation
perpendicular to the hyperplane.

We list possible candidates. Put $\sqrt{2}S_{n}$ in $\mathbb{R}^{n+1}$ so that the vertices are
$e_{1},$ $\ldots,e_{n+1}$ , where $e_{i}$ is the i-th standard base of $\mathbb{R}^{n+1}$ .

Project the $\sqrt{2}S_{n}$ in the direction of

$(1, -1,\hat{0^{n-1},0})$
.

Then the hole created by the shadow has volume

$\frac{1}{(n-1)!}\sqrt{\frac{n+1}{2}}$ . (7)

Next suppose that $n$ is odd and write $n=2k+1$ . Project the $\sqrt{2}S_{n}$ in the
direction of
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Then the corresponding hole has volume
$\underline{2}$

$(n-1)!$
. (8)

$\frac{2}{(n-1)!}\sqrt{\frac{n}{n+2}}$. (9)

Among the above examples, the smallest one is (7) for $n\leq 5$ . For $n=7,$ $(7)$

and (8) coincide. For the other cases, (8) and (9) give the smallest one.
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