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Convex bodies passing through holes
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1. INTRODUCTION

For a given convex body, find a “small” wall hole through which the
convex body can pass. This type of problems goes back to Zindler [14] in
1920, who considered a convex polytope which can pass through a fairly
small circular holes. A related topic known as Prince Rupert’s problem can
be found in [2]. Here we concentrate on the case when the convex body is
a regular tetrahedron or a regular n-simplex.

For a compact convex body K C R”, let diam(K) and width(K') denote the
diameter and width of K, respectively. For d > 0 let dK denote the convex
body with diameter d and homothetic to K. Let S,, On, and B, denote
the n-dimensional regular simplex, the n-dimensional hypercube, and the
n-dimensional ball, respectively. Thus, 1S, has side length 1, 10, has side
length 1/+/n, and 1B,, has radius 1/2.

Let H ¢ R”! be a convex body, which we will call a hole. Let IT be
the hyperplane containing H, which divides R” into IT and two (open) half
spaces IT" and I1~. We want to push 1S, from IT* to I1~ through H. In
this situation, we are interested in two types of “small” holes, namely,

y(n,H) := min{d : 1S, can pass through the hole of dH in R"},
and
I'(n,H) :=min{d : 1S, C (dH) x R}.

Notice that y(n,H) and I'(n, H) do not depend on diam(#). For given H, we
resize H so that 1S, can pass through the hole H. We will try to find a hole
homethetic to X with minimum diameter, which will give y or I'. (Recall
that dH is homothetic to H and diam(dH) = d.) By definition, 1S, can pass
through a hole H by translation perpendicular to the hyperplane containing
the hole iff diam(H) > I'(n,H). Thus we have y(n,H) < I'(n, H).

We have width(1Q,) = 1/+/n and width(1B,) = 1. Steinhagen [12] de-
termined the width of S,, as follows.

i (15,) = { 2. ifnisodd, "
\/:27% if n is even.
If 1S, can pass through a hole dH by translation, then
width(dH) > width(1S,) = (V2 —0(1))/v/n. ()

Let n > 3. If 1S, can pass through a hole dH, then d > width(153) = v/3/2.
This gives y(n, H) > v/3/2.
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Brandenberg and Theobald [1] proved the following.

: 2n—1) if n is odd
1 ’
(n, Bpy) = Z”Hjl if n is even )
;;Zn(tH—l) '

2. IN THE 3-SPACE

Itoh, Tanoue, and Zamfirescu [6] proved
7(3’ QZ) = r(33Q2) =1, Y(3aBZ) = 2r = 0.8956..., 4
where r € (0,1) is a unique root of the equation 216x6 — 9x* +38x2 — 9 = 0.

We note that ¥(3,B;) < I'(3,B;) = 1.
In [9], the following is proved.

1+2
V6

Zamfirescu [13] proved that most convex bodies can be held by a circular
frame. Using (4), one can show that a square frame of diagonal length d
can hold 183 iff 1/v/2 < d < 1, and a circular frame of diameter d can hold
183 iff 1/v2 < d < ¥(3,B,), see [6].

On the other hand, it is shown in [9] that

¥(3,82) =T(3,8;) = = (.9855...

no triangular frame can hold a convex body. &)

This is a special property for triangular frames, and in fact, we have the
following.

Theorem 1. [9] Every non-triangular frame holds some tetrahedron in R3.

Debrunner and Mani-Levitska [3] proved that any section of a right cylin-
der by a plane contains a congruent copy of the base, see also [7]. This
together with (5) implies the following: if a convex body, not necessarily
smooth, can pass through a triangular hole, then the convex body can pass
through the hole by translation perpendicular to the wall, see [9].

Itoh and Zamfirescu [5] found a hole H C R? with diam(H) = width(153) =
v/3/2 and width(H) = width(1S3) = v/2/2, such that 153 can pass through
H.

3. HIGHER DIMENSIONS

3.1. Thehole S,,_;. Recall that any plane section of a right triangular prism
contains a congruent copy of a base of the prism [3, 7]. The situation in
higher dimension is different. In [3], it is proved that if » > 3, then for any
right cylinder with convex polytope base, one can find a hyperplane section
which does not contain a congruent copy of the base. Nevertheless, we have
the following.
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Theorem 2. [9] Let K C R” be a compact convex body, and let A,_\ be a

general (n— 1)-simplex. If K can pass through the hole A,_, then this can
be done by translation only.

Problem 1. Is it possible to take the translation in Theorem 2 perpendicular
to the wall? Or equivalently, do y(n,S,—1) and T'(n,S,_1) coincide?

Theorem 3.
1-1 ifnisodd,

1 . .
11— 15 ifniseven.

Y(nv Sn._]) 2

Proof. Suppose that 1S, can pass through the hole of dS,,_;. By Theorem 2,
this can be done by translation only. Thus we can apply (2) with (1), which
implies the desired inequality. O

The above result together with y(n,S,—1) < I'(n,S,—1) < 1 gives
lim ¥(n,Sp—1) = lim [(n,Sp-1) = 1.

If the simplex does pass through a hole, then in particular the volume of
some central hyperplane section of that simplex is no bigger than the vol-
ume of the hole. After the RIMS workshop, Jifi Matousek suggested show-
ing y(n,S,_1) — 1 by using this simple observation. He also told us the
information from Keith Ball: it is conjectured that the smallest central hy-
perplane section of S, is obtained by a hyperplane parallel to a facet of the
simplex. According to Keith Ball’s suggestion, we asked Matthieu Fradelizi
about the volume of central slices of a simplex. Then, Fradelizi told us that
a result in [4] implies that the volume of the smallest central hyperplane
section of S, is more than vol(S,_;)/(2v/3), and this is enough for proving
'y(n, Sn—l) — 1.
Since the diameter of circumsphere of 1S, is /2(n — 1) /n, we have

T(n,Sp-1)y/ 222 > T'(n,B,_1).

n =

This together with (3) implies

T(n,5,-1) = 1/1— 555

for n odd. (For n even, Theorem 3 gives a better lower bound for I'(n, S,—1 ).)
Actually S,, can pass through a hole smaller than its facet.

Theorem 4. I'(n,S,—1) < 1 foralln> 2.

Let us try the case n = 3 to get a feel. Let S, = dod 142,49 =(0,1/2),4, =
(0,—1/2),42 = (+/3/2,0), and let 2 be the right triangular prism with base
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AoA14,. We put the unit regular tetrahedron S3 = ByB, B, B3 in the prism,
namely, we set

BO = (Oa 1/270)331 = (0’—'1/270)’82 = (1/\/5’07 1/2)$B3 = (1/\/5707—1/2)

Now we move the tetrahedron very slightly keeping it inside &2 so that all
vertices are off the faces of 4. This can be done by rotating the tetrahedron
along the x-axis, and push it in the direction of x-axis. This gives I'(3,5,) <
1.

3.2. The hole O, ;. In [8] the following is proved: for every € > O there
is an N such that for every n > N one has

1S, C (2+£)Qn
This gives
’}lm F(n,Qn_.]) <2
Clearly we have I'(n,Q,—) > I'(n,B,_1), and we get a lower bound

for I'(n,Q,—1) from (3). Here we include a simple proof of the following
slightly weaker bound.

Theorem 5. We have

2(n—1)
n+1 "’
with equality holding iff there exists an Hadamard matrix of order n+ 1.

r(n’ Qn— l) >

(6)

Proof. Letd =T(n,Q,-1). Then 1S, can pass through a hole of dQ,_| by
translation. So (2) and (1) imply

, d 2
. - . >. ]2
which gives (6). Moreover, if 1S, C £Q,, then we have
vn 2n
-1) > .
£2 XT(n,051) 2/ 225

It is known that £ = 1/(2n)/(n+ 1) iff there exists an Hadamard matrix of
order n+ 1, see e.g., [11]. O

Problem 2.
Y(n,Qn-1) =T(n,Qn_1) = V2—0(1)?
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3.3. The hole B,,_;. We have I'(n,B,,_;) — /2 by (3). On the other hand,
the following result shows y(n,B,_) — 3/(2v/2). Namely, “rotation” does
help for escaping from the ball hole.

Theorem 6. [10]

(1) For n even,

3 1NV 3 1 3 5
Bp_1)=—>={1+- =——(l—-—+ =5 —— ).
¥(Bn-1) 2\/5( +n> 2ﬁ( n 82 16 +0(n™)
(i) Let r* be a unique real root of the cubic equation
8(n+ 1)’ X3 + axX? + a1 X +ap =0,

where
ag = —(9/256)(n*—1)*(n* —an® +2n* +4n+13),
ar = (1/16)(n* —1)(2n® —6n° — 15n* +38n> +42n* +48n—29),

a; = (1/4)(8n% —8n° —41n* —28n% — 10n* +36n+27).
Then, for n odd,

__3_.., (1 - _:?_. - _i +

22 812 16n3

3.4. Hole having minimum volume. In [5}, the following problem is posed.

Y(1,Bp1) = 2r = oot o).

Problem 3. Find the minimum (n — 1)-dimensional volume of a compact
hole in a hyperplane of R" such that 1Sy, can pass through it. '

The following variation seems to be easier.

Problem 4. Find the minimum (n — 1)-dimensional volume of a compact
" hole in a hyperplane of R" such that 1S, can pass through it by translation
perpendicular to the hyperplane.

We list possible candidates. Put V28, in R**! so that the vertices are
e1,...,ens1, Where e; is the i-th standard base of R"*1.
Project the v/2S), in the direction of

n—1

(1,-1,0,...,0).

Then the hole created by the shadow has volume

1 [n+1
(n—1)! 2 ™

Next suppose that 7 is odd and write n = 2k + 1. Project the V28, in the

direction of
k+1 k+1
(1,...,1,=1,...,—1).




Then the corresponding hole has volume

2
(n—1)1" ®)

Finally suppose that » is even and write n = 2k. Project the V25, in the
direction of . .
+1

(k+1,....k+1,k,...,—k).
In this case, the volume of the hole is

2 n
(n—l)!\/n+2' . ©)

Among the above examples, the smallest one is (7) for n < 5. Forn =7, @)
and (8) coincide. For the other cases, (8) and (9) give the smallest one.
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