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Abstract
Meshing a surface means approximating it by a polygonal surface with triangu-

lar faces. We outline the recent progress on providing theoretical guarantees and
meshing more complex types of surfaces. We also discuss some future research
problem.

1 Introduction
Meshing a surface means approximating it with a polygonal surface with triangular faces.
It is a ubiquitous task in geometric applications such as rendering, numerical simulation,
and computer aided design. It is a challenging problem because of the numerical, topo-
logical. and geometrical issues involved. First, one has to sample points on the input
surface which serve as the mesh vertices. Second, one has to connect the mesh vertices
to produce the correct topology and desired geometry. The first step of sampling points
inevitably requires solving some systems of equations (involving the equation of the in-
put surface). Solving systems of equations is by itself a big research topic and so we will
assume this capability for a system of equations of constant size throughout this article.
Still, one has to formulate the right systems of equations to be solved. Our focus is on
the second issue of producing the correct topology and desired geometry. We concen-
trate on algorithms following the Delaunay refinement paradigm, which has been recently
shown to work for piecewise smooth complexes as well. If a smooth closed surface is to
be meshed, alternatives are known including cube-based algorithms [10, 13, 12], a sweep
algorithm for algebraic surfaces [11], and algorithms using Morse Theory [1, 14].

We first introduce two Delaunay refinement algorithms for meshing a smooth closed
surface, one by Boissonnat and Oudot [2] and one by Cheng et al. [6]. Then, we sketch
the extension by Cheng, Dev, and Ramos [5] to mesh a piecewise smooth complex. If nec-
essary, Delaunay refinement can be repeated for the algorithms above to obtain triangles
of bounded aspect ratio. We conclude with some discussions and open problems.

2 Smooth closed surface
Let $\Sigma\subset R^{3}$ be a smooth compact surface without boundary. Without loss of generality,
assume that $\Sigma$ is connected. Let $n(x)$ denote the outward unit normal of $\Sigma$ at a point

“Department of Computer Science and Engineering, HKUST, Clear Water Bay, Hong Kong,
schengQcse. ust. hk

数理解析研究所講究録
第 1641巻 2009年 125-134 125



$x\in\Sigma$ . Given a set of points $S$ on $\Sigma$ , let Del $S$ denote the Delaunay triangulation of $S$

and let Del $S|_{\Sigma}$ denote the restricted Delaunay triangulation which consists of Delaunay
edges and triaiigles whose dual Voronoi faces iiitersect $\Sigma$ . For anv point $p\in S$ , let
star $(p, \Sigma)$ denote the set of edges aud triangles in Del $S|_{\Sigma}$ incident to $p$ . A ball $B$ is a
surface Delaunay ball if $B$ is empty, the center of $B$ lies on $\Sigma$ , and the boundary of $B$

passes through three points in $S$ . Clearly, the center of a surface Delaunay ball belongs
to some Voronoi edge. The medial axis is the set of centers of all maximal balls whose
interiors avoid $\Sigma$ . The local feature size of a point $x\in\Sigma$ , lfs $(x)$ , is the distance between
$x$ and the medial axis of $\Sigma$ .

2.1 Meshing via a lfs lower bound
The set $S$ is a loose $\epsilon$-sample of $\Sigma$ if every surface Delaunay ball has radius at most
$\in$ lfs $(x)$ , where $x$ is the ball center. Boissonnat and Oudot proved the following result [2].

Lemma 2.1 Assume that $S$ is a loose $\epsilon$-sample for some $\epsilon<0.1$ and that Del $S|_{\Sigma}$

contains at least one $tr\dot{v}angle$ . Then Del $S|_{\Sigma}$ is isotopic to $\Sigma$ .

This motivates the following strategy. Let $\epsilon$ be some constant less than 0.1. It
is assumed that the initial $S$ contains of three given points $a,$ $b$ and $c$ such that: (i)
Del $S|\Sigma$ contains $abc$ ; (ii) the radius of the smallest surface Delaunay ball of $abc$ is at
most $\epsilon$ lfs$(x)/3$ , where $x$ is the ball center; (iii) a function $\varphi$ : $\Sigmaarrow R$ is given such that
$0<\varphi(x)\leq$ lfs $(x)$ . Notice that condition (ii) does not exclude the possibility that $abc$

may have a surface Delaunay ball of radius larger than $\epsilon$ lfs $(x)$ . Indeed, Boissonnat and
Oudot $s$ algorithm repeatedly inserts large surface Delaunay ball centers as follows.

1. Find a surface Delaunay ball $B$ with radius greater than $\epsilon\varphi(x)$ .

2. If $B$ exists, insert the center of $B$ into $S$ , update Del $S|_{\Sigma}$ , and go back
to step 1. Otherwise, output Del $S|_{\Sigma}$ .

Finding surface Delaunay ball centers is equivalent to computing the intersections
between the Voronoi edges and $\Sigma$ . Because $abc$ is so small, it can be shown that $abc$ per-
sists in Del $S|_{\Sigma}$ throughout the algorithm. Thus, if the algorithm terminates, Lemma 2.1
ensures that Del $S|_{\Sigma}$ is topologically correct. Termination is guaranteed because $\Sigma$ is
compact and the distance between a newly inserted point $x$ and any existing point in $S$

is more than $\epsilon\varphi(x)$ .

2.2 Meshing via the topological ball property
The Voronoi diagram of $S$ , Vor $S$ , has the topological ball property if every k-dimensional
Voronoi face either avoids $\Sigma$ or intersects $\Sigma$ generically in a $(k-1)$-dimensional topological
ball. That is, if a Voronoi edge or facet or cell intersects $\Sigma$ , the intersection is a single
point or arc or topological disk, respectively. The following result by Edelsbrunner and
Shah [8] explains why the topological ball property is useful.

Lemma 2.2 If Vor $S$ has the topological ball property, Del $S|_{\Sigma}$ is homeomorphic to $\Sigma$ .
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While Boissonnat and Oudot’s algorithm is based on achieving certain sampling den-
sity, the algorithm of Cheng et al. [6] is based on Lemma 2.2. We present a slightly
different version here to facilitate the exteiision to piecewise smooth complexes later.
Let lfs“ bc the minimum local feature size over $\Sigma$ . Roughly speaking, violations of the
topological ball property are detected and in case of violation, there exists a point $x$ in
Vor $S\cap\Sigma$ at distance more than wlfs’ from the existing points in $S$ for some constant

$\omega$ . The algorithm repeatedly identifies and inserts such a point until the topological
ball property is satisfied. Termination follows again from the compactness of $\Sigma$ and the
interpoint distance lower bound.

Primitives. The algorithm uses the following numerical primitives. For each Delaunay
simplex $\sigma$ , we use $V_{\sigma}$ to denote the dual Voronoi face.

$\bullet$ MulInt $(p\in S, \Sigma)$ : If $|V_{t}\cap\Sigma|=1$ for any triangle $t\in$ star $(p, \Sigma)\}$ MulInt(p) retums
null; otherwise, MulInt(p) retums the furthest intersection point from $p$ between
the edges of $V_{p}$ and $\Sigma$ .

$\bullet$ SurNorm$(w\leq 0.01_{J}p\in S_{7}\Sigma)$ : Let $\varphi\in(4\omega, \pi/16)$ be a constant. If $\angle n(p),$ $n(z)<\phi$

for any point $z\in V_{p}\cap\Sigma$ , SurNorm(p) returns null; otherwise, it returns a point
$z\in V_{p}\cap\Sigma$ such that $\angle n(p),$ $n(z)=\phi$ .

$\bullet$ CurNorm$(\alpha!\leq 0.01, p\in S, \Sigma)$ : Let $\psi$ be a constant chosen from $(4\omega+\phi, 4\omega+\pi/16)$ .
CurNorm(p) returns a point $y\in V_{e}\cap\Sigma$ for some edge $e\in$ star $(p, \Sigma)$ such that
$\angle d_{1}^{arrowarrow}d_{2}=\psi$ , where $d_{1}^{arrow}$ and $d_{2}^{\neg}$ are the projections of $n(p)$ and $n(y)$ onto the plane
of $V_{e}$ , respectively. CurNorm(p) retums null if such a point does not exist.

$\bullet$ NoDisk$(p\in S, \Sigma)$ : If star $(p, \Sigma)$ does not form a topological disk, NoDisk(p) returns
the furthest intersection point between the edges of $V_{p}$ and $\Sigma$ . Otherwise, it retums
null.

Implementation of primitives. We give the implementations of the primitives, which
involve formulating and solving the appropriate systems of equations. Let $E(x)=0$
denote the equation of $\Sigma$ .

$\bullet$ MulInt $(p\in S, \Sigma)$ : For any triangle $t\in$ star$(p\dot{}\Sigma)_{i}V_{t}$ is in the intersection of two
planes and let $H_{t,1}=0$ and $H_{t,2}=0$ denote the equations of them. We solve the
system: $E(x)=0,$ $H_{t,1}=0,$ $H_{t.2}=0$ and we select those solutions‘ that lie on $V_{t}$ .
These are the intersection points between $V_{t}$ and $\Sigma$ . If there are more than one, we
retum the one furthest from $p$ .

$\bullet$ SurNorm$(\omega\leq 0.01, p\in S_{\}}\Sigma)$ : Define $G(x)=\langle\nabla E(p),$ $\nabla E(x)\rangle-\Vert\nabla E(p)\Vert$ .
$\Vert\nabla E(x)\Vert\cdot\cos\phi$ . Ignoring the degenerate cases, the system: $E(x)=0,$ $G(x)=0$
describes a collection $\mathcal{F}$ of disjoint smooth closed curves. We solve for the set of
intersections between $\mathcal{F}$ and the support planes of $V_{p}$ . If any intersection obtained
belongs to $V_{p}$ , retum it. If no intersection in $V_{p}$ is obtained, we still need to check
the closed curves in completely inside $V_{p}$ . We solve the system: $E(x)=0,$ $G(x)=0$,
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$\langle\nabla G(x)\cross\nabla E(x),$ $(p-x)\rangle=0$ . The solutions are the tangential contact points with
$\mathcal{F}$ and balls centered at $p$ . If any tangential contact point belongs to $V_{p}$ , return it.
If no contact point is found in $V_{p}^{f},$

$\mathcal{F}$ avoids $V_{p}$ and we return null.

$\bullet$ CurNorm$(\omega\leq 0.01. p\in S, \Sigma)$ : For each edge $e\in$ star $(p_{\dot{Y}}\Sigma)$ , let $q_{e}$ denote a point
on the support plane of $]_{J}^{r}e$ ; let $n_{e}$ denote a unit vector orthogonal to the support
plane of $V_{e}$ ; and define the function $G_{e}(x)=\nabla E(x)-\langle\nabla E(x),$ $n_{e}\rangle\cdot n_{e}$ . Notice that
$G_{e}(x)$ is the projection of the vector $\nabla E(x)$ onto a plane orthogonal to $n_{e}$ . We solve
the system: $E(x)=0,$ $\langle(x-q_{e})_{!}n_{e}\rangle=0$ . $\langle G_{e}(x),$ $G_{e}(p)\rangle=\Vert G_{e}(x)\Vert\cdot\Vert G_{e}(p)\Vert\cdot\cos\psi$.
If any solution obtained belongs to $V_{e}$ , return it. Return null if no solution can be
returned for any edge in star $(p, \Sigma)$ .

$\bullet$ NoDisk$(p\in S_{t}\Sigma)$ : NoDisk $(p, \sigma)$ returns null if the union of triangles in star $(p, \Sigma)$

is a topological disk. Otherwise, we compute the intersection points between the
edges of $V_{p}$ and $\Sigma$ and return the furthest one from $p$ .

Algorithm. We first initialize $S$ to contain a point on $\Sigma$ . A convenient choice is a
height critical point at which the outward normal is vertical. Afterwards, for every point
$p\in S.$ we call MulInt $(p, \Sigma)$ , SurNorm $(w, p_{\}\Sigma)$ , CurNorm $(\omega,p, \Sigma)\}$ and NoDisk $(p, \Sigma)$ in
this order. If a point $x$ is returned in some call, then we stop, insert $x$ into $S$ , and update
Del $S$ and Vor $S$ . Afterwards, we repeat the calling sequence for every point in $S$ again
until $S$ does not grow anymore.

Topology. Each point returned by any of the primitives is more than $\omega$ lfs$*$ away from
the existing points in $S$ . The readers are referred to full proofs in [5, 6]. We explain why
the topological ball property is achieved when the algorithm terminates.

Clearly, MulInt ensures that every Voronoi edge intersects $\Sigma$ in a single point, if at
all, upon termination.

Consider a Voronoi facet $V_{e}$ . If $V\cap\Sigma$ is non-empty and not an arc, it may contain
some closed curve and/or more than one arc. If $l^{\gamma_{e}}\cap\Sigma$ contains a closed curve, CurNorm
will be triggered to retum a point. In case of two or more arcs, because MulInt does
not return a point, these arcs have endpoints on four distinct edges of $V_{e}$ . It follows that
there are two triangles in Del $S|_{\Sigma}$ incident to $e$ . This is a non-topological-disk feature
which triggers NoDisk to return a point. Hence, every Voronoi facet intersects $\Sigma$ in an
arc, if at all, upon termination.

Consider a Voronoi cell $\downarrow_{p}^{\gamma}$ . Upon termination, star$(p, \Sigma)$ is a topological disk. Since
MulInt and CurNorm return null, in the boundary of $V_{p}\cap\Sigma$ no two curves intersect the
same edges of $V_{p}$ and no curve lies within a facet of $V_{p}$ . Thus, the boundary of $V_{p}\cap\Sigma$

must be a closed curve as it is dual to star $(\backslash p, \Sigma)$ . Because SurNorm(p) returns null,
$\angle n(p),$ $n(z)<\pi/2$ for any point $z\in V_{p}\cap\Sigma$ . It can be shown [6] that the projection of
$t_{p}’$ A $\Sigma$ to a plane orthogonal to $n(p)$ is an injective map. The projected image is a planar
bounded region vith a closed boundary curve. So the image must be a topological disk.
The injectivity makes the projection a homeomorphism. Hence, $V_{p}\cap\Sigma$ is a topological
disk.
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3 Piecewise smooth complex
The algorithm based on topological ball property can be extended to mesh piecewise
smooth complexes (PSCs). A domain $\mathcal{D}$ is a PSC if it consists of smooth k-manifolds
for $0\leq k\leq 2$ . We require each manifold to be $C^{3}$-smooth. The domain $\mathcal{D}$ satisfies
the proper intersection requirement: (i) interiors of its element are disjoint; (ii) for any
$\sigma\in \mathcal{D}$ , the boundary of $\sigma$ is a union of elements in $\mathcal{D}$ ; (iii) for any $\sigma,$ $\tau\in \mathcal{D},$ $\sigma\cap\tau$ is
empty or a union of elements in $\mathcal{D}$ .

For each curve or surface $\sigma\in \mathcal{D}$ , we assume that $\sigma$ is part of a smooth closed curve
or surface, respectively, denoted by mani $(\sigma)$ . If $\sigma$ is a surface, the implicit equation of
mani $(\sigma)$ is given; If $\sigma$ is a curve, mani $(\sigma)$ is specified as the intersection of two smooth
closed surfaces whose implicit equations are given. For each point $x$ on an element $\sigma\in \mathcal{D}$ ,
if $\sigma$ is a surface, $n_{\sigma}(x)$ denotes the unit outward normal of mani $(\sigma)$ at $x$ ; if $\sigma$ is a curve,
$n_{\sigma}(x)$ denotes the plane orthogonal to mani $(\sigma)$ at $x$ .

$(a)$ $(b)$

Figure 1: In (a), $V_{e}$ intersects a 2-face in an arc. In (b), $V_{e}$ intersects the curve in a single
point and for $1\leq i\leq 3,$ $V_{e}\cap\sigma_{i}$ are arcs incident to this single point.

Given a set $S$ of point samples from $\mathcal{D}$ , there is an extended topological ball prop-
erty [8] for Vor $S$ which requires:

(i) Every Voronoi edge intersects $\mathcal{D}$ in at most a single point.

(ii) Let $V_{e}$ be a Voronoi facet that intersects $\mathcal{D}$ . The facet $V_{e}$ either avoids a surface in
$\mathcal{D}$ or intersects it generically in an arc, Also, $\nu_{e}^{r}$ either avoids the curves in $\mathcal{D}$ or
intersects exactly one of them, say $\sigma$ . In the latter case, $V_{e}\cap\sigma$ is a single point and
$V_{e}$ intersects the surfaces incident to $\sigma$ in arcs that meet only at $V_{e}\cap\sigma$ . Figure 1
illustrates the cases.

(iii) For any point $p\in S$ and for a.ny curve or surface $\sigma\in \mathcal{D},$ $V_{p}$ intersects $\sigma$ iff $p\in\sigma$ .
In this case $V_{p}\cap\sigma$ is an open curve or a topological disk, respectively.

Lemma 3.1 ([8]) If Vor $S$ has the extended topological ball property, Del $S|_{D}$ is homeo-
morphic to $\mathcal{D}$ .

Comparing Lemma 2.2 and Lemma 3.1, we would expect a similar meshing strategy
should work for PSC. This is true, roughly speaking, for the interior of each surface
in $\mathcal{D}$ . The new challenge is to approximate the curves in $\mathcal{D}$ by polygonal curves at
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which the incident surface meshes must meet seamlessly. Our solution is to construct
these polygonal curves first before meshing the surfacaes. Afterwards, the vertices of the
polygonal curves form the initial vertex set $S$ and then we mesh the surfaces by fixing
violations of the extended topological ball property. To make the surface meshes meet
seamlessly, we need to ensure that every polygonal curve edge eventually appears as an
edge in every incident surface mesh.

3.1 Curve meshing

Let $\sigma$ be a curve in $\mathcal{D}$ . Let $u$ and $v$ be the endpoints of $\sigma$ . We initialize two protecting
balls centered at $u$ and $v$ . Then, we march along $\sigma$ from $u$ and $v$ , placing more balls on
the way. These balls enjoy the following properties: (i) the ball radii vary slowly along
$\sigma$ ; (ii) consecutive balls overlap; (iii) non-consecutive balls are separated by a gap: (iv)

the curve tangent within a ball varies little; (v) the normals to surfaces incident to $\sigma$

vary little inside every ball; (vi) every ball intersects mani $(\sigma)$ in an arc and mani $(\tau)$ in a
topological disk for every surface $\tau$ incident to $\sigma$ .

Let $\omega\leq 0.01$ be a constant. Consider any point $x\in\sigma$ . Let $B(x, r)$ denote a ball
centered at $x$ with radius $r$ . Let $d_{\omega}(x)$ be the largest distance such that $\angle n_{\sigma}(x),$ $n_{\sigma}(y)\leq\omega$

for any point $y\in$ mani $(\sigma)$ . Let $g(x)$ be the minimum distance from $x$ to an element of
$\mathcal{D}$ that does not contain $x$ . Let $b(x)$ be the largest value such that $B(x, b(x))\cap$ mani $(\sigma)$

is an arc and $B(x, b(x)).\cap$ mani $(\tau)$ is a topological disk for any surface $\tau$ containing $x$ .
Then, we define

$f_{\omega}(x)=\min\{d_{\omega}(x), g(x), b(x)\}$ .

The value $f_{\omega}(x)$ will be used to control the ball radius and its definition is clearly geared
towards properties (iv) $-$ (vi) above. However, $f_{\omega}(x)$ may change very abruptly. Therefore,
$\mathfrak{n}^{r}e$ have to do an on-the-fly Lipschitization along $\sigma$ in order to achieve property (i).

Let $\lambda=0.01$ . We place two protecting balls $B_{u}=B(u, \lambda f_{\omega}(u))$ and $B_{v}=B(v, \lambda f_{\omega}(v))$

at $u$ and $?’$ . Let $x_{0}=\sigma\cap bdB_{v},$ $x_{1}=u$ and $x_{2}=\sigma\cap bdB_{u}$ . Let $r_{i}=\lambda f_{\omega}(x_{i})$ for $i\in\{0,1,2\}$ .
The protecting ball $B_{x}2$ at $x_{2}$ is $B(x_{2}.r_{2})$ . For $k\geq 3$ , we compute the intersection point
$x_{k}$ between the boundary of $B(x_{k-1},6r_{k-1}/5)$ and the portion of $\sigma$ from $x_{k-1}$ to $v$ . Define

$r_{k}= \max\{\begin{array}{l}\frac{1}{2}\Vert x_{k-1}-x_{k}\Vert\min_{0\leq j\leq k}\{\lambda f_{\omega}(x_{j})+\lambda\Vert x_{j}-x_{k}||\}\end{array}$

and
$r_{0k}= \min_{0\leq j\leq k}\{r_{j}+\lambda\Vert x_{j}-x_{0}\Vert\}$ .

If $B(x_{k}, r_{k})\cap B(x_{0}, r_{0k})=\emptyset$ , the protecting ball at $x_{k}$ is

$B_{x_{k}}=B(x_{k}, r_{k})$ .

Figure 2 shows an example of the construction of $B_{x_{k}}$ . We force $r_{k} \geq\frac{1}{2}\Vert x_{k-1}-x_{k}\Vert$

so that $B_{x_{k}}$ overlaps significantly with $B_{x_{k-1}}$ .
We continue to march toward $x_{0}$ and construct protecting balls until the candidate

ball $B(x_{m}, r_{m})$ that we want to put down overlaps with $B(x_{0}, r_{0m})$ . In this case, we
reject $x_{m}$ and $B(x_{m}, r_{m})$ . We set the protecting ball at $x_{0}$ to be $B_{x_{0}}=B(x_{0}, \frac{4}{5}r_{0m-1})$ .
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Figure 2: $B(x_{k-1},6r_{k-1}/5)$ and $B(x_{0}.r_{0k})$ are drawn with dashed circles. The bold circle
denotes $B_{x_{k}}$ .

To cover the gap between $B_{x_{m-1}}$ and $B_{x0}$ , a convenient choice is a ball orthogonal to
$B_{x_{m-1}}$ and $B_{x0}$ . Compute the bisector plane of $B_{x_{m-1}}$ and $B_{x0}$ with respect to the
power distance and the intersection point $y_{m}$ between this plane and the portion of $\sigma$

between $x_{m-1}$ and $x_{0}$ . The protecting ball $B_{y_{m}}$ is the ball centered at $y_{m}$ with radius
$(\Vert x_{0}-y_{m}\Vert^{2}-$ radius$(B_{x0})^{2})^{1/2}=(\Vert x_{m-1}-y_{m}\Vert^{2}-$ radius $(B_{x_{m-1}})^{2})^{1/2}$ .

Finally, we tum each protecting ball $B_{p}$ into a weighted point $p$ with weight $w_{p}=$

radius$(B_{p})^{2}$ . Since adjacent protecting balls overlap, this gives the advantage that every
edge connecting two adjacent weighted points is always weighted Delaunay. So these
edges will persist throughout the repeated insertions of unweighted points in the rest of
the algorithm.

3.2 Algorithm
Since we tum every protecting ball into a weighted point, it is natural to maintain a
weighted Delaunay triangulation and a restricted weighted Delaunay triangulation. The
balls on the curves in $\mathcal{D}$ are the only weighted points. All other points inserted subsequent
to produce the mesh are unweighted. Lemma 3.1 works for the weighted Voronoi diagram
and Delaunay triangulation as well. So we abuse the notation and use Del $S$ and Del $S|_{\Sigma}$

to denote the weighted triangulations.
We use the primitives in Section 2.2 plus one more primitive Infringe($p\in S$ , surface $\sigma\in \mathcal{D}$ ).

This primitive ensures that: (i) $p$ is not connected to a vertex $q\not\in\sigma$ ; (ii) if $p\in bd\sigma,$ $p$ is
connected to adjacent vertices in bd$\sigma$ only. In the presence of such a violating edge $pq$ ,
Infringe $(p, \sigma)$ returns a point in $V_{pq}\cap\sigma$ ; otherwise, it returns null.

The whole algorithm works as follows. First, we mesh the curves as discussed in
the previous subsection. Second, we insert a point in each surface in $\mathcal{D}$ outside the
protecting balls on the curves. The points inserted so far form the initial vertex set $S$ .
Third, for every surface $\sigma$ in $\mathcal{D}$ and for every point $p\in S$ on $\sigma$ , we call Infringe $(p, \sigma)$ ,
MulInt $(p, \sigma)$ , SurNorm$(\omega_{\dot{l}}p.\sigma)$ , CurNorm $(\omega,p, \sigma)$ , and NoDisk$(p, \sigma)$ in this order. If a
point is returned in some call, then we stop, insert $x$ into $S_{?}$ and update Del $S$ and Vor $S$ .
Afterwards, we repeat the third step until $S$ does not grow anymore. We output Del $S|_{\mathcal{D}}$

upon termination.

4 Other mesh qualities
We have concerned ourselves with topological correctness so far. In many applications
it is important that triangles $\backslash i^{r}ith$ small aspect ratio and their normals approximate the
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surface normals.

Aspect ratio. A small aspect ratio is equivalent to a small constant upper bound on
the ratio of the circumradius to the shortest edge length. This is the so-called radius-edge
ratio.

The two algorithms described for smooth closed surface can be enhanced by the same
refinement strategy to give good triangle shape. For any restricted Delaunay triangle $t$ , if
the radius-edge ratio of $t$ exceeds 1, we simply insert the insertion point between $V_{t}$ and
the surface. Notice that the distance between this newly inserted point and any existing
point is no smaller than the shortest edge length of $t$ . Thus, the interpoint distance lower
bound is maintained. Of course, the topological correctness may have been disturbed
by this insertion. So we need to rerun the meshing algorithm again. The whole process
repeats until every triangle has radius-edge ratio less than 1. The smallest angle is thus
at least $\pi/6$ .

The same enhancement also works for the algorithm for PSC, except that we can only
split triangles with unweighted vertices. The consequence is that no guarantee can be
offered for the shape of triangles incident to surface boundaries.

Triangle normal. Since Boissonnat and Oudot’s algorithm forces all surface $Dela\iota may$

ball to be small with respect to local feature size, it is known from standard surface
sampling theory that the triangle normals approximate the surface normals. The two
algorithms based on the (extended) topological ball property can be enhanced further.
Let $p$ be a vertex on a surface $\sigma$ and let $t$ be a triangle in star $(p, \sigma)$ . If $\angle n_{\sigma}(p),$ $V_{t}\geq 26\omega$ ,
we insert the intersection point $V_{t}\cap\sigma$ . As before, we need to rerun the meshing algorithm
until there is no violation in the topology, triangle shape, or triangle normal.

With these mesh quality improvements, the PSC meshing algorithm has the following
performance.

Theorem 4.1 Let $\omega\leq 0.01$ . Given a $PSC\mathcal{D}$ , one can construct a weighted point set $S$

such that:

(i) Del $S|_{D}$ is homeomo$\tau phic$ to $\mathcal{D}$ .

(ii) Every output triangle with unweighted vertices has radius-edge ratio less than 1.

(iii) For any vertex $p$ on a surface $\sigma\in \mathcal{D}$ and for any $t_{7}\dot{u}anglet\in$ star $(p, \sigma),$ $n_{\sigma}(p)$

makes an angle less than $26\omega$ with the normal of $t$ .

(iv) For any edge $e$ in Del $S|_{\mathcal{D}}$ with an unweighted endpoint, the two triangles incident
to $e$ make a dihedml angle greater than $\pi-52\omega$ .

5 Discussion
Several problems awaits further research. The two meshing algorithms based on the topo-
logical ball property use expensive numerical primitives. The main question is whether
one can obtain a result with less expensive numerical primitives. There is a solution
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by Cheng et al. [4] in this direction. The same curve meshing phase is kept, while the
primitives SurNorm and CurNorm are eliminated. Instead, only a given upper bound
$r$ on the triangle size and a more sophisticated topological disk condition than NoDisk
are used. No matter what $r$ is, the output is always a valid complex formed by surface
meshes. When $r$ is sufficiently small, the output is homeomorphic to the input PSC.
More recently, Dey and Levine [7] announces that the curve meshing can also be done
adaptively without expensive numerical primitives. Still, it $\backslash \}’ould$ be interesting to see if
parametric surfaces can be handled (without resorting to implicitizing them first) because
of their popularity in computer aided design.

A stronger topological guarantee for PSC meshing is isotopy. Does it already follow
from the extended topological property in our case? Or is a vastly different approach
necessary?

Another direction is to maintain a valid and good mesh when the points move with a
deforming surface. There is a recent result in [3] saying that the update time can be made
worst-case optimal (with respect to some worst-case surface and motion) in the absence
of topological changes. Can topological changes be accommodated? Can something more
be said about the update time with respect to the specific surface and motion at hand?
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