
Genome Homology Visualization by Short Similar Substring
Enumeration

Takeaki Uno

uno@nii.jp, National Institute of Informatics
2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Abstract. Finding similar substrings/substructures is a central task in analyzing huge amounts
of genome data. In the sense of complexity theory, the existence of polynomial time algorithms for
such problems is usually trivial since the number of substrings is bounded by the square of their
lengths. However, straightforward algorithms do not work for practical huge databases because of
their computation time of high degree order. This paper addresses the problems of finding pairs
of strings with small Hamming distances from huge databa. es composed of short strings of a fixed
length. Using this, we compare two genomc scqucnces by solving this problcm for all the fixed-
length substrings taken from the sequences. We focus on the practical efficiency of algorithms,
and propose an algorithm running in almost linear tlme of the database size. When there are so
many similar pairs so that the visualization is impossible, we propose to use a filtering algorithm
to remove the pairs which are not parts of similar long sequences. Computational experiments for
genome sequcnces show the efficiency of thc method. An implementation is available at the author’s
homepagel

1 Introduction

In this paper, we consider the problem of enumerating all pairs of similar strings in a set S of strings
of the same length l . We can approach to general substring comparison problems through this problem
sinoe such non-short similar strings must include several such short similar substrings. As a similarity
measure, we use Hamming distance. Thus the definition of the problem is as follows.

Short Hamming Distance String Pair Enumeration Problem
Input: a set S of strings of the same length l , a distance threshold d

Output: all pairs of strings S_{1} and S_{2} such that the Hamming distance between S_{1} and S_{2} is at most d .

We here call a pair of strings with Hamming distance at most d similar string pair. We consider the
case in which the length l is small, and proposc a practically efficient algorithm. The idea of the algorithm
is to classify the strings in several ways so that two strings of similar string pair are in the same group
for at lcast oiie classification. Only strings in thc same group have to bc comparcd, which reduces the
cost of the comparison. Each string is partitioned into k blocks, $t1_{1}er1$ strings in a similar string pair must
share at least $k-d$ same blocks. Thus, they are in the same group at least one classification based on
combinations of $k-d$ of these blocks. We call this method “multi-sort algorithm”. If the $k-d$ blocks
sufflcicntly many letters, the mcrnbcrs of each group is expected to bc few, thus all pairs comparison takcs
quite short time, and practical computation time will be closed to linear time. As we show later, the result
of the computational experiments for genome strings show that the algorithm is practically efficient. This
algorithm can be applied to the case of edit distance, by a slight modification. However, the computation
time will be much longer compared to Hamming distance, thus we believe that the Hamming distance is
useful practically.

One of the disadvantage of our problem model is that we may have so many output pairs, and each pair
does not give the shape of local similarity structures. Using the algorithm makes it possible to approach
the problem of finding similar non-short strings, and similar non-short substrings of long strings. We
can observe that two non-short similar strings may have several similar string pairs as their substrings.
Thus, pairs of non-short strings including several similar string pairs are candidates for non-short similar
1 http://research.nii.ac.jp/-uno/index.html

数理解析研究所講究録
第 1644巻 2009年 35-43 35

substrings. This approach has a certain certification of accuracy. For example, any two strings L_{1} and
L_{2} of 3,000 letters with Hamming distance of at most 293 have at least three pairs of substrings of 30
letters starting from the same position of L_{1} and L_{2} such that the Hamming distance between them is
at most two. We have similar observations for edit distance. For example, any two strings of 3,000letters
with edit distance at most 143 with insertions/deletions at most 55 includes at least three substrings
of 30 lcttcrs with Hamming distance of at most two. This fact motivates us to find pairs of strings L_{1}

and L_{2} of a middle length such that L_{1} and L_{2} have at least certain number of similar substrings such
that thc diffcrence of their starting positions is bounded by some constant. We propose an algorithm for
finding similar substrings composing such three pairs. In this way, we compared the human genomc and
mouse genome by our algorithm. The computation is done in quite short time and we could see homology
structures figured out by the comparison.

The organization of this paper is as follows. The rest of this section shows some related works and
applications to the problem. Section 2 is for preliminaries, and Section 3 shows our algorithm. Section
4 describes the filtering method for long string comparison. We show the computational experiments in
Section 5, and conclude the paper in Section 6.

1.1 Related Works

In the area of algorithms and computation, the problem of finding similar strings has been widely studied.
The problem is usually formulated that for two given strings Q and S , find all substrings of S similar to
Q . This formulation can be considered as a generalization of string matching problems. When Hamming
distance is chosen as a similarity measure, a straightforward algorithm solves the problem in $O(|S||Q|)$
time, thus a research goal is to reduce this time complexity. Here the length of S and Q is denoted by
$|S|$ and $|Q|$.

For the problem of finding substrings of S with the shortest Hamming distance to Q , Abrahamson[l]
proposed an algorithm running in $O(|S|(|Q|\log|Q|)^{1/2})$ time. If the maximum Hamming distanoe is k ,
the computation time can be reduced to $O(|S|(k\log k)^{1/2})[4]$. Some approximation approaches have been
also developed. The Hamming distance of two strings of length l within $(1-\epsilon)$ and $(1+\epsilon)$ approximation
ratio with probability δ can be computed in $O(\log l\log(1/\delta)/\epsilon)$ time [6]. For edit distance, which allows
insertions and deletions, algorithms proposed by Muthukrishnan and Sahinalp[9, 10] approximate the
minimum distance substring. Using these algorithms, the problem can be solved in shorter time but may
fail with some solutions. These algorithms take more than $O(|S|^{2})$ time to find similar substrings even
for fixed length strings, Thus direct applications of these algorithms does not work in practice.

On thc other hand, there are scvcral studies for efficient data structurcs to find similar substrings.
The problem is formulated such that, for a given string S , construct a data structure of not a large size
such that for any query string Q , substrings of S similar to Q can be found in short time. For the problem
of finding substring of S equal to Q , there are many cfflcient data structures such as sufflx array which
make it possible to flnd all such substrings $i\iota 1$ alinost $O(|Q|)$ time. However, allowing the errors makes the
problem difficult. Existing algorithms basically need $\theta(|S|)$ time in the worst case. This difficulty can be
observed in many other similarity search problems, such as inner product of vectors, points in Euclidean
space, texts and documents. Motivated by practical use, there have been many studies on approximation
and heuristic approaches.

Yamada and Morishita [14] proposed an algorithm for computing a lower bound of the shortest
Hamming distance from Q to a substring in S . The algorithm constructs a data structure in $O(|S|\log|S|)$

time, then answers a lower bound in $O(|Q|L)$ time for any Q , where L is a constant no greater than
$|Q|$. They also proposed an efficienl exact algorithm for strings with small alphabet such as genome
sequences [15].

In bioinformatics area, the problem of finding substrings of two strings which are similar to each
other is called homology search, and has been widely studied. In precise, for given two strings S and Q ,
the problem is to find pairs of a substring of S and a substring of Q which are similar to each other.
Because of the huge size of genome sequences, developing exact algorithms running in short time is
difficult thus many heuristic algorithms have been proposed. BLAST and FASTA[2, 3, 11] are widely used
among these algorithms. The idea of BLAST is to find short substrings of S and Q that are equal and
check whether there are similar substrings including them. This idea is based on the observation that

36

two similar substrings may have common short substrings. Actually, if the Hamming distance between
two strings is no more than 9% of their length, they always have common string of 10 letters. The
disadvantage of this method is that when the strings are long, huge number of substrings are the same,
thus a lot of comparisons must be made. Such frequently appearing strings can be considered to be not
important in practice, thus heuristic methods ignore these strings in the interest of practical efficiency.
Another method of solving the problem is to partition Q and S into many blocks[13]. Some statistics of
the blocks are computed, for example the number of each letter in the blocks, which for pruning blocks
will never be similar. Then a dynamic programming connects the blocks and produces candidates of long
similar substrings. The idea is that long similar substrings are expected to be not so many.

2 Preliminary

Let Σ be an alphabet of letters, and a string be a sequence of letters. The length of a string S is the
number of letters in S and is denoted by $|S|$. A sequence composed of no letter is also a string and is
called an empty stiing. The length of an empty string is 0 . The ith letter of a string S is written $S[i]$, and
i \’is called the position of $S[i]$. The substring of S starting from the ith letter and ending at the jth letter
is denoted by $S[i,j]$. For example, when string S is ABCDEFG, $S[3]=C$, and $S[4,6]=DEF$. When
$j<i$, we defiiic $S[i,j]$ by the empty string. For two strings S_{1} and S_{2} , the concatenation of S_{2} to S_{1} is a
string S given by concatenating S_{2} to S_{1} , i.e., $|S|=|S_{1}|+|S_{2}|,$ $S[i]=S_{1}[i]$ if $i\leq|S_{1}|$, and $S_{2}[i-|S_{1}|]$

otherwise. The concatenation of S_{2} to S_{1} is denoted by $S_{1}\cdot S_{2}$.
For two strings S_{1} and S_{2} of the same length, the Hamming distance of S_{1} and S_{2} is defined by the

number of positions i satis$\mathfrak{h}\prime ing$ that $S_{1}[i]\neq S_{2}[i]$. The Hamming distance is denoted by $HamDist(S_{1}, S_{2})$.
Such letters are called the mismatch of S_{1} and S_{2} , and $t\}_{1}e$ positions of mismatches are called mismatch
positions of S_{1} and S_{2} . For a given threshold value d , we say two strings S_{1} and S_{2} of the same length
are similar if their Hamming distance is no greater than d , and call them similar string pair. For string
S and integers i and $k,$ $i\leq k$, we denote the substring of S starting from $(\lceil|S|(i-1)/k\rceil+1)th$ letter to
$(\lceil|S|i/k\rceil)$th letter, i.e., $S[\lceil|S|(i-1)/k]+1,$ $\lceil|S|i/k\rceil]$, by $B(S, k, i)$. $B(S, k, i)$ is called the ith block.

For a string S , the deletion of the position i is a string given by $S[1, i-1]\cdot S[i+1, |S|]$. The insertion
of letter a to S at position i is a string given by $S[1, i-1]\cdot A\cdot S[i, |S|]$ where A is the string composed
of one letter a . The change of position i of S to a is a string given by $S[1, i-1]\cdot A\cdot S[i+1, |S|]$. For two
strings S_{1} and S_{2} , the edit distance of S_{1} and S_{2} is the smallest number of combinations of insertions,
deletions and changes needed to transform S_{1} to S_{2} .

The problem we address in this paper is formulated as follows. Let S be a multi set of strings of
the same length. S is allowed to include more than one same string, and every string has an ID to be
distinguished from the others. Hereafter we fix the input set S of strings of length l and a threshold value
d , and assume that size of Σ is smaller than the size of S .

3 Multi-sort Algorithm

The basic idea of the algorithm is to classify the strings in several ways so that any two similar strings
are in the same group at least once. Let $C(k,j)$ be the set of j distinct integers taken from 1, . . . , k . For
example, $C(4,2)=\{\{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}\}$. For a string S and a set $C=\{i_{1}, \ldots, i_{k-d}\}$,
$i_{j}<i_{j+1}$ taken from $C(k, k-d)$, we define $Sig(S, C)=B(S, k, i_{1})\cdot B(S, k, i_{2})\cdot\ldots\cdot B(S, k, i_{k-d})$. We
suppose that an integer $k,$ $d<k\leq l$ is chosen, and have a look at tbe following property.

Lemma 1. If $HamDist(S_{1}, S_{2})\leq d$, at least one $C\in C(k, k-d)$ satisfies $Sig(S_{1}, C)=Sig(S_{2}, C)$.
Proof. The statement is obvious from the pigeonhole principle. Suppose that $HamDist(S_{1}, S_{2})\leq d$.
Observe that if $B(S_{1}, k,j)\neq B(S_{2}, k,j)$ holds, it includes at least one mismatch, i.e., $S_{1}[i]\neq S_{2}[i]$ holds
for some $i,$ $\lceil|S|(i-1)/k|+1\leq i\leq\lceil|S|i/k\rceil$. Since S_{1} and S_{2} have at most d mismatches, at most d integers
j satis$\mathfrak{h}^{r}B(S_{1}, k,j)\neq B(S_{2}, k,j)$, thereby at least $k-d$ integers h satisfy $B(S_{1}, k, h)=B(S_{2}, k, h)$. Setting
C to the set of those integers h satisfying $B(S_{1}, k, h)=B(S_{2}, k, h)$ shows that

$Sig(S_{1}, C)=Sig(S_{2}, C).\square$

37

Fig. 1. Example of multi-sort for finding strings with Hamming distance of at most one, by dividing strings in
three blocks and classifying them by two blocks.

This lemma motivates us to restrict the comparison to those pairs of strings satisfying the condition
of the lemma. To efficiently find these pairs, we focus on the combinations of integers. For each $C\in$

$C(k, k-d)$, we classi \mathfrak{b}^{r} the strings S in S according to $Sig(S, C)$ so that two strings S_{1} aiid S_{2} satisfy
$Sig(S_{1}, C)=Sig(S_{2}, C)$ if and only if they are in the same group. In Fig. 1, we show an example of this
method, which we call the $Multiarrow son$ Algorithm. In the example, there are nine strings and set $d=1$
and $k=3$. Each block is composed of two letters, and classifications by two blocks are done three times.
For each classification thcrc are several groups reprcsented by rectanglcs with more than one strings, and
some of them contain strings with Harriming distance of at most one, written at the head of the arrows.

ALGORITHM MultiClassificationBasic (S :set of strings of length $l,$ d)
1. choose k from $d+1,$ $\ldots,$

l

2. for each $C\in C(k, k-d)$ do
3. classify all strings $S\in S$ by $Sig(S, C)$
4. for each group K of the classification

output all pairs S_{1} and S_{2} in $Ksatis!i^{r}$ ing $HamDist(S_{1}, S_{2})\leq d$

6. end for

The classification for C is done by sorting $Sig(S, C)$ in $0(l(k-d)/kx|S|)$ time by a radix sort. We
compute the probability that two randomly chosen letters from strings of S are the same, and choose k

such that thc expected size of each group in a classification is less than 1. Thcn the comparisons in a
group is not so mariy, and the bulk of the computation time is for radix sort. Such a k can be chosen by
computing the expected number of the size of each group. For example, if it is a small constant less than
one, tlien the k can be considered to be sufflcicntly large. Since $l(k-d)/k$ is expected to be relatively
small when l is small, it can be expected that the practical performance of the algorithm will be high.

4 Finding Non-short Similar Substrings

The algorithms proposed here is to detect similarity in short strings. In this section, we show an approach
to detect non-short similar substrings based on short similar substring enumeration. A straightforward
approach may take more than square time, since the length of strings to be compared can not be bounded
by a constatit.

One typical approach to capturing the similarity structures by using similar string pairs is as follows.
We partition S into non-short blocks, for example, partition a string of 1,000,000 letters into 1,000 strings
of 1,000 letters. We define the similarity measure of blocks $S[k_{1},$ $h_{1}|$ and $S[k_{2}, h_{2}]$ by the number of pairs
of similar substrings taken from one block and a substring taken the other block. We can visualize tiie
similarity structure in this measure by a flgure such that the intensity of the color of the pixel (x, y) is

38

$\bullet*$ ι
$\bullet_{\bullet}s_{\bullet}^{\bullet}\bullet_{-}\bullet^{1}$

Fig. 2. Three example of cells having the same number of similar string pairs. Each dot represents the position
of a string pair. The diagonal rectangle is the bounding condition to be a seed. When the threshold number is
three, left and center cells have seeds. However, the seeds in the central cell is too much concentrated in a small
area, thus we will remove the seeds.

given by the similarity. The left of Figure 4 shows an example of pictures obtained by this metbod. The
figure is drawn by solving the problem with parameters $l=30$ and $d=2$. The computation is done in
few minutes.

If the blocks are large, any two blocks have a sufficiently large numbcr of similar string pairs, thus
all pixels will be the same color. Moreover, we need much time for computation. In such cases, we have
to reduce the number of output in some ways, without losing important information. One simple way to
reduoe the output is to output the pairs included in longer similar substrings. For example, we choose a
constant k , and output a similar substring pair S_{1} and S_{2} only if S_{1} and S_{2} are substrings of L_{1} and L_{2} of
length kl such that $S_{1}=L_{1}[i, i+l-1]$ and $S_{2}=L_{2}[i, i+l-1]$ hold for some i , and $HamDist(L_{1}, L_{2})\leq kd$.
We can also use the edit distance to be sensitive for insertion/deletion error.

Anot}ler way to reduce the output is sampling the substrings. For example, if we choose 1 of 10
substrings as substrings to be compared, we can reduce the number of output pairs possibly 1/100.
However, This approach may miss some middle-length similar substrings. We here propose a way to
sample the substrings which never miss similar substrings having a certain length.

Suppose that we are going to compare long string T_{1} and T_{2} , by finding similar substrings for length
l and Hamming distance at most d . We first choose a divisor of p . Then, we take substrings from T_{1} such
that their starting positions are 1, $p+1,2p+1,$ \ldots , and take substrings from T_{2} such that their starting
positions are 1, 2, . . . , $p,$ $l+1,$ $l+2,$ $\ldots,$ $l+p,$ $2l+1,2l+2,$ $\ldots,$ $2l+p,$ \ldots . An example of such a method of
taking substrings is shown in the downside of Figure ??. We call this method interleave method. Suppose
that L_{1} and L_{2} are substrings of T_{1} and T_{2} of length m such that $L_{1}=T_{1}[i, i+m-1],$ $L_{2}=T_{2}$ la $j+m-1]$.
Let $k=(i-j)mod l,$ $x=p\lceil k/p\rceil$, and $y=k-(kmod p)$ Note that when $i-j<0,$ $k=l-((j-i)mod l)$.
Then, we can see that two substrings S_{1} of L_{1} and S_{2} of L_{2} of length l starting from $b+$ lth letter, i.e.,
$S_{1}=T_{1}[i, i+b+l-1]$ and $S_{2}=\tau_{1}b+b,j+b+l-1$], are both taken to be compared if and only if
$(i+b)mod l=x$, since $i+bmod l=x$ means that $j+bmod l=y$. Thus, for every l consecutive substrings
pairs of length l , at least one pair satisfics that both substrings are taken for the comparison. Thus,
intuitively, we never miss L_{1} and L_{2} , if thcy are llot sufficiently short and tbeir Harnrniug distancc is not
large. In exact, we never miss L_{1} and L_{2} if their length is no less than 21, and the Hamming distance is less
than $(d+1)x\lfloor|L_{1}|/lJ$. In the case that l has no divisor, or few divisors, we can choose a number $l’<l$ and
its divisor p , and take strings from positions 1, 2, . . . , $p,$ $l’+1,$ $l’+2,$

$\ldots,$
$l’+p,$ $2l’+1,2l’+2,$ $\ldots,$ $2l+p,$ \ldots .

In this way, we lose the above certification, but expect that the practical efficiency does not change so
much.

The second approach is based on an observation that non-short similar substrings have several similar
short substrings. Observe that any two strings L_{1} and L_{2} sufficiently longer then l with Hamming distance
less tlian $|L_{1}|\cross d/l$ must include several similar string pairs. For example, when $l=30,$ $d=2$, and L_{1} and
L_{2} are of 3,000 letters with Hamming distance of at most 293, they include at least tliree similar string
pairs. This comes from the sarne reason as Lemma 1. We call such pairs a seed. It implies that there
are long similar strings with over 3000 letters only if there is a seed. This motivates us to find seeds to
capture the long string similarity; draw an image by putting a dot if there are such three pairs. Further,
if the member of a seed lies in a short interval, say 300, and have no other similar string pair exists closed
to the members, then the seed indicates short similar strings, thus we can also such isolated seeds lies
in a small area. To find such pairs, we classify all similar string pairs according to the difference of the
starting position of two strings in the pair. Then, we sort the similar pairs having the same difference of
the starting positions according to the starting position of the first string. Then, by scanning the obtained

39

Fig. 3. An example of a belt; it sweeps in left-down direction. It updates the sorted order of containing string
pairs, and find the pairs satisfics the cotidition to be a seed. Di scretized belt, having doubled widtli, is placed only
at the dotted lines.

sorted list of pairs, we can easily find seeds. Actually, the classification and the sort of each group can be
done by a radix sort in linear time, this task can be done in $O(N)$ time where N is the number of similar
pairs.

This approach can be applied even when we consider edit distance. An insertion/deletion can make
the Hamming distance of two strings quite large. Thus, if the number of insertions/deletions between two
strings is relatively small, we can state a certain certification of accuracy. Consider an example of two
strings of 3,000 letters with edit distance at most 198 with insertions/deletions at most 55. Then, they
have at least three substrings of 30 letters with Hamming distance of at most two. In the case of edit
distance, the difference of the start positions of the pairs in a seed do not have to be the same, but the
difference is bounded, at most 55 in this case. In Figure 2, we present some examples of similar string
pairs in cells. Some bounding conditions of seeds are drawn by diagonal boxes.

To find all such thrcc pairs in this casc, wc modify the above method. The starting positions of pairs
in a secd can diffcr, $th\iota\iota s$ we have to merge sevcral groups having similar starting position difference,
then sort the pairs and scan it. We call the merged groups belt. An intuitive image of the belt is drawn
in Figure 3. Thus, the computation time is multiplied by the width of the belt, by we can reduce the
computation time by using binary tree. We construct a binary tree representing the sorted order of the
pairs in a belt, then we shift the belt by removing one group and adding on group to the belt, and by
using binary tree, we update the sorted list of the pairs in the belt. In this way, the computation time to
find all pairs not included in such thrcc pairs can be done in $O(N\log N)$ time.

In practice, we can use more simple method by discretizing tlie belts. We double the width w of the
belt, and scan only one belt among w belts. An example of the positions of belt is shown in Figure 3. It
makes the computation time to linear, but it never miss any seed, but some similar string pairs included
in no seed may be judged to be in a seed. However, we can expect such error is not critical, and does not
matter, since we can consider that random noise can make few such error. If there are many such errors,
we should consider such error as a kind of similarity. We display a figure made by this approach in the
right of Figure 4. The figure is drawn by first finding the problem with parameter $l=30$ and $d=3$,
and find seeds composed of three pairs with length 3000 and width 300, by the discrete belt approach.
We discard the isolated seeds, ii a seed is in an area of length 300, and has no similar string pair with
distance shorter than 2700, in the belt. The resolution of the figure is 2000 by 2000, and each dot is
written when it has at least two seeds. Each dot is enlarged to be emphasized.. We successfully removed
the noise patterns from the picture and emphasized the similar structures. The computation is also done
in few minutes.

5 Computational Experiments

This section shows the results of computational experiments of our algorithm. The code was written in
C , and compiled with gcc. We used a note PC with a Pentium $M1.2GHz$ processor with 768 MB of

40

Fig. 4. Matrix showing similarity of mouse 11 chromosomes (X-axis) and Human 17 chromosome (Y-axis), with
black cells on similar parts; wc can scc similar substructures as diagonal lines, lcft figure represents the dctisity of
similar string pairs, and the right figure is the result of our filtering.

Fig. 5. Increase in computation time against the increase in database size with fixed l and d : the right-lower figure
is for fixed d/l inputting a string of 2.1 million letters

memory, with cygwin which is a Linux emulator on Windows. The implementation is available at the
author’s homepage; http://research.nii.ac.jp/\simuno$/index$.btml.

The instance is the set of substrings of fixed lcngth taken irom the Y chromosornc of Homo sapiens.
The length is set to 20, 50 and 300. Figure 5 shows the results. Each line corresponds to one threshold
value d . The X-axis is the number of input substrings, and Y-axis is the computation time. Both axes
use \log scales. We can see that $tI_{1}e$ computation time increases slightly higher than linear, but smaller
$t\}ian$ the square.

We also show the increase in computation time against the increase of l with fixed d/l . The instance
is fixed to that with 2.1 million strings, and the result is shown in the right-lower flgure of Figure 5. The
left of Figure 6 shows the number of executed radix sorts, which means the number of recursive calls. $T\}_{1}e$

horizontal axis is for the length of the input string, and the vertical axis is for the number of recursive
calls. Each line corresponds to the result of fixed length l and threshold d . In this implementation, when
the members in a group is sufficiently small, we execute the pairwise comparison immediately and do
not execute further recursive calls. The result shows the number of recursive calls is also robust for the
increase of the length, when the length and the threshold is fixed. $\mathbb{R}om$ these results, at least for genome
sequences our algorithm is quite scalable for the increase of input string.

41

Fig. 6. (left) number of radix sorts performed, (right) experiments for Japanese web texts

The rigbt of Figure 6 is the experimental result for Japanese texts taken from Web pages, crawled at
2007. The data is collected by Kawahara and Kurohashi[7]. The horizontal axis is the length of input data
in \log scale, and the vertical axis is the CPU time, and CPU time per one million output pairs, in second
in \log scale. The lengths of input are from 1.3 million to 40 million. On average each page has 1,200
letters, and the size of alphabet is about 8,000. We fixed the length l to 30, and evaluate the increase of
the computation time for each $d=0,$ $\ldots,$

4 . This experiments are done on a PC with Intel Core 2 Duo
E8400 $(3.0GHz)$ with $4GB$ memory, with Linux and gcc. The computation time per pair found does not
increase against the increase of the input length, thus we would say our multi-sort algorithm also scales
for this data.

6 Conclusion

We proposed an efficient algorithm for enumerating all pairs of strings with Harnming distance at most
given d from string set S . We proposed multi-sort algorithm whose computation time is practically linear
time. We proved that the computation time of its variant is bounded by linear of the string length when
the length of strings in the string set is constant. A simple modification of tbe algorithm adapts the
edit distance, and computation of mismatch tolerance. A new similarity continuous interval Hamming
distanoe is introduced to define maximal similar substrings clearly.

We proposed a method of finding similar non-short substrings hom huge strings. We modeled similar
non-short strings by two non-short strings including several short similar substrings. We presented an
efficient algorithm for finding those strings from huge strings. By the computational experiments for
genome sequences, we demonstrated the practical efficiency of the algorithm, and the efficiency of the
parallelization. On the comparison of genome sequences, we could find similar long substrings from human
and mouse genomes in a practically short time.

Acknowledgments

We gratefully thank to Professor Asao Fujiyama of National Institute of Informatics of Japan, Profes-
sor Shinichi Morishita of Tokyo University Doctor Takehiko Itoh of Mitsubishi Research Institute, and
Professor Hidemi Watanabe of Hokkaido University, for their valuable comments. We would also like to
thank to Professor Tsuyoshi Koide and Doctor Juzo Umemori of National Institute of Genetics for their
contribution to the evaluation of the algorithm on practical genome problems. For the parallelization of
the implementation, we would like to thank Yasuhiro Ike of Ybeat, Japan, for his help.

References

1. K. Abrahamson, Generalized String Matching, SIAM Joumal on Computing, 16(6), pp. 1039-1051, 1987.
2. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, Joumal

on Molecular Biology 215, pp. 403-10, 1990.

42

3. S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang Z, W. Miller, D. J. Lipman, Gapped BLAST
and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Research, 25, pp.
3389-3402, 1997.

4. A. Amir, M. Lewenstein, and E. Porat, Faster Algorithms for String Matching with k Mismatches, In Sympo-
sium on Discrete Algorithms, pp. 794-803, 2000.

5. P. Brown and D. Botstein, Exploring the New World of the Genome with DNA Microarrays, Nature Genettcs,
21, pp. 33-37, 2000.

6. J. Feigenbaum, S. Kannan, $\backslash _{\perp}I$. Strauss, and M. Viswanatban, An Approximate ll-difference Algorit}im for
Massive Data Streams, In Proceedings of FOCS99, 1999.

7. D. Kawahara and S. Kurohashi, Case Frame Compilation from the Web using High-Performanoe Computing,
In Proceedings of the 5th Intemational Conference on Language Resources and Evaluatlon (LREC2006), pp.
1344-1347, 2006.

8. U. Manbcr arid G. Myers, Suffix Arrays: A Ncw Mcthod for On-line String Searches, SIAM J. on Comp., 22,
pp. 935-948, 1993.

9. S. Muthukr\’ishnan and S. C. Sahinalp, Approximate Nearest Neighbors and Sequence Comparison with Block
Operations, In Proceedings of 3lnd annual ACM symposium on Theory of Computing, pp. $416\triangleleft 24$, 2000.

10. S. Muthukrishnan and S. C. Sahinalp, Simple and Practical Sequence Nearest Neighbors under Block Edit
Operations, In Proceedings of CPM2002, 2002.

11. W. R. Pearson, Flexible sequence similarity searching with the FASTA3 program package, Methods in Molec-
ular Biology 132, pp. 185-219, 2000.

12. K. Popendorf, Y. Osana, T. Hachiya, and Y. Sakakibara, Murasaki - homology detection across multiple
large-scale genomes, Fifth Annual RECOMB Satellite Workshop on Comparative Genomics, San Diego, USA,
2007.

13. S. Yamada, O. Gotoh, H. Yamana, Improvement in Accuracy of Multiple Sequence Alignment Using Novel
Group-to-group Sequence Alignment Algorithm with Piecewise Linear Gap Cost, BMC Bioinformatics 7, pp.
524, 2006.

14. T. Yamada and S. Morishita, Computing Highly Specific and Mismatch Tolerant Oligomers Efficiently, Bioin-
formatics Conference B00S, 2003.

15. T. Yamada and S. Morisliita, Accelerated Off-target Search Algorithm for siRNA, Bioinformatics 21, pp.
1316-1324, 2005.

43

