
Nonstandard arguments and the characterization of
independence in generic structures

筑波大学数理物質科学研究科 安保 勇希 (Yuki Anbo)
Graduate School of Pure and Applied Sciences,

Tsukuba University

Abstract
以前、 generic 構造を調べるための新たな方法論として超準的手法を

用いる方法を提示し、 generic 構造の安定性の強さを調べることに応用
した [1]. 安定な generic 構造における forking independence はより具
体的な特徴付けが得られることがわかっている。今回は、Wagner [11],
Verbovskiy-Yoneda [101の定理 3.7に、超準的な手法を用いた別証明を
与える。

1 Preliminaries
1.1 Generic structures

We review basic definitions and facts in the study of generic structures. Let
$L=\{R : i\in I\}$ be a relational language. Fix any $\alpha i\in \mathbb{R}_{\geq 0}$ for each $i$ . For
a finite L-structure $A$ , put $\delta(A)=|A|-\sum_{i}\alpha i|R_{i}^{A}|$ . Let $K=\{A$ : finite
L-structures $|\delta(A’)\geq 0,\forall A’\subset A\}$ and $\overline{K}$ be the set of L-structures whose
any finite substructure belongs to K. For $A,$ $B\subset M\in\overline{K}$, we say that $A$

and $B$ are free over $A\cap B$ if $R_{i}^{AB}=R_{i}^{A}\cup R_{i}^{B}$ for each $i$ .

Lemma 1.1 For finite $A$ and $B_{f}$

1. (monotonicity) $\delta(AB)+\delta(A\cap B)\leq\delta(A)+\delta(B)$ ,

2. (modularity equation) $\delta(AB)+\delta(A\cap B)=\delta(A)+\delta(B)$ if and only if
$A$ and $B$ are free over $A\cap B$ .

We define $\delta(A/B)$ the relative predimension of $A$ over $B$ . For finite
$A,$ $B,$ $\delta(A/B)=\delta(AB)-\delta(B)$ . For finite $A$ and arbitrary $B,$ $\delta(A/B)=$

$\inf\{\delta(A-B/B_{0}) : B_{0}\subset finB\}$ . By monotonicity, it is easy to check that
these two definitions have the same value in the case $A$ and $B$ are both
finite.
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Definition 1.2 Let $A$ and $B$ be any members of $K$ with $A\subseteq B$ . We say
that $A$ is closed in $B$ (or $A$ is a strong substructure of $B$ ) if $\delta(A)\leq\delta(B’)$ for
any $A\subseteq B’\subseteq B,$ . If $A$ is closed in $B$ , we write $A\leq B$ . For any members $A$

and $B$ of $\overline{K}$ with $A\subseteq B$ , we say that $A\leq B$ if $A\cap B’\leq B’$ for any finite
$B’\subset B$ .

By monotonicity, it is easy to check that these two definitions are the
same in the case $A$ and $B$ are both finite.

Fact 1.3 Let $M$ be any member of $\overline{K}$ and $A$ be any subset ofM. Then there
exists the smallest closed superset $\overline{A}$ of $A$ in M. We call $\overline{A}$ the closure of $A$

in $M$ .
Note that in the case $\alpha i$ is irrational, $\overline{A}$ is not necessarily finite even if

$A$ is finite.

Fact 1.4 For any subset $A$ of $M,$ $\overline{A}$ is contained in the algebraic closure
acl $(A)$ of $A$ .

Deflnition 1.5 Let $M$ be an L-structure. We say that $M$ is a K-generic
structure if the following conditions are satisfied:

1. $M$ is countable;

2. $M$ is a member of $\overline{If}$ ;

3. For any members $A$ and $B$ of $K$, if $A\leq B$ and $A\leq M$ , then there is
a copy $B$ ‘ of $B$ over $A$ with $B’\leq M$ .

Example 1.6 A countable graph $G$ is called a random graph if it satisfies
the following property: for each $m,$ $n\in\omega$ and all $a_{1},$ $\ldots,$ $a_{m},$ $b_{1},$

$\ldots,$
$b_{n}\in G$ ,

if $\{a_{1}, \ldots, a_{m}\}$ and $\{b_{1}, \ldots, b_{n}\}$ are disjoint, then there exists $c\in G$ such
that $G \models\bigwedge_{1\leq i\leq m}R(c, ai)\wedge\bigwedge_{1\leq j<n}\neg R(c, b_{i})$ . It is well known that a random
graph is uniquely exist. Let $Kb\overline{e}$ the set of all finite graphs and $\delta(A)=|A|$

for any finite graph A. Then the random graph is the K-generic structure.

Let $M$ be a member of K. Put $d(A)= \inf\{\delta(A’)|A\subseteq A’\subset finM\}$ for any
finite subset $A$ of $M$ . We call $d$ a dimension function for $M$ . Note that if
$\overline{A}$ is finite, then $d(A)=\delta(\overline{A})$ . We define $d(A/B)$ , the relative dimension of
$A$ over $B$ as follows. For finite subsets $A$ and $B$ of $M$ , we define $d(A/B)=$
$d(AB)-d(B)$ . For finite $A$ and arbitrary $B$ , put $d(A/B)= \inf\{d(A-B/B_{0})$ :
$B0\subset finB\}$ . Monotonicity of $d$ is proved in Section 3. Then we have that
these two definitions have the same value in the case $A$ and $B$ are both
finite.
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1.2 Stability

Now, we study stability theory very shortly. A more detail explanation is

recorded in many books of stability theory, for example [7].

Definition 1.7 Let $T$ be a theory and $\kappa$ be an infinite cardinal. Let $\mathcal{M}$ be
a big saturated model of $T$ .

1. We say that $T$ is $\kappa$-stable if for any $A\subset \mathcal{M}$ with $|A|=\kappa$ , the cardi-
nality of the set of complete types over $A$ is equal to $\kappa$ .

2. We say that $T$ is stable if $T$ is $\kappa$-stable for some $\kappa$ .

3. Let $M$ be a L-structure. We say that $M$ is $(\kappa-)stable$ if Th $(M)$ is
$(\kappa-)$stable.

Definition 1.8 Let $\kappa$ be an infinite cardinal and $(\overline{a}i)_{i<\kappa}$ be a sequence of
n-tuples in $\mathcal{M}$ . We say that $(\overline{a}i)_{i<\kappa}$ is an indiscernible sequence over $A$ if
for any $k<\omega,$ $i_{1}<\cdots<i_{k}$ and $j_{1}<\cdots<j_{k}$ , we have $tp(\overline{a},.,\overline{a}/A)=$

$tp(\overline{a}j_{1}, ..., \overline{a}_{j_{k}}/A)$ .

Fact 1.9 Suppose that $T$ is stable. Let $(\overline{a}i)_{\{<\hslash}$ be an indiscernible sequence.
For any $k<\omega$ , if $i_{1},$

$\ldots,$
$i_{k}$ are distinct and $j_{1},$ $\ldots,j_{k}$ are distinct, then we

have tp $(\overline{a},.,\overline{a}/A)=$ tp $(\overline{a},.,\overline{a}/A)$ .

Definition 1.10 Suppose that $T$ is stable. Let $\mathcal{M}$ be a big saturated model
of $T$ .

1. Let $\overline{a}$ be a finite tuple in $\mathcal{M}$ and $\varphi(x,\overline{a})$ be an $L(\overline{a})$-formula. We say
that $\varphi(x,\overline{a})$ forks over $A$ if there is an indiscernible sequence $(\overline{a}i)_{i<\omega}$

over $A$ with $\overline{a}_{0}=\overline{a}$ such that $\{\varphi(x,\overline{a}_{i})|i<\omega\}$ is inconsistent.

2. Let $A\subseteq B\subset \mathcal{M}$ and $\Gamma(x)$ be a set of $L(B)$-formulas. We say that
$\Gamma(x)$ forks over $A$ if $\varphi(x)$ forks over $A$ for some $\varphi(x)\in\Gamma(x)$ .

3. Let $A,$ $B$ , and $C$ be subsets of $\mathcal{M}$ . We say that $A$ and $B$ are forking
independent over $C$ and write $A$ $L_{C}B$ if tp $(\overline{a}/BC)$ does not fork over
$C$ for any $\overline{a}\in A$ .
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2 Nonstandard arguments
In this section, we review how to apply a nonstandard argument to the study
of generic structures. Note that arguments in this section is essentially the
same as in [1].

Let $M\in\overline{K}$. We consider $M$ to be a 3-sorted structure:

$(M\cup P\cup \mathbb{R};F, \in, \delta, \leq, d, \cdots)$

where $P$ is the powerset of $M,$ $F$ is a unary relation on $P$ such that for
any subset $A$ of $M,$ $F(A)$ holds if and only if $A$ is a finite set, $\in$ is the
membership relation on $M\cross P$ , and $‘\ldots$ ” contains $L$ and $(+, \cdot, <)$ in R.

We define the nonstandard model $M^{*}$ of $M$ by a sufficiently saturated
elementary extension of this structure:

$(M\cup P\cup \mathbb{R};F, \in, \delta, \leq, d, \cdots)\prec(M^{*}\cup P^{*}\cup \mathbb{R}^{*};F^{**}\in, \delta^{*}, \leq*, d^{*}, \cdots)$ .
Notation 2.1 $\bullet$ For any set variables $X$ and $Y$ , we define $X\subseteq*Y$ as

an abbreviation for $\forall x(x\in^{*}Xarrow x\in^{*}Y)$ .
$\bullet$ Note that a function from $P$ to $P$ which maps each member of $P$ to its

closure is defined by some formula $\varphi(X, Y)$ . Let $A^{*}$ be any member
of $P^{*}$ . We write $\overline{A^{*}}$ for the realization of $\varphi(A^{*}, Y)$ . We say that $A^{*}$ is
closed if $\overline{A^{*}}=A^{*}$ holds.

$\bullet$ We denote $F^{*}$ $($ resp., $\in*,$ $\subseteq*,$ $\delta^{*},$ $\leq*,$ $d^{*})$ simply by $F$ (resp., $\in,$ $\subseteq,$
$\delta$ ,

$\leq,$ $d)$ if there is no confusion.

$\bullet$ Ler $r$ and $s$ be any elements of $\mathbb{R}^{*}$ . We write $r\approx s$ if $-a<r-s<a$
holds in $M^{*}$ for all positive real numbers $a$ .

Deflnition 2.2 1. Let $A^{*}$ be any member of $P^{*}$ . We say that $A^{*}$ is a
hyperfinite set if $F^{*}(A^{*})$ holds in $M^{*}$ .

2. Let $A$ be any subset of $M$ and $A^{*}$ be any hyperfinite set. We say that
$A^{*}$ is a hyperfinite extension of $A$ and write $A^{*}\supset hf$ $A$ if

$\bullet$ $M^{*}\models a\in*A^{*}$ for each member $a$ of $A$ , and
$\bullet M^{*}\models A^{*}\subseteq^{*}A$ .

Remark 2.3 For any subset $A$ of $M$ , there exists a hyperfinite extension
of $A$ .
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Proof: It is enough to prove that the following set of formulas is satisfiable:

$\Gamma(X)=$ { $a\in X|a$ is a member of $A$} $\cup\{X\subseteq A\}\cup\{F(X)\}$ .

But for any finite subset $A_{0}$ of $A,$ $A_{0}$ realizes the following set of formulas:

$\Gamma_{0}(X)=$ { $a\in X|a$ is a member of $A_{0}$ } $\cup\{X\subseteq A\}\cup\{F(X)\}$ .

So, by compactness, $\Gamma(X)$ is satisfiable.

Lemma 2.4 For any real number $r$ , finite tuple $\overline{a}$ in $M$ , and subset $A$ of
$M$ , the following are equivalent:

1. $\delta(\vec{a}/A)=r$ ;

2. $\delta^{*}(\overline{a}/A^{*})\approx r$ for any hyperfinite extension $A^{*}$ of $A$ ;

3. $\delta^{*}(\vec{a}/A^{*})\approx r$ , for some hyperfinite extension $A^{*}$ of $A$ .

Proof: We may assume that $a\cap A=\emptyset$ .
$(1\Rightarrow 2)$ By monotonicity of $\delta$ , for each $n<\omega$ , there is a finite subset

$A_{n}$ of $A$ such that

$M\models\forall X(F(X)\wedge A_{n}\subseteq X\subseteq Aarrow r\leq\delta(\overline{a}/X)\leq r+1/n)$ .

The above formula holds also in $M^{*}$ for each $n<\omega$ . So if $A^{*}$ is a hyperfinite
extension of $A$ , then we have

$r\leq\delta^{*}(\overline{a}/A^{*})\leq r+1/n$

for each $n<\omega$ . So we have $\delta^{*}(\overline{a}/A^{*})\approx r$ .
$(2\Rightarrow 3)$ Trivial.
$(3\Rightarrow 1)$ We assume 3 and choose a witness $A^{*}$ . Then $\delta^{*}(\overline{a}/A^{*})\approx r$ .

Suppose 1 is not the case. Let $s=\delta(\overline{a}/A)$ . Then $s\neq r$ . By $(1\Rightarrow 2)$ , we
have $\delta^{*}(\tilde{a}/A^{*})\approx s$ . A contradiction.

Deflnition 2.5 Let $A^{*}$ be a hyperfinite set.

1. Let $\epsilon$ be any positive real number. We say that $A^{*}$ is $\epsilon$-closed if
$\delta(B^{*}/A^{*})\geq-\epsilon$ for any hyperfinite set $B^{*}$ .

2. We say that $A^{*}$ is quasi-closed if $\delta(B^{*}/A^{*})>0\sim$ (that is, $\delta(B^{*}/A^{*})\geq-\epsilon$

for all positive real numbers) for any hyperfinite set $B^{*}$ .
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Remark 2.6 For any hyperfinite set $A^{*},$ $A^{*}$ is quasi-closed if and only if
$d(A^{*})\approx\delta(A^{*})$ .

Proof: Immediate.

Remark 2.7 1. Let $B$ be a closed subset of M. Then for any finite
subset $A$ of $B$ and any positive real number $\epsilon$ , there is a finite $\epsilon$ -closed
set $B_{\epsilon}$ with $A\subseteq B_{\epsilon}\subseteq B$ .

2. Let $A$ be a finite subset of M. Then for any $\epsilon>0$ and any $A\subseteq B\subset fin$

$A$ , there exists $B\subseteq C\subset fin\overline{A}$ such that $\delta(C)\leq d(A)+\epsilon$ .

3. Let $A$ be a finite subset of M. Suppose that $(B_{n})_{n<\omega}$ is an increasing
sequence of subsets $of\overline{A}$ such that $\bigcup_{n<\omega}B_{n}=\overline{A}$ and $B_{n}$ is $\frac{1}{n}$ -closed
for each $n<\omega$ . Then $\lim_{narrow\omega}\delta(B_{n})=d(A)$ .

4. Let $A\subseteq B\subset fin$ A. Then $d(A)=d(B)$ .
Proof: 1. Otherwise, for any finite $A_{0}\subseteq B$ , there is a finite set $A_{1}\subseteq B$

such that $\delta(A_{1}/A_{0})<-\epsilon$ . Iterating this, we have a sequence of finite sets
$(A_{i})_{i<\omega}$ such that $\delta(A_{n}/A_{0}\ldots A_{n-1})<-\epsilon$ for each $n<\omega$ . For sufficiently
large $n<\omega$ , we must have $\delta(A_{0}\ldots A_{n})<0$ , a contradiction.

2. We may assume that $\overline{A}$ is infinite. By the definition of $d(A)$ , there
exists $A\subseteq C_{0}\subset fin\overline{A}$ such that $\delta(C_{0})\leq d(A)+\epsilon$ . Because $C_{0}\not\leq\overline{A}$, there
exists $C_{0}\subseteq C_{1}\subset fin\overline{A}$ such that $\delta(C_{1})<\delta(C_{0})$ . Iterating this, we can find
$C$ such that $B\subseteq C\subset fin\overline{A}$ and $\delta(C)<\delta(C_{0})\leq d(A)+\epsilon$ .

3. Fix arbitrary $\epsilon>0$ . For any sufficiently large $n,$ $B_{n}$ is $\epsilon$-closed. By 2,
there exists $B_{n}\subseteq C_{n}\subset fin\overline{A}$ such that $\delta(C_{n})\leq d(A)+\epsilon$ for each $n$ . Then
$\delta(B_{n})\leq d(A)+2\epsilon$ . So, we have $\lim_{narrow t\nu}\delta(B_{n})\leq d(A)$ . The other direction
is clear.

4. Immediate from 3.

Lemma 2.8 Let $A$ be a finite subset of $M$ and $B,$ $C$ be any subsets of $M$ .
If $B\subseteq C$ , then $d(A/B)\geq d(A/C)$ .
Proof: Immediate from 4 of the above remark.

This Lemma is called monotonicity of $d$ . It shows that two definitions
of $d(A/B)$ have the same value in the case $A$ and $B$ are finite.

Lemma 2.9 For any real number $r_{f}$ finite tuple $\overline{a}$ in $M$ and subset $A$ of
$M$ , the following are equivalent:

1. $d(\vec{a}/A)=r$ ;
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2. $d(\overline{a}/A^{*})\approx r$ for any hyperfinite extension $A^{*}$ of $A$ ;

3. $d(\overline{a}/A^{*})\approx r$ , for some hyperfinite extension $A^{*}$ of $A$ .

Proof: By monotonicity of $d$ , we can prove this lemma in the same way of
the proof of Lemma 2.4.

Lemma 2.10 For any subset $A$ of $M$ , the following conditions are equiva-
lent:

1. $A$ is closed;

2. there is a quasi-closed hyperfinite extension of $A$ .

Proof: $(1\Rightarrow 2)$ By Remark 2.7.1.
$(2\Rightarrow 1)$ Suppose $A$ is not closed. Then there exists finite subset $B$ of $M$

such that $\delta(B/A\cap B)<0$ . Take any hyperfinite extension $A^{*}$ of $A$ . Because
$A\cap B\subseteq*A^{*}\subseteq^{*}A$ , we have $\delta(B/A^{*})\leq\delta(B/B\cap A)<0$ .

Definition 2.11 [11]

1. Let $A$ and $B$ be any finite subsets of $M$ and $C$ be arbitrary subset of
$M$ . Then we say that $A$ and $B$ are d-independent over $C$ and write
$A\backslash L_{c^{B}}^{d}$ if the following conditions are satisfied:

$\bullet$ $d(A/BC)=d(A/C)$ , and
$\bullet\overline{AC}\cap\overline{BC}=\overline{C}$ .

2. For arbitrary subsets $A,$ $B$ , and $C$ of $M$ , we say that $A$ and $B$ are

d-independent over $C$ if $A_{0}\Downarrow_{C}^{d}B_{0}$ for every finite subset $A_{0}$ of $A$ and
every finite subset $B_{0}$ of $B$ .

Note that for closed sets $A$ and $B,$ $A$ and $B$ are d-independent over $A\cap B$

if and only if $d(A_{0}/B_{0}(A\cap B))=d(A_{0}/A\cap B)$ for every finite subset $A_{0}$ of
$A$ and every finite subset $B_{0}$ of $B$ .

Definition 2.12 Let $A$ and $B$ be closed subsets of $M$ . Then we say that $A$

and $B$ are $d^{*}$-independent over $A\cap B$ if there exist a hyperfinite extension
$A^{*}$ of $A$ and a hyperfinite extension $B^{*}$ of $B$ such that

$\bullet$ $A^{*}$ and $B^{*}$ are both quasi-closed and

$\bullet d(A^{*}/B^{*})=d(A^{*}/A^{*}\cap B^{*})$ .
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Proposition 2.13 Let $A$ and $B$ be closed subsets of M. Then the fotlowing
are equivalent:

1. $A$ and $B$ are d-independent over $A\cap B$ ;

2. $A$ and $B$ are $d^{*}$ -independent over $A\cap B$ ;

3. There exist a hyperfinite extension $A^{*}$ of $A$ and a hyperfinite extension
$B^{*}$ of $B$ such that

$\bullet$ $A^{*}$ and $B^{*}$ are both quasi-closed,
$\bullet$ $d(A^{*}/B^{*})=d(A^{*}/A^{*}\cap B^{*})$ , and
$\bullet(A^{*}B^{*})\cap A\cap B=A^{*}\cap B^{*}$ .

Proof: $(3\Rightarrow 2)$ Trivial.
$(2\Rightarrow 1)$ Let $A^{*},$ $B^{*}$ be a witness of $d^{*}$-independence. Take any finite

subset $A$‘ of $A$ and any finite subset $B’$ of $B$ . Then $d(A^{*}/B^{*})\approx d(A^{*}/A^{*}\cap$

$B^{*})$ . By transposition, $d(B^{*}/A^{*})\approx d(B^{*}/A^{*}\cap B^{*})$ . By monotonicity,
$d(B^{*}/A’(A^{*}\cap B^{*}))\approx d(B^{*}/A^{*}\cap B^{*})$ . Again by transposition, $d(A’/B^{*})\approx$

$d(A’/A^{*}\cap B^{*})$ . Again by monotonicity, $d(A’/B’(A^{*}\cap B^{*}))\approx d(A’/A^{*}\cap B^{*})$ .
Finally, by Lemma 2.9, we have $d(A’/B’(A\cap B))=d(A’/A\cap B)$ .

$(1\Rightarrow 3)$ Take $A^{*}\supset hf$ $A$ and $B^{*}\supset hfB$ such that $A^{*}$ and $B^{*}$ are both
closed and $(A^{*}B^{*})\cap A\cap B=A^{*}\cap B^{*}$ .

By compactness, it is enough to prove that for any finite subset $A_{0}$ of
$A$ , the following set of formulas are satisfiable:

1. $F(X)$

2. $X\subseteq A$

3. $A_{0}\subseteq X$

4. “ $X$ is quasi-closed”

5. ”
$d(X/B^{*})\approx d(X/X\cap B^{*})$ ”

6. $(XB^{*})\cap A\cap B=X\cap B^{*}$

Note that 4 and 5 are both expressed by an infinite set of formulas.
We show that $A_{0}^{*}=\overline{A_{0}(A^{*}\cap B^{*})}\cap A^{*}$ is a realization of the above set of
formulas. 1, 2, 3, and 4 are clear.
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5. First,

$d(A_{0}^{*}/B^{*})$ $=$ $d(A_{0}^{*}B^{*})-d(B^{*})$

$=$ $d(A_{0}B^{*})-d(B^{*})$

$=$ $d(A_{0}/B^{*})$

$\approx$ $d(A_{0}/B)$ .
Second,

$d(A_{0}^{*}/A_{0}^{*}\cap B^{*})$ $=$ $d(A_{0}^{*})-d(A_{0}^{*}\cap B^{*})$

$=$ $d(A_{0}(A^{*}\cap B^{*}))-d(A_{0}^{*}\cap B^{*})$

$\leq$ $d(A_{0}(A^{*}\cap B^{*}))-d(A^{*}\cap B^{*})$

$=$ $d(A_{0}/A^{*}\cap B^{*})$

$\approx$ $d(A_{0}/A\cap B)$

Finally, by d-independence of $A$ and $B,$ $d(A_{0}/B)=d(A_{0}/A\cap B)$ .
Hence, $d(A_{0}^{*}/A_{0}^{*}\cap B^{*})\sim<d(A_{0}^{*}/B^{*})$ . The other direction is clear by

monotonicity.
6. Note that $(A_{0}^{*}B^{*})\cap A\cap B=(A_{0}^{*}\cap A\cap B)\cup(B^{*}\cap A\cap B)\subseteq(A^{*}\cap B)\cup$

$(A^{*}\cap B^{*})\subseteq A^{*}\cap B^{*}\subseteq A_{0}^{*}\cap B^{*}$ .

3 Characterization of independence in generic struc-
tures

In stable generic structures, we can define two notions of independence:
forking independence and d-independence. Wagner [11] showed that for
closed sets $A$ and $B$ , if $A\cap B$ is algebraically closed, then $A$ and $B$ are
forking independent over $A\cap B$ if and only if $A$ and $B$ are d-independent
over $A\cap B$ . He proved the result in the case that $K$ satisfies finite closure
condition. Verbovskiy and Yoneda [10] showed that the same result without
assuming the finite closure condition. In this paper, we also does not assume
the finite closure condition. To show the equivalence of forking independence
and d-independence, we prove the following two statements:

1. for closed sets $A$ and $B,$ $A$ and $B$ are d-independent over $A\cap B$ if and
only if $A$ and $B$ are free over $A\cap B$ and $AB$ is closed;

2. for closed sets $A$ and $B$ , if $A\cap B$ is algebraically closed, then $A$ and
$B$ are forking independent over $A\cap B$ if and only if $A$ and $B$ are free
over $A\cap B$ .
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Wagner proved item 1 by using the epsilon-delta argument. In the first
half of this section, we give a nonstandard proof of item 1 by using Propo-
sition 2.13.

Both in [11] and [10], item 1 is used to prove item 2. Tsuboi [9] proved
item 2 without using item 1. In the second half of this section, we give a
nonstandard proof of item 2 by using the idea in [9].

Let $M\in\overline{K}$. Next lemma is a nonstandard version of Lemma ??

Lemma 3.1 For any subsets $A$ and $B$ of $M_{2}$ the following conditions are
equivalent;.

1. $A$ and $B$ are free over $A\cap B$ ;

2. For any $A^{*}\supset hf$ $A$ and any $B^{*}\supset hfB$ with $(A^{*}B^{*})\cap A\cap B=A^{*}\cap B_{l}^{*}$

$\delta(A^{*}/A^{*}\cap B^{*})\approx\delta(A^{*}/B^{*})$ ;

3. There exist $A^{*}\supset hf$ $A$ and $B^{*}\supset hfB$ such that $(A^{*}B^{*})\cap A\cap B=A^{*}\cap B^{*}$

and
$\delta(A^{*}/A^{*}\cap B^{*})\approx\delta(A^{*}/B^{*})$ .

Proof: $(1\Rightarrow 2)$ Suppose 2 is not the case. The following finite set of
formulas are satisfiable:

$\bullet F(X)\wedge F(Y)$

$\bullet X\subseteq A\wedge Y\subseteq B$

$\bullet(XY)\cap A\cap B=X\cap Y$

$\bullet\delta(X/X\cap Y)>\delta(X/Y)$ .
Let $A_{0}$ and $B_{0}$ be subsets of $M$ satisfying the above formulas. Then $A_{0}$ and
$B_{0}$ witness that $A$ and $B$ are not free over $A\cap B$ .

$(2\Rightarrow 3)$ Trivial.
$(3\Rightarrow 1)$ Suppose 1 is not the case. Then there exist finite $A‘\subset A$ and

finite $B’\subset B$ such that

$(A’B’)\cap A\cap B=A’\cap B’$ and $\delta(A’/A’\cap B’)<\delta(A’/B’)$ .
On the other hands,

$M$ $\models$ $\forall X,Y\in F[($ョ$X’\subset finX,$ ョ$Y’\subset finY$

$(X’Y’)\cap X\cap Y=X’\cap Y’\wedge\delta(X’/X’\cap Y’)>\delta(X’/Y’))$

$arrow\delta(X/X\cap Y)>\delta(X/Y)]$ .
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So, for arbitrary $A^{*}\supset hf$ $A$ and $B^{*}\supset hfB$ with $(A^{*}B^{*})\cap A\cap B=A^{*}\cap B^{*}$ ,
we have

$\delta(A^{*}/A^{*}\cap B^{*})>\delta(A^{*}/B^{*})$ .

Proposition 3.2 Let $A$ and $B$ be closed subsets of M. Then the following
are equivalent:

1. AB is closed and $A$ and $B$ are free over $A\cap B$ ;

2. $A$ and $B$ are $d^{*}$ -independent over $A\cap B$ ;

3. $A$ and $B$ are d-independent over $A\cap B$ .

Proof: $(2\Leftrightarrow 3)$ By Proposition 2.13.
$(1\Rightarrow 2)$ Take $D^{*}\supset hf$ AB such that $D^{*}$ is quasi-closed and $\delta(D^{*})=$

$\delta(D^{*}\cap A)+\delta(D^{*}\cap B)-\delta(D^{*}\cap A\cap B)$ . Then we have $d(D^{*})=d(D^{*}\cap A)+$

$d(D^{*}\cap B)-d(D^{*}\cap A\cap B)$ .
$(2\Rightarrow 1)$ Let $A^{*},$ $B^{*}$ be a witness of $d^{*}$-independence. By Proposition

2.13, we may assume that $(A^{*}B^{*})\cap A\cap B=A^{*}\cap B^{*}$ . Then,

$\delta(A^{*}B^{*})$ $\leq$ $\delta(A^{*})+\delta(B^{*})-\delta(A^{*}\cap B^{*})$

$\approx$ $d(A^{*})+d(B^{*})-d(A^{*}\cap B^{*})$

$\approx$ $d(A^{*}B^{*})$ .
The other direction is trivial. So, we have $\delta(A^{*}B^{*})\approx d(A^{*}B^{*})$ and $\delta(A^{*}B^{*})\approx$

$\delta(A^{*})+\delta(B^{*})-\delta(A^{*}\cap B^{*})$ . By Lemma 2.10 and Lemma 3.1, $AB$ is closed
and $A$ and $B$ are free over $A\cap B$ .

Put $T=$ Th $(M)$ . We assume that $T$ is stable. Let $\mathcal{M}$ be a big model of
$T$ . The following fact is easy.

Fact 3.3 [11] Let $A$ and $B$ be subsets of $\mathcal{M}$ . Suppose $A$ and $B$ are free over
$A\cap B$ . Then for any $A’\leq A$ and $B’\leq B$ with $A’\cap B’=A\cap B,$ $A’B’$ is
closed in AB.

Note that for any finite subset $A$ of $\mathcal{M}$ and any $n<\omega$ , the relation
$|A|=n$ is definable. So we may assume that the domain of the function $|*|$

is the set of all hyperfinite sets and the range of it is $\mathbb{R}^{*}$ .

Proposition 3.4 Let $A$ and $B$ be closed subsets of $\mathcal{M}$ . Suppose that $A\cap B$

is algebraically closed. Suppose also that $A$ and $B$ are forking independent
over $A\cap B$ . Then
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1. $A$ and $B$ are free over $A\cap B$ and

2. AB is closed.

Proof: By the above fact, we can assume that $A$ and $B$ are both alge-
braically closed.

Claim A There are sequences $(A_{i})_{i<\omega}$ and $(B_{i});_{<\omega}$ satisfying the following
properties:

$\bullet$ $tp(A_{i}B_{j}/A\cap B)=tp(AB/A\cap B)$ for any $i,j\in\omega$ ;
$\bullet$ $\{A_{i}:i<\omega\}\cup\{B_{i}:i<\omega\}$ is an independent set.

Proof: Let $(B_{i})_{i<\omega}$ be a Morley sequence over $A\cap B$ with $B_{0}=B$ . By
$A\rangle L_{A\cap B}B$ , we can assume tp$(AB_{i}/A\cap B)=$ tp $(AB/A\cap B)$ for any $i<\omega$ .
Take $A_{n+1}$ be a realization of a nonforking extension of tp $(A/ \bigcup_{i<\omega}B_{i})$ to
$\bigcup_{j<n+1}A_{j}\cup\bigcup_{i<\omega}B_{i}$ for each $n$ .

(l)Freeness: Suppose not. For simplicity, we assume that there are a
ternary relation $R\in L$ and elements $a\in A-(A\cap B),$ $b\in B-(A\cap B)$ ,
and $c\in A\cap B$ such that $R(a, b, c)$ holds. By the above claim, there are
$ai\in A_{i}$ and $b_{i}\in B_{i}$ such that for any $i,j<\omega$ , tp $(a_{i}b_{j}c)=$ tp $(abc)$ . In
particular, $R(ai, b_{J}, c)$ holds for any $i,j<\omega$ . Then there are hyperfinite
sets $A^{*}$ with $|A^{*}|\geq n$ (for each $n<\omega$ ) and $B^{*}$ with $|B^{*}|=|A^{*}|$ such that
$\mathcal{M}^{*}\models\forall x\in A^{*}\forall y\in B^{*}R(x, y, c)$ . Then we have

$\delta^{*}(A^{*}B^{*})$ $\leq$ $|A^{*}|+|B^{*}|-\alpha(|A^{*}|\cross|B^{*}|)$

$=$ $|A^{*}|+|A^{*}|-\alpha(|A^{*}|\cross|A^{*}|)$

$<$ $0$ .

A contradiction.
(2)Closedness: Suppose not. For simplicity, we assume that there are

elements $d\in$ acl $(AB)-AB,$ $a\in A$ , and $b\in B$ such that $\gamma:=\delta(d/ab)<0$ .
By the claim, for all $i,j\in\omega$ , we can find $a_{i}\in A_{i},$ $b_{i}\in B_{i}$ and $d_{ij}$ such that
tp(abdAB) $=$ tp $(a_{i}b_{i}d_{ij}A_{i}B_{j})$ .

Claim $B(\bigcup_{(i_{r}j)\in\omega^{2}}d_{ij})\cap(\bigcup_{i\in\omega}A_{i}B_{i})=\emptyset$

Proof: Take any $e\in d_{i,j}$ . By choice of $d_{i,j}$ , we have $e\not\in A_{i}B_{j}$ . By
symmetry, it is enough to show that $e\not\in A_{m}$ for any $m\neq i$ . Note that
$e\in ac1(A;B_{j})$ and acl $(A_{i}B_{j})\cap A_{m}=A\cap B$ by $A_{i}B_{j}\rangle L_{A_{m}}$ . But $e\not\in A\cap B$ ,
so $e\not\in A_{m}$ .
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Claim $Cd_{ij}s$ are distinct.

Proof: By way of a contradiction, we assume $d_{i,j}=d_{i’,j}/$ for some
$(i,j)\neq(i‘, j’)$ . Then $d_{i,j}\in$ acl $(A_{i}B_{j})\cap$ acl $(A_{i}/B_{j^{l}})$ . Note that acl $(A_{i}B_{j})\cap$

acl $(A_{i}B_{j^{f}})=A_{i}$ and if $i\neq i’$ and $j\neq j’,$ $ac1(A_{i}B_{j})\cap$ acl $(A_{i}/B_{j’})=A\cap B$ .
But $d_{i,j}\not\in A_{i}$ . A contradiction.

Note that $\delta(\bigcup_{i<n}a;b_{i})=n\delta(a_{0}b_{0})$ and $\delta(\bigcup_{(i,j)\in n^{2}}d_{(i,j)}/\bigcup_{i<n}a_{i}b_{i})\leq$

$n^{2}\gamma$ for each $n<\omega$ . So, there are hyperfinite sets $A^{*}$ with $|A^{*}|\geq n$ (for

each $n<\omega$), $B^{*}$ with $|B^{*}|=|A^{*}|$ , and $D^{*}$ with $|D^{*}|=|A^{*}|^{2}$ such that
$\delta^{*}(A^{*}B^{*})=|A^{*}|\delta(a_{0}b_{0})$ and $\delta^{*}(D^{*}/A^{*}B^{*})\leq|A^{*}|^{2}\gamma$ .

Then we have

$\delta(D^{*}A^{*}B^{*})$ $\leq$ $\delta(D^{*}/A^{*}B^{*})+\delta(A^{*}B^{*})$

$\leq$ $|A^{*}|^{2}\gamma+|A^{*}|\delta(a_{0}b_{0})$

$<$ $0$ .

A contradiction.

Deflnition 3.5 We say that $T$ has amalgamation over closed sets if for any
$N_{0},$ $N_{1}\models T,$ $A\in\overline{K}$, and closed embeddings $f_{i}:Aarrow N_{i}(i=0,1)$ , there
are $N\models T$ and elementary embeddings $g;:N_{i}arrow N(i=0,1)$ such that
$g_{0}ofo=g_{1}of_{1}$ on $A$ , equivalently for any $N\models T$ and $A_{0},$ $A_{1}\subseteq N$ , if
$A_{0}\cong A_{1}$ and $A_{0}$ and $A_{1}$ are both closed, then tp $(A_{0})=$ tp $(A_{1})$ .

Fact 3.6 [4, 10] If $T$ has amalgamation over closed sets, then $T$ is stable.

Corollary 3.7 If $T$ has amalgamation over closed sets, then for closed sets
$A$ and $B$ with $A\cap B$ is algebraically closed, the following are equivalent:

1. $A$ and $B$ are forking independent oner $A\cap B$ ;

2. $A$ and $B$ are d-independent over $A\cap B$ ;

3. $A$ and $B$ are free over $A\cap B$ and AB is closed.

Proof: We have already proved $(1\Rightarrow 3)$ and $(2\Leftrightarrow 3)$ .
$(3\Rightarrow 1)$ Suppose 3. Take $A’$ such that $A’$ is independent from $B$ over

$A\cap B$ and satisfies tp $(A/A\cap B)$ . By $(1\Rightarrow 3)$ , we have that $A’$ and $B$ are
free over $A\cap B$ and $A’B$ is closed. By amalgamation over closed sets, we
have tp $(AB/A\cap B)=$ tp $(A’B/A\cap B)$ . Hence, $A$ is also independent from
$B$ over $A\cap B$ .

16



References
[1] Y. Anbo, Nonstandard arguments and the stability of generic structures,

preprint

[2] Y. Anbo and K. Ikeda, A Note on Stability Spectrum of Generic Struc-
tures, preprint

[3] J. T. Baldwin, An almost strongly minimal non-Desarguesian projective
plane, Trans. Amer. Math. Soc. 342 (1994) 695-711

[4] J. T. Baldwin and N. Shi, Stable generic structures, Annals of Pure and
Applied Logic 79 (1996) 1-35

[5] B. Herwig, Weight $\omega$ in stable theories with few types, J. Symbolic Logic
60 (1995) 353-373

[6] E. Hrushovski, A new strongly minimal set, Annals of Pure and Applied
Logic 46 (1990) 235-264

[7] A. Pillay, An Introduction to Stability Theory, Oxford University Press,
1983

[8] A. Robinson
$\dagger$ Non-standard analysis, Revised edition, Princeton Univer-

sity Press, 1996

[9] A. Tsuboi, Independence in generic structures, preprint

[10] V. Verbovskiy, I. Yoneda, CM-triviality and relational structures, An-
nals of Pure and Applied Logic, 122 (2003) 175-194

[11] F. O. Wagner, Relational structures and dimensions, Kaye, Richard
(ed.) et al., Automorphisms of first-order structures. Oxford: Clarendon
Press. 153-180 (1994)

17


