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1. INTRODUCTION

This report is a survey of the results that I presented at RIMS, Kyoto
during the conference Expansion of Combinatorial Representation Theory.
The proofs of these results can be found in ajoint paper with Erik Darp\"o [3].

The Clebsch-Gordan problem has its origin in the invariant theory of
Clebsch and Gordan. In [2] Clebsch investigates algebraic forms. One of
his results was later understood as the solution to the following problem
[8]: given two indecomposable representations $V$ and $W$ of $SL_{2}$ , find the
decomposition of their tensor product into a direct sum of indecomposables,

$V \otimes Warrow\sim\bigoplus_{i\in I}U_{i}$
.

This problem, called the Clebsch-Gordan problem can be posed for any
group, or more generally, for any Krull-Schmidt category equipped with a
tensor product. In this $ai\cdot ticle$ we are interested in the category of finite
dimensional modules over the polynomial algebra. Object in this category
correspond to linear operators and the tensor product to the tensor product
of linear operators. One motivation for this problem is that it appears in the
construction of graded IFlirobenius algebras by Wakamatsu in [9], as pointed
out in [6]. We start our investigation with a very classical case.

Let $k$ be a field. For $\lambda\in k$ and $l$ a positive integer, let $J_{\lambda}(l)$ be the Jordan
block of size $l$ and eigenvalue $\lambda$ :

$J_{\lambda}(l)=\{\begin{array}{llll}\lambda 1 \ddots \ddots \lambda 1 \lambda\end{array}\}$

For any two matrices $A$ and $B$ we write $A\sim B$ if $A$ is conjugate to $B$ i.e.,
if $A=TBT^{-1}$ for some invertible matrix $T$ .

If $k$ is algebraically closed, then every square matrix is conjugate to its
Jordan normal form. Hence the Clebsch-Gordan problem amounts to the
following: find the Jordan normal form of the Kronecker product of two
Jordan blocks $J_{\lambda}(l)\otimes J_{\mu}(m)$ for all $\lambda,$ $\mu\in k$ and positive integers $l,$ $m$ . In
characteristic zero this problem was solved quite early by Aitken [1]. There
are also independent solutions by Huppert [5], and by Martsinkovsky and
Vlassov [7]. The solution is given by the following Theorem.
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Theorem 1. For all $\lambda,$ $\mu\in k\backslash \{0\}$ and positive integers $l,$ $m$ the following
fomulae hold:

(1) $J_{\lambda}(l)\otimes J_{\mu}(m)\sim\oplus_{i=0}^{l-1}J_{\lambda\mu}(l+m-2i-1)$ if $l\leq m$ and char $k=0$ ,
(2) $J_{\lambda}(l)\otimes J_{0}(m)\sim lJ_{0}(m)$ ,
(3) $J_{0}(l)\otimes J_{0}(m)\sim(m-l+1)J_{0}(l)\oplus\oplus_{i=1}^{l-1}2J_{0}(i)$ if $l\leq m$ .

In positive characteristic the first formula of Theorem 1 does not hold.
However, one may observe that for $\lambda\neq 0$ ,

$J_{\lambda}(l)\sim J_{\lambda}(1)\otimes J_{1}(l)$

and thus for $\mu\neq 0$ ,

$J_{\lambda}(l)\otimes J_{\mu}(m)\sim J_{\lambda}(1)\otimes J_{\mu}(1)\otimes J_{1}(l)\otimes J_{1}(m)\sim J_{\lambda\mu}(1)\otimes J_{1}(l)\otimes J_{1}(m)$ .
Hence it suffices to find the Jordan normal form of $J_{1}(l)\otimes J_{1}(m)$ , which
will only contain Jordan blocks of eigenvalue 1 since $J_{1}(l)\otimes J_{1}(m)$ is upper
triangular with all diagonal elements equal to 1. For $k$ of prime characteristic
there is an algorithm for finding this Jordan normal form, discovered by Iima
and Iwamatsu [6]. However, no explicit formula is known.

Throughout the rest of the paper, assume that $k$ is perfect i.e., all irre-
ducible polynomials over $k$ have distinct zeros. In this case not every linear
operator can be put on Jordan normal form and we have to adjust the set-up
of the problem accordingly.

2. MAIN PROBLEM

Let $V$ and $W$ be modules over the polynomial algebra $k[x]$ . Then their
tensor product over $k$ has the structure of a $k[x]$-module with $x(v\otimes w)=$

$xv\otimes xw$ for $aUv\in V$ and $w\in W$ . Together with this tensor product
comes the Clebsch-Gordan problem, which if $k$ is algebraically closed, is
to the problem described above. To proceed we recall the classification of
indecomposable k[x]-modules.

Theorem 2. The modules $k[x]/f(x)^{S}$ , where $s$ is a positive integer and
$f(x)\in k[x]$ is irreducible and monic, classify all indecomposable finite-
dimensional k[x]-modules up to isomorphism.

To solve the Clebsch-Gordan problem for $k[x]$ we need to decompose
$k[x]/f(x)^{S}\otimes k[x]/g(x)^{t}$ for all positive integers $s,$ $t$ and irreducible monic
polynomials $f(x),$ $g(x)$ .

The two second formulae of Theorem 1 generalise in the following way.

Proposition 1. Let $s$ and $t$ be positive integers and $f(x)\in k[x]$ in educible
with $f(O)\neq 0$ . Then the following formulae hold.

(1) $k[x]/x^{s}\otimes k[x]/f(x)^{t}arrow\sim t(\deg f)k[x]/x^{s}$ .
(2) $k[x]/x^{s}\otimes k[x]/x^{t}arrow\sim(t-s+1)k[x]/x^{s}\oplus\oplus_{i-arrow 1}^{sarrow 1}2k[x]/x^{i}$ if $s\leq t$ .

It remains to decompose $k[x]/f(x)^{s}\otimes k[x]/g(x)^{t}$ for all positive integers
$s,$ $t$ and irreducible polynomials $f(x),$ $g(x)\in k[x]$ such that $f(O)\neq 0\neq$

$g(0)$ . For $k$ algebraically closed, this case concerns Jordan blocks of non-
zero eigenvalues. As we saw these eigenvalues may be assumed to be equal
to 1. This reduction generalises in the foUowing way.
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Lemma 1. For any positive integer $s$ and irreducible polynomial $f(x)\in k[x]$

with $f(0)\neq 0$ , the k[x]-modules $k[x]/f(x)^{s}$ and $k[x]/(x-1)^{s}\otimes k[x]/f(x)$ are
isomorphic.

Now the remainder of the Clebsch-Gordan problem is divided into two
subproblems:

$\bullet$ Decompose $k[x]/f(x)\otimes k[x]/g(x)$ for all irreducible $f(x),$ $g(x)\in k[x]$

with $f(O)\neq 0\neq g(O)$ .
$\bullet$ Decompose $k[x]/(x-1)^{s}\otimes k[x]/(x-1)^{t}$ for all positive integers $s,$ $t$ .

The first subproblem has a partial solution.

Proposition 2. Let $f(x),g(x)\in k[x]$ be irreducible with $f(O)\neq 0\neq g(0)$ ,
and $\Lambda$ and $M$ their respective sets of zeros in $\overline{k}$ . If

$k[x]/f(x)\otimes k[x]/g(x)arrow\sim\bigoplus_{j\in J}k[x]/h_{j}(x)$

then the zeros in $\overline{k}$ of all $h_{j}(x)$ , counting repetitions, are precisely the num-
bers $\lambda\mu$ , with $(\lambda, \mu)\in\Lambda\cross M$ .

The question remains how the zeros $\lambda\mu$ should be assembled into the
polynomials $h_{j}(x)$ . In general this seems to be a difficult problem. However,
using Galois theory some things can be said. See [3] for details.

The second subproblem can be be interpreted in terms of Jordan blocks.
Namely, if

$J_{1}(s) \otimes J_{1}(t)\sim\bigoplus_{i\in I}J_{1}(l_{i})$
,

then
$k[x]/(x-1)^{\epsilon}\otimes k[x]/(x-1)^{t}arrow\sim\bigoplus_{i\in I}k[x]/(x-1)^{l_{i}}$.

It turns out that this problem is related to modular group representation
theory. To exploit this connection we shall change perspective to the repre-
sentation ring.

3. REPRESENTATION RING

The representation ring $R$ of $k[x]$ , by definition has a $\mathbb{Z}arrow basis$ consisting
of the isoclasses of indecomposable $k[x]$ -modules. For two such isoclasses
[V] and $[W]$ their product is

[$V$] $[W]= \sum_{i\in I}[U_{i}]$
,

where
$V \otimes Warrow\sim\bigoplus_{i\in I}U_{i}$

,

is the decomposition of $V\otimes W$ into indecomposables. The representation
ring is commutative with identity element $[k[x]/(x-1)]$ . Define the ring
morphism

dim $:Rarrow \mathbb{Z}$

by Am[V] $=\dim V$ .
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By Proposition 1, the Z-span of the elements $[k[x]/x^{s}]$ form an ideal $I$

in $R$ . Moreover, if $x$ acts as an automorphism on a $k[x]$ -module $V$ , then
$[V]w=\dim Vw$ for all $w\in I$ .

The division into subproblems described in the previous section can be
reinterpreted as follows. The elements $[k[x]/f(x)]$ , where $f(x)\in k[x]$ is
irreducible and $f(0)\neq 0$ span a subring of $R$ , which we denote by $\overline{R}$ . Also,
the elements $v_{s}:=[k[x]/(x-1)^{s}]$ span a subring that we denote by $R’$ .

Now define a ring structure on $R’\otimes_{Z}\overline{R}\oplus I$ by $(a\otimes b)w=\dim(a)\dim(b)w$

for all $a\in R’,$ $b\in R’$ and $w\in I$ . The relevance of this ring is seen in the
following Theorem. Key steps of the proof are provided by Lemma 1 and
Proposition 1.

Theorem 3. The $\mathbb{Z}$ -linear map
$\phi:R’\otimes_{\mathbb{Z}}\overline{R}\oplus Iarrow R$ ,

defined by $\phi(a\otimes b+w)=ab+w$ is a ring isomorphism.

The multiplicative structure of the ideal $I$ is described by Proposition
1. Moreover the elements in $R’$ and $\vec{R}$ act on $I$ as scalars via dim. Hence
it remains to describe the rings $R’$ and $\overline{R}$ . The ring $\overline{R}$ has the following
description, which follows from Proposition 2.

Proposition 3. Let $G=\mathcal{G}(\overline{k}/k)$ be the absolute Galois group of $k$ and $\overline{k}^{\iota}$

the group of invertibte elements $\iota’n\overline{k}$ . There is an isomorphism of nngs:
$\overline{R}arrow\sim(\mathbb{Z}\overline{k}^{\iota})^{G}$

Where $(\mathbb{Z}\overline{k}^{\iota})^{G}$ denotes the rzng of invariants under $G$ .
The ring structure of $R’$ only depends on the characteristic of $k$ . If

char $k=0$ , then we can use Theorem 1 to describe the ring $R’$ . The re-
sult is as follows.

Tlieorem 4. Assume that the charactemstic of $k$ is zero. The ring morphism
$\phi:\mathbb{Z}[T]arrow R’$,

defined by $T\mapsto v_{2}$ is an isomorphism.

Now assume that char $k=p>0$ . Moreover, set $w_{\alpha}=v_{p^{\alpha}+1}-v_{p^{\alpha}-1}$ .
Then $R$‘ can be viewed as the umion of the representation rings of cyclic p-
groups, which have been described by Green [4]. Ranslating [4, Theorem 3]
we obtain the foUowing result.

Theorem 5. Assume that char $k=p>0$ and let $\alpha\in \mathbb{N}$ . Set $q=p^{\alpha}$ . Then

$w_{\alpha}v_{f}=\{$
$v_{r}v_{r}-v_{q-r}$

if $1\leq r\leq q$

if $q<r\leq(p-1)q$
$v_{r-q}+2v_{pq}-v_{(2p-1)q-r}$ if $(p-1)q<r\leq pq$

Moreover this equation defines th $e$ multiplicative structure of $R’$ .
Theorem 5 can be used to compute the Krull-Schimidt decomposition of

$k[x]/(x-1)^{s}\otimes k[x]/(x-1)^{t}$ or equivalently, write the product $v_{s}v_{t}$ as a hnear
combination of the elements $v\iota$ . First write both $v_{s}$ and $v_{t}$ as polynomials
in the elements $w_{\alpha}$ . Then multiply the polynomials together and write the
result as a linear combination of elements of the form $v_{l}$ using Theorem 5.
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To write $v_{s}$ as a polynomial in the elements $w_{\alpha}$ first put $s=q+r$ for
some $\alpha\in \mathbb{N}$ and $1\leq r\leq(p-1)q$ , where again $q=p^{\alpha}$ . By Theorem 5,

$v_{s}=\{\begin{array}{l}w_{\alpha}v_{r}+v_{s-2r} if 1\leq r\leq qw_{\alpha}v_{r}-v_{sarrow 2q} if q<r\leq(p-1)q.\end{array}$

Applying this formula repeatedly will eventuaUy yield $v_{s}$ as a polynomial in
the elements $w_{\alpha}$ .
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