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1 Introduction (a conjecture)

Let us begin with the following curious identity

$\sum_{\lambda}\Lambda^{|\lambda|}\prod_{s\in\lambda}\frac{1-Qq^{a(\epsilon)}t^{\ell(s)+1}}{1-q^{a(s)}t^{\ell(s)+1}}\frac{1-Qq^{-a(s)-1}t^{-\ell(s)}}{1-q^{-a(s)-1}t^{-\ell(s)}}$

$= \exp\{\sum_{n>0}\frac{1}{n}\frac{\Lambda^{n}}{1-\Lambda^{n}Q^{n}}\frac{(1-t^{n}Q^{n})(1-q^{-n}Q^{n})}{(1-t^{n})(1-q^{-n})}\}$ , (1.1)

where the left hand side is a summation over partitions $\lambda$ , which we will identity with
the Young diagrams in this article. If we denote the length of the i-th row of a Young
diagram $\lambda$ by $\lambda_{i}$ , we have a non-increasing finite sequence $\lambda_{1}\geq\lambda_{2}\geq\cdots\geq\lambda_{i}\geq\lambda_{i+1}\geq$

. . $\geq\lambda_{\ell(\lambda)}>\lambda_{\ell(\lambda)+1}=0$ and we define the weight of the diagrain by $| \lambda|=\sum_{i=1}^{\ell(\lambda)}\lambda_{i}$ .
The conjugate (dual) partition which is given by the transpose of the Young diagram is
denoted by $\lambda^{\vee}$ . The product in (1.1) is taken over all the “boxes” $s=(i,j)$ in $\lambda$ and
$a(s);=\lambda_{i}-j$ and $\ell(s)=\lambda_{j}^{\vee}-i$ are the arm length and the leg length, respectively.
Though we can check this identity by explicit computation for lower orders in $\Lambda$ , we have
no rigorous proof at the moment.

When $Q=0$ the identity (1.1) gives

$\sum_{\lambda}\Lambda^{|\lambda|}\prod_{s\in\lambda}\frac{1}{1-q^{a(s)}t^{\ell(s)+1}}\frac{1}{1-q^{-a(s)-1}t^{-\ell(s)}}=\exp\{\sum_{n>0}\frac{\Lambda^{n}}{n}\frac{1}{(1-t^{n})(1-q^{-n})}\}$, (1.2)

which has been proved by Nakajima and Yoshioka [20]. Their proof is geometric. Namely
we can see that the right hand side is the generating function of the Hilbert series of the
Hilbert scheme $(\mathbb{C}^{2})^{[n]}$ of $n$ points in $\mathbb{C}^{2}$ ;

$\sum_{n=0}^{\infty}\Lambda^{n}chH^{0}((\mathbb{C}^{2})^{[n]}, \mathcal{O})=\prod_{k_{1},k_{2}\geq 0}\frac{1}{(1-t^{k_{1}}q^{-k_{2}}\Lambda)}=\exp\{\sum_{n>0}\frac{\Lambda^{n}}{n}\frac{1}{(1-t^{n})(1-q^{-n})}\}$ .

(1.3)
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On the other hand the left hand side arises from a computation of the generating function
by the localization theorem for toric action, where the fixed points of the toric action are
labeled by partitions. We also have a combinatorial proof based on the Cauchy formula
of the Macdonald function [17];

$\sum_{\lambda}P_{\lambda}(x;q, t)P_{\lambda^{\vee}}(y;t, q)=\exp\{\sum_{n>0}\frac{(-1)^{n-1}}{n}p_{n}(x)p_{n}(y)\}$ . (1.4)

The following formula of the principal specialization of the Macdonald function

$P_{\lambda}(t^{\rho};q, t)= \prod_{e\in\lambda}\frac{(-1)t^{\frac{1}{2}}q^{a(\epsilon)}}{1-q^{a(s)}t^{\ell(s)+1}}$ , $P_{\lambda^{v}}(-q^{\rho};t, q)= \prod_{s\in\lambda}\frac{(-1)q^{-\frac{1}{2}}q^{-a(s)}}{1-q^{-a(s)-1}t^{-\ell(s)}}$, (1.5)

implies the desired identity. When $Q=0$ , the conjecture (1.1) is simplified to

$\sum_{\lambda}\Lambda^{|\lambda|}=\exp\{\sum_{n>0}\sum_{k>0}\frac{1}{n}\Lambda^{n\cdot k}$ (1.6)

We recognize that this is nothing but the generating function of the number of partitions.
Thus our conjecture interpolates the counting of partitions and the enumerative geometry
associated with the Hilbert scheme of $\mathbb{C}^{2}$ .

In this article we will explain how we have arrived at the conjecture (1.1). In section
2 we first review the fact that the Chern-Simons theory on a three dimensional maiiifold
$\Lambda f$ can be regarded as an open topological string theory on the cotangent bundle $T^{*}M$ .
By introducing the Wilson loop operator in the Chem-Simons theory we obtain link
invariants on $M$ as topological correlation function. In section 3 we show the relation
of the link invariants to the topological vertex, which is a kind of building block of
topological string amplitudes on local toric Calabi-Yau threefolds. Finally by the relation
of topological string amplitudes to the Nekrasov’s partition function which is defined by
instanton counting of four dimensional gauge theory, we were led to a refinement of the
topological vertex. This is explained in section 4. We will see that the consistency of the
computation in terms of the refined topological vertex requires the identity (1.1).

2 Chern-Simons theory and open topological string

The Chern-Simons theory is a three dimensional topological gauge theory with the action

$S(A)= \frac{k}{4\pi}\int_{M}$ Tt $(A \wedge dA+\frac{2}{3}A\wedge A\wedge A)$ , (2.1)
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where $A$ is a gauge field (connection one form) on a three dimensional manifold $M$ and
Thr means the Killing form (invariant bilinear form) on the Lie algebra of the gauge group
$G$ . The parameter $k$ has to be an integer for the gauge invariance and is called level.
Since the Chern-Simons theory is topological in the sense that no metric is required to
write down the action, we expect that the path integral

$Z(M)$ $:= \int[\mathcal{D}A]e^{-S(A)}$ , (2.2)

if it is appropriately defined, gives invariants of three manifold $M$ . In fact they are
known as Witten-Reshetikhin-Turaev invariants [27, 25]. Let us consider a link $\mathcal{L}$ in $M$

and suppose that $\mathcal{L}$ consists of the components (knots) $\mathcal{K}_{i}$ . To each component $\mathcal{K}_{i}$ we
assign an integrable representation $R_{i}$ of the affine Kac-Moody algebra of the gauge group
$G$ . In a seminal paper [27] Witten proposed that the link invariants of $\mathcal{L}$ are identified
with the correlation functions of the Chern-Simons theory;

$\langle\prod_{i=1}^{n}W_{R_{\eta}}^{\mathcal{K}_{i\rangle}}$

$:= \frac{1}{Z(M)}\int[\mathcal{D}A]e^{-S(A)}\prod_{i=1}^{n}W_{R_{t}}^{\mathcal{K}_{1}}(A)$ , (2.3)

where
$W_{R}^{\mathcal{K}}(A)$ $:=$ Tr$R(P \exp\oint_{\mathcal{K}}A)$ (2.4)

is called the Wilson loop operator. The right hand side computes the holonomy of the
connection $A$ along the knot $\mathcal{K}$ in the representation $R$ .

Let us consider the Hopf link in $S^{3}$ . We attach representations $\mu$ and $\nu$ to each
component of the Hopf link. Such link is called colored Hopf link. In the following we
consider the case $G=U(N)$ . In this case we can associate integrable representations with
Young diagramsl. The path integral construction of physical states of the Chern-Simons
theory tells us that the invariants (2.3) for a colored Hopf link in $S^{3}$ are essentially the
matrix elements $\mathcal{W}_{\mu\nu}(q, \lambda)$ of the modular $S$ transformation on the space of characters
of the integral representatioiis [27]. It is known that they are given by specializations of
the Schur function $s_{\mu}(x)$ , which is a basis of the space of symmetric functions labeled by
partitions;

$\mathcal{W}_{\mu\nu}(q, \lambda)=\lambda^{\downarrow_{2}}2s_{\mu}(q^{\nu+\rho})s_{\nu}(q^{\rho})\Delta_{+}u\nu$ , (2.5)

where
$q$ $:= \exp(\frac{2\pi i}{N+k})$ , $\lambda$ $:=q^{N}$ (2.6)

lWe will eventually consider large $N$ limit.
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For a partition $\mu$ , the specialization $q^{\mu+\rho}$ means $x_{i}=q^{\mu.-i+\frac{1}{2}}$ . As a special case of (2.5)
we find the quaiitum dimension of the representation $R_{\mu}$ defined by $\mu$ as the invariants
of the unknot;

$\mathcal{W}_{\mu}(q, \lambda)=\lambda^{J\Delta}2s_{\mu}(q^{\rho})=\dim_{q}R_{\mu}$ , (2.7)

where
$s_{\lambda}(q^{\rho})= \frac{q^{\kappa(\lambda)/4}}{\prod_{(i,j)\in\lambda}q^{h(i,j)/2}-q^{-h(i,j)/2}}$ , $h(i,j)$ : the hook length. (2.8)

For any compact three dimensional manifold $M$ , its cotangent bundle $T^{*}M$ is a (non-
compact) Calabi-Yau manifold and thus a consistent target of the string theory. If we
introduce $N$ Lagrangian $D$ branes wrapping on the base space $M$ , then the gauge theory
on the branes gives the $U(N)$ Chern-Simons gauge theory. Thus, the Chern-Simons
theory on $M$ can be regarded as an open topological string theory on the cotangent bundle
$T^{*}M[28]$ . In this setup a knot $\mathcal{K}$ in $\Lambda/I$ is realized as a Lagrangian submanifold $L_{\mathcal{K}}$ of $T^{*}M$

which intersects with the base $M$ along the knot $\mathcal{K}[22]$ . The topological invariants which
are most naturally related to the string theory are the Gromov-Witten invariants, since
they are defined by counting holomorphic maps from a curve to the target space. Here we
find that the link invariants, which inight look quite different from the Gromov-Witten
invariants, are also related to the string theory through the Chern-Simons theory. We
can obtain the invariants of the colored Hopf link in $S^{3}$ by considering topological string
theory on $T^{*}S^{3}$ with an appropriate Lagrangian brane configuration. At this point it is
an amusing fact that the cotangent bundle $T^{*}S^{3}$ is obtained by deforming the conifold
singularity $x^{2}+y^{2}+z^{2}+w^{2}=0$ in $\mathbb{C}^{4}$ , which is the cone over $S^{2}\cross S^{3}$ . The conifold
is the most fundamental singularity in the Calabi-Yau threefolds and one can show that
the deformed conifold defined by $x^{2}+y^{2}+z^{2}+w^{2}=\epsilon>0$ is diffeomorphic to $T^{*}S^{3}[4]$ .
On the other hand by blowing up the conifold singularity we have what is called resolved
conifold, which is a rank two vector bundle $\mathcal{O}(-1)\oplus \mathcal{O}(-1)arrow P^{1}$ over the rational curve.

Now we have to introduce the idea of gauge/gravity correspondence, or open/closed
string correspondence, which is one of the most prominent subjects in the recent de-
velopments of the string theory. The basic idea is that, when the number of branes in
an open string background becomes large, the effect of the branes is equivalent to an
appropriate deformation of the background. The case of our interests is when the result-
ing background has no braiies, nainely when it gives a closed string background. This
intuitively means that the existence of the $D$ brane can be replaced with the curvature
of the space-time. At the technical level this is achieved by summing up all the pos-
sible boundary states of open string in a given background with $D$ branes. When we
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make a perturbative expansion of the free energy $F=\log Z$ of topological open string
by the genus $g$ and the number $h$ of boundaries of the world sheet, we see the struc-
ture $F_{open}= \sum_{g=0}^{\infty}\sum_{h=1}^{\infty}F_{g,h}(z)g_{s}^{2g-2+h}N^{h}$ , where $z$ is the moduli parameters of the open
string background. $N$ is the number of $D$ branes and the string coupling $g_{s}$ plays the role
of the parameter of the genus expansion. Then the open/closed string correspondence
means schematically

$F_{open} \simeq F_{closed}=\sum_{g=0}^{\infty}F_{g}(z;t)g_{s}^{2g-2}$ , $t:=g_{s}N$ , (2.9)

where a new parameter $t$ is regarded as a modulus of the closed string. In the present
case of the deformed conifold $T^{*}S^{3}$ with $N$ Lagrangian branes wrapping on $S^{3}$ , such a
correspondence actually occurs and it is called geometric transition (or large $N$ duality)
[26, 7, 23]. It tums out that the corresponding closed string background is nothing but
the resolved conifold, where the volume (the K\"ahler parameter) of the rational curve $P^{1}$

is given by $t_{B}=g_{8}N$ . The correspondence is given by the coincidenoe of the partition
function in sense of large $N$ expansion as we will explain shortly.

We can compute the topological (closed) string amplitude on the resolved conifold
$X$ : $\mathcal{O}(-1)\oplus \mathcal{O}(-1)arrow P^{1}$ by counting the BPS states which are $D2$ branes wrapping
over a two-cycle $\beta\in H_{2}(X, \mathbb{Z})[8]$ . We may put an arbitrary number of DO branes bound
to the $D2$ brane. Summing up all the contributions from the BPS bound states of such
$D2/D0$ brane system, we obtain the free energy

$F(g_{8})=- \sum_{k=1}^{\infty}\frac{1}{k}\frac{e^{-kt_{B}}}{(2\sinh_{2^{g}}^{\underline{k}_{E}})^{2}}$ , (2.10)

and the partition function

$Z= \exp F=\prod_{n=1}^{\infty}(1-Qq^{n})^{n}$ , (2.11)

where $Q$ $:=e^{-t_{B}}$ and $q$ $:=e^{-g_{S}}$ . On the other hand, the partition function of the Chern-
Simons theory on $S^{3}$ is

$S..(q, N)= \prod_{\triangleleft 1\leq i\leq N}(q^{\frac{1}{2}0-i)}-q^{-\frac{1}{2}(j-i)})$ ,

$= \exp[-\sum_{1\leq i\triangleleft\leq N}(\frac{j-i}{2}\log q-\log(1-q^{j-i}))]$ , (2.12)
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for $SU(N)$ theory. Using the strange forniula for $SU(N)$

$\frac{1}{2}\sum_{1\leq i<j\leq N}(j-i)=\frac{1}{12}N(N^{2}-1)=\rho_{N}^{2}$ , (2.13)

and

$\sum_{1\leq i<j\leq N}\log(1-q^{(j-i)})=-\sum_{m=1}^{\infty}[\frac{Nq^{m}}{m(1-q^{m})}-\frac{q^{m}-q^{m(N+1)}}{m(1-q^{m})^{2}}]$ , (2.14)

we find
$q^{\rho_{N}^{2}+\frac{N}{24}}S..(q, N)=M(q)\eta(q)^{N}N_{0}(q, \lambda)$ , (2.15)

where $\lambda=q^{N}$ and

$N_{0}(q, \lambda)=\exp(-\sum_{n=1}^{\infty}\frac{q^{n}}{n(1-q^{n})^{2}}\lambda^{n})=\prod_{n=1}^{\infty}(1-\lambda^{-1}q^{n})^{n}$ (2.16)

The function
$M(q)$

$:= \prod_{k>0}(1-q^{k})^{-k}$
, (2.17)

is known as the MacMahon function. Note that the eta function

$\eta(q)=q^{1/24}\prod_{n}(1-q^{n})$ , (2.18)

appears as an overall normalization factor. We find that the function $N_{0}(q, \lambda)$ is nothing
but the partition function of the resolved conifold! (See (2.11).) If we identify the $t$

Hooft coupling $t=g_{s}N$ with the K\"ahler parameter $t_{B}$ of the resolved conifold geometry,
we find an agreement of two partition functions. As mentioned above when we realize
the Chern-Simons theory as topological open string theory, we have another Lagrangiaii
branes intersection with $S^{3}$ along a link. In the geometric transition these branes survive
and we have holomorphic branes (2 cycles) in the resolved conifold as a renmant of the
original link in $S^{3}$ .

3 Topological vertex and instanton counting

The topological vertex $C_{\lambda_{1}\lambda_{2}\lambda_{3}}(q)$ is a topological open string amplitude on the flat Calabi-
Yau manifold $\mathbb{C}^{3}$ with three Lagrangian $D$ brane insertions [1]. The boundaries of open
string should be ended on the branes. The boundary state 1 $\vec{k}\rangle$ on each brane is labeled
by $\tilde{k}=(k_{1}, k_{2}, \cdots, k_{n}, \cdots)$ , where $k_{n}$ denotes the number of boundaries with winding
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number $n$ . They are naturally identified with the conjugacy classes $C(\vec{k})$ of the symmetric
group. By the Frobenius relation (or in terms of the character $\chi_{R_{\mu}}$ of the symmetric
group), we can change the winding number base $|\vec{k}\rangle$ to the representation base $|R_{\mu}\rangle$

labeled by partitions;

$|R_{\mu} \rangle=\sum_{\vec{k}}\frac{\chi_{R_{\mu}}(C(k))\prec}{z_{\vec{k}}}|\vec{k}\rangle$, $z_{\vec{k}}$

$:= \prod_{j}k_{j}!j^{k_{j}}$ (3.1)

The topological vertex has three indices of partitions $(\lambda_{1}, \lambda_{2}, \lambda_{3})$ which specify three
boundary states on the branes and the topological open string amplitude on $\mathbb{C}^{3}$ is ex-
panded in this base;

$Z_{\mathbb{C}^{3}}(q)= \sum_{\lambda_{1},\lambda_{2},\lambda_{3}}C_{\lambda_{1}\lambda_{2}\lambda_{3}}(q)|R_{\lambda_{1}}\rangle\otimes|R_{\lambda_{2}}\rangle\otimes|R_{\lambda_{3}}\rangle$
, (3.2)

where, as before, $q$ is related to the string coupling $g_{s}$ by $q=\exp(-g_{s})$ .
In the last section we have reviewed that the invariants of the colored Hopf link are

given by topological open string amplitudes on $T^{*}S^{3}$ with Lagrangian branes. By the
large $N$ duality the amplitudes agree with topological string ainplitude on the resolved
conifold $\mathcal{O}(-1)\oplus \mathcal{O}(-1)arrow P^{1}$ with appropriate brane insertions. Furthermore, since
the volume of the base $P^{1}$ is given by $t_{B}=g_{s}N$ , the leading term of $N^{-1}$ expansion
corresponds to the limit where the volume of $P^{1}$ becomes infinite, which can be approx-
imated by the flat space $\mathbb{C}^{3}$ . Thus, we can relate the topological vertex to the Hopf link
invariants in large $N$ limit

$W_{\mu\nu}(q)= \lim_{Narrow\infty}\lambda^{-k_{2\mathcal{W}_{\mu\nu}(q,\lambda)}^{-u\nu}}=s_{\mu}(q^{\nu+\rho})s_{\nu}(q^{\rho})$ . (3.3)

After these rather long arguments [1], we find

$C_{\lambda_{1}\lambda_{2}\lambda_{3}}(q)=q^{\kappa\lambda} \perp_{2}11^{\underline{\kappa(}\lambda}+2s1\sum_{\mu_{1},\mu_{3},\nu}N_{\mu_{1}\nu}^{\lambda_{1}}N_{\mu_{3}\nu}^{\lambda_{3\frac{W_{\mu_{1}\lambda_{2}^{\vee}}W_{\lambda_{2}\mu_{3}}}{W_{\lambda_{2}}}}^{\vee}}.$ ’ (3.4)

where $\bullet$ means the trivial representation and $N_{\mu\nu}^{\lambda}$ is the Littlewood-Richardson coeffi-
cients (the branching coefficients of the tensor product). The integer $\kappa(\lambda)$ is defined by
$\kappa(\lambda):=2\sum_{(i_{2}j)\in\lambda}(j-i)$ . Substituting (3.3) to (3.5) we obtain

$C_{\lambda_{1}\lambda_{2}\lambda_{3}}(q)=q^{\underline{\hslash}L_{2}^{\lambda}1}s_{\lambda_{2}}(q^{\rho}) \sum_{\mu}s_{\lambda_{1}/\mu}(q^{\lambda_{2}^{\vee}+\rho})s_{\lambda_{3}^{\vee}/\mu}(q^{\lambda_{2}+\rho})$ , (3.5)

where the skew Schur function is defined by $s_{\lambda/\mu}(x)= \sum_{\nu}N_{\mu\nu}^{\lambda}s_{\nu}(x)$ .
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The topological vertex has a quite suggestive interpretation as the generating function
of the number of plane partitions with a fixed boundary condition [21]. We consider the
plane partitions $\pi$ whose asymptotic behaviors at infinity are fixed by three partitions
$\lambda_{1},$ $\lambda_{2},$ $\lambda_{3}$ and define the generating function by

$Z_{\lambda_{1}\lambda_{2}\lambda_{3}}(q) \sim\sum_{\pi}q^{|\pi|}$
, (3.6)

where I $\pi|$ denotes the number of cubes or the volume of $\pi$ . It was shown that [21]

$Z_{\lambda_{1}\lambda_{2}\lambda_{3}}(q)=M(q)\cdot C_{\lambda_{1}\lambda_{2}\lambda_{3}}(q)$ , (3.7)

where the MacMahon function $M(q)= \prod_{k>0}(1-q^{k})^{\sim k}$ has already appeared in the
partition function of the Chern-Simons theory on $S^{3}$ . We see that the deviation of the
generating function from the MacMahon function due to the asymptotic conditions $\lambda_{i}$ is
given by the topological vertex. Though it is not obvious at all in (3.5), the relation to
the enumerative problem of plane partitions tells us that the topological vertex enjoys
the cyclic syinmetry $C_{\lambda_{1}\lambda_{2}\lambda_{3}}(q)=C_{\lambda_{2}\lambda_{3}\lambda_{1}}(q)=C_{\lambda_{3}\lambda_{1}\lambda_{2}}(q)$ .

The topological vertex is a building block of topological string amplitudes on toric
Calabi-Yau threefold in the following sense. We consider the dual toric diagram to the
Newton polyhedron of a toric (non-compact) Calabi-Yau manifold $X$ . It is a tri-valent
diagram in $\mathbb{R}^{3}$ and encodes the toric geometry of $X$ . It shows the degeneration loci
of the toric action on $X$ . The face, the edge and the vertex in the diagram represent
invariant 4-cycle (divisor), 2-cycle (curve), 0-cycle (point) of $(\mathbb{C}^{\cross})^{3}$ action, respectively.
Due to the Calabi-Yau condition the vertices of the diagram other than the origin lie on a
conmion plane, say $z=1$ , in $\mathbb{R}^{3}$ . Usually we only show the projection of the polyhedron
on the plane. A typical example of toric Calabi-Yau threefold is the total space of the
canonical bundle $K_{S}$ of a toric (Fano) surface $S$ . In this case the projection is nothing
but the toric diagram of $S$ itself. One may consider a $T^{2}$ fibration on the plane, which
is regarded as a Lagrangian submanifold of $X$ . Along the edge of the diagram one of
the cycles of $T^{2}$ shrinks and the dual cycle is left as $S^{1}$ fiber. The direction of the edge
shows wliich cycle collapses. At the vertex the fiber is completely degenerate. The basic
idea of the topological vertex formalism is simple. We divide the diagram into tri-valent
vertices connected by edges, which correspond to invariant rational curves. For each
vertex we can associate an affine local coordinate patch of the toric Calabi-Yau manifold.
The decomposition of the diagram physically meaiis that we put D-brane/aliti-D-brane
pair to cut the maiiifold into affine spaces which are homeomorphic to $\mathbb{C}^{3}$ . Since the
vertex is tri-valent, there are three D-brane/anti-D-brane pairs in each local coordinate
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patch and this is nothing but the configuration where the topological vertex computes
the amplitude. If we fix the boundary states $|R_{\lambda_{i}}\rangle$ on three D-brane/anti-D-brane pairs,
then the topological string amplitude on each affine space is given by the topological
vertex $C_{\lambda_{1}\lambda_{2}\lambda_{3}}(q)$ . According to the localization theorem, if we consider holomorphic
maps from the world sheet to the target space with toric action, the map localizes to the
invariant loci of the toric action. This meaiis the map localizes on the edges and vertices
of the diagram. Thus we expect that total amplitude is obtained by appropriately gluing
the topological vertex along the edges of the toric diagram.

The rule of computation is as follows;
$\bullet$ Decompose the toric diagram into tri-valent vertices connected by internal (com-

pact) edges. Some of the vertices have external (non-compact) edges. For each
edge assign an integer vector $v_{i}$ describing the direction of shrinking cycle and a
partition $\mu_{i}$ .

$\bullet$ For each vertex order three edges, for exainple, clockwise and associate the topo-
logical vertex $C_{\lambda_{1},\lambda_{2},\lambda_{3}}(q)$ , where $\lambda=\mu$ if the vector $v_{i}$ is incoming and $\lambda=\mu^{\vee}$ if it
is outgoing.

$\bullet$ Glue all the topological vertices along their common edges with the factor (propa-
gator)

$(-1)q^{-\lrcorner}e^{arrow|\mu.|t_{i}}$ , (3.8)

and take the summation over all the partitions assigned to internal edges. The index
$n_{i}$ is computed for each edges from the date of integer vectors $v_{i}$ at the two vertices
which the edge connects. We refer to the original reference [1] for details. The
factor $q^{-\not\cong\kappa(\mu_{i})}$ accommodates the fraining at two vertices. Finally the parameter
$t_{i}$ is the K\"ahler parameter of the rational curve that corresponds to the edge.

To illustrate the rule let us look at the topological string amplitude on the local
Hirzebruch surface $K_{F_{0}}$ . Since $F_{0}\simeq P^{1}\cross P^{1}$ is covered by four local coordinate patches,
the toric diagram consists of four vertices whidi are glued together as shown in Fig.1.
To compute the amplitude, we assign partitions $\lambda_{2},$ $\lambda_{4}$ to the base $P^{1}$ and $\lambda_{1},$ $\lambda_{3}$ to the
fiber $P^{1}$ . The extemal edges have the trivial representations. Henoe we can put one of
the indices of the topological vertex trivial and the amplitude is obtained by gluing four
vertices of type $C_{\mu\nu\vee}(q)=q^{arrow\not\simeq^{n\nu}}s_{\mu}(q^{\rho})s_{\nu}(q^{\mu+\rho})=q^{-\not\simeq^{\hslash V}}W_{\mu\nu}(q)$ as follows;

$Z_{topstr}^{(F_{0})}(t_{B}, t_{F};q)= \sum_{\lambda_{1}\cdots\lambda_{4}}W_{\lambda_{4}\lambda_{1}}(q)W_{\lambda_{1}\lambda_{2}}(q)W_{\lambda_{2}\lambda_{3}}(q)W_{\lambda_{3}\lambda_{4}}(q)\cdot e^{-t_{F}\cdot(|\lambda_{1}|+|\lambda_{3}|)-t_{B}\cdot(|\lambda_{2}|+|\lambda_{4}|)}$

(3.9)
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$v_{1}=(0,1),$ $v_{2}=(1,0)$

$v_{3}=(0, -1),$ $v_{4}=(-1,0)$

$n_{1}=n_{2}=n_{3}=n_{4}=-1$

Figure 1: Dual toric diagram of $F_{0}$

The index in (3.8) is $n_{i}=-1$ for all the internal edges in Fig. 1 and the factors $\kappa(\lambda_{i})$ of
the topological vertex are canceled by the gluing factors. Introducing

$K_{\lambda_{2}\lambda_{4}}(Q_{F};q):= \sum_{\lambda}W_{\lambda_{2}\lambda}W_{\lambda_{4}\lambda}Q_{F}^{p_{\lambda}}=s_{\lambda_{2}}(q^{\rho})s_{\lambda_{4}}(q^{\rho})\sum_{\lambda}s_{\lambda}(q^{\mu^{\lambda_{2}}+\rho})s_{\lambda}(q^{\mu^{\lambda_{4}}+\rho})Q_{F}^{\ell_{\lambda}},$
$(3.10)$

we can express

$Z_{topstr}^{(F_{0})}(Q_{B}, Q_{F};q)= \sum_{\lambda_{2},\lambda_{4}}(K_{\lambda_{2}\lambda_{4}})^{2}Q_{B}^{(\ell_{\lambda_{2}}+\ell_{\lambda_{4}})}$ , (3.11)

where we have defined QB $:=e^{-t_{B}}$ , QF $:=e^{-t_{F}}$ and used the syinmetry $W_{\mu\nu}(q)=W_{\nu\mu}(q)$ .
By the suimnation formula for the Schur function [17];

$\sum_{\lambda}s_{\lambda}(x)s_{\lambda}(y)=\prod_{i,j\geq 1}(1-x_{i}y_{j})^{-1}$
, (3.12)

we find

$K_{\lambda_{2}\lambda_{4}}=s_{\lambda_{2}}(q^{\rho})s_{\lambda_{4}}(q^{\rho}) \prod_{i,j\geq 1}(1-q^{h_{\lambda_{2}\lambda_{4}}(i,j)}Q_{F})^{-1}$
, (3.13)

where the “relative” hook length is defined by $h_{\mu,\nu}(i,j)$ $:=\mu_{i}-j+\nu_{j}-i+1$ . Note that
$h_{\mu,\mu^{\vee}}(i,j)$ gives the hook length of $\mu$ at $(i,j)$ . We finally obtain

$Z_{topstr}^{(F_{0})}(Q_{B}, Q_{F};q)= \sum_{\lambda_{2},\lambda_{4}}Q_{B}^{(|\lambda_{2}|+|\lambda_{4}|)}s_{\lambda_{2}}^{2}(q^{\rho})s_{\lambda_{4}}^{2}(q^{\rho})\prod_{i,j\geq 1}(1-q^{h_{\lambda_{2}\lambda_{4}}(i_{r}j)}Q_{F})^{-2}$ (3.14)

It turns out that with appropriate identifications of the paranieters $(Q_{B}, Q_{F};q),$ $Z_{t\varphi\epsilon tr}^{(F_{0})}$

agrees to the Nakrasov’s partition function for $SU(2)$ Seiberg-Witten theory [10, 11, 5, 6],
which is expected by the idea of geometric engineering [14, 15].
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4 Refinement of the topological vertex and the pre-
ferred direction

The Nekrasov’s partition function $Z_{Nek}(Q_{\ell;q)}t)$ arises from the instanton counting of four
dimensional gauge theory and gives the generating function of the equivariant Donaldson
invariants of $\mathbb{C}^{2},$ $[18,19,20]$ . The parameters $q=q_{1},$ $t=q_{2}^{-1}$ are equivariant parameters
of the toric action $(z_{1}, z_{2})arrow(e^{i\epsilon 1}z_{1}, e^{i\epsilon 2}z_{2})$ on $\mathbb{C}^{2}$ . As we remarked in the example of the
amplitude on the local Hirzebruch surface, there is a correspondenoe of the Nekrasov’s
partition function and topological string amplitudes on local toric Calabi-Yau manifolds.
As the topological vertex is a building block of the topological string amplitude on toric
Calabi-Yau manifolds, it is a natural question that if the Nekrasov’s partition function
has a similar building block. As an answer to this question we have proposed the following
refinement of the topological vertex [2, 3];

$C_{\mu\lambda^{\nu}}(q,t)=f_{\nu}(q, t)^{-1}P_{\lambda}(t^{\rho};q, t)$

$\cross\sum_{\eta}(\begin{array}{l}q-t\end{array})\iota P_{\mu^{\vee}/\eta^{\vee}}(-t^{\lambda^{\vee}}q^{\rho};t, q)P_{\nu/\eta}(q^{\lambda}t^{\rho};q, t)$ , (4.1)

where roughly speaking we have promoted the Schur functions in the topological vertex
to the Macdonald functions $P_{\lambda}(x;q.t)$ . The notation $\iota$ in (4.1) denotes an involution on
the space of symmetric functions which is defined on the power sum $p_{n}$ by $\iota(p_{n})=-p_{n}$ .
The factor $f_{\nu}(q, t)$ defined by

$f_{\nu}(q, t):= \prod_{\epsilon\in\nu}(-1)q^{a(s)+\frac{1}{2}}t^{-\ell(s)-\frac{1}{2}}$ , (4.2)

is responsible for the framing of the vertex. A slightly different version of the refined
topological vertex has been introduced [13];

$c_{\mu\nu\lambda}^{(IKV)}(t, q)=( \frac{q}{t})^{\ovalbox{\tt\small REJECT}_{2}^{2}}t^{\kappa\nu}\nu_{\#_{P_{\lambda^{v}}(t^{-\rho};q,t)}}^{2}+\lambda$ (4.3)

$\cross\sum_{\eta}(\frac{q}{t})^{\ovalbox{\tt\small REJECT}_{2}^{\nu}}s_{\mu^{\vee}/\eta}(q^{-\lambda}t^{-\rho})s_{\nu/\eta}(t^{arrow\lambda^{\vee}}q^{-\rho})+-$ . (4.4)

As we have emphasized in the last section, the topological vertex has a highly non-
trivial cyclic symmetry among three partitions. However both of the above refinements
cannot keep the cyclic symmetry. They have a special direction which we call preferred.
Consequently, it is convenient to introduce the following four types of the vertices, though
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they are related each other [3];

$C^{\mu_{\lambda\nu}}(q, t):=P_{\lambda}(t^{\rho};q, t) \sum_{\sigma}\iota P_{\mu^{\vee}/\sigma^{\vee}}(-t^{\lambda^{\vee}}q^{\rho};t, q)P_{\nu/\sigma}(q^{\lambda}t^{\rho};q, t)v^{|\sigma|+|\mu|}f_{\mu}(q, t)$ ,

$C_{\mu}^{\lambda\nu}(q, t):=P_{\lambda^{v}}(-q^{\rho};t, q) \sum_{\sigma}P_{\nu^{v}/\sigma^{v}}(-t^{\lambda^{\vee}}q^{\rho};t, q)\iota P_{\mu/\sigma}(q^{\lambda}t^{\rho};q, t)v^{-|\sigma|-|\mu|}f_{\mu}(q,t)^{-1}$ ,

$C_{\mu\lambda^{\nu}}(q, t):=C^{\mu_{\lambda\nu}}(q, t)v^{-|\mu|-|\nu|}f_{\mu}(q, t)^{-1}f_{\nu}(q, t)^{arrow 1}$ ,
$C_{\nu}^{\mu\lambda}(q, t):=C_{\mu}^{\lambda\nu}(q, t)v^{|\mu|+|\nu|}f_{\mu}(q,t)f_{\nu}(q,t)$ , (4.5)

where $v:=(q/t)^{1/2}$ . When we associate the refined topological vertex to eadi vertex of
the toric diagram, we order three edges clockwise so that the second edge is along the
preferred direction. The lower and the upper indices of the refined topological vertex
correspond to the incoming and the outgoing partitions at the vertex, respectively.

Figure 2: Change of the preferred direction

Changing the preferred direction iu the computation of the refined topological vertex
often gives a highly non-trivial combinatorial equality that involves a summation over
partitions. Let us consider the toric diagram of Fig.2, which appears in the geometric
engineering of five dimensional $U(1)$ gauge theory with adjoint matter [9]. These are
one loop diagrams where we identify two external vertical edges with $\nu$ . As has been
discussed in [12, 3], the refined topological string amplitude for these diagralns gives the
generating function of the equivariant $\chi_{y}$ genus of the Hilbert scheme $(\mathbb{C}^{2})^{[n]}$ of $n$ points
in $\mathbb{C}^{2}$ . In the left diagram the preferred direction is along the intemal line, while it is
along the external lines in the right diagram. The gluing rule of the refined topological
vertex gives the amplitude for the left diagram

$Z_{L}:= \sum_{\lambda,\nu}Q^{|\nu|}\Lambda^{|\lambda|}C_{\lambda^{\nu}}(q,t)C_{\nu}^{\lambda}(q,t)$

,
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$= \sum_{\lambda,\nu}Q^{|\nu|}\Lambda^{|\lambda|}P_{\lambda}(t^{\rho};q, t)P_{\lambda^{v}}(-q^{\rho};t, q)P_{\nu}(q^{\lambda}t^{\rho};q,$
$t)P_{\nu^{\vee}}(-t^{\lambda^{\vee}}q^{\rho};t,$ $q)$ . (4.6)

On the other hand the right diagram gives us the following partition function;

$Z_{R}:= \sum Q^{|\nu|}\Lambda^{|\lambda|}C_{\lambda}^{\nu}(q, t)C_{\nu}^{\lambda}(q,t)$

$= \sum_{\mu,\nu,\sigma_{1},\sigma_{2}}^{\mu,\nu}Q^{|\nu|}\Lambda^{|\lambda|}P_{\nu^{\vee}/\sigma}1^{\vee}(-\iota q^{\rho};t, q)P_{\lambda/\sigma 1}(t^{\rho};t, q)P_{\lambda^{v}/\sigma_{2^{\vee}}}(-q^{\rho};t, q)P_{\nu/\sigma_{2}}(\iota t^{\rho};t, q)v^{|\sigma|-|\sigma 2}1|$.

(4.7)

The computation of $Z_{L}$ is made by the Cauchy formula for the Macdonald function

$\sum_{\lambda}P_{\lambda/\mu}(x;q, t)P_{\lambda^{v}/\nu^{v}}(y;t, q)=\Pi_{0}(x, y)\sum_{\eta}P_{\mu^{\vee}/\eta^{\vee}}(y;t, q)P_{\nu/\eta}(x;q, t)$ , (4.8)

where

$\Pi_{0}(-x, y):=\exp\{-\sum_{n>0}\frac{1}{n}p_{n}(x)p_{n}(y)\}=\prod_{i,j}(1-x_{i}y_{j})$ . (4.9)

We also use the following adding formula

$\sum_{\mu}P_{\lambda/\mu}(x;q, t)P_{\mu/\nu}(y;q, t)=P_{\lambda/\nu}(x, y;q, t)$ . (4.10)

From the formula of the principal specialization (1.5) and the Cauchy formula (4.8) for
$\mu=\nu=\bullet$ , we have

$Z_{L}= \sum_{\lambda}\Pi_{0}(-Qq^{\lambda}t^{\rho}, t^{\lambda^{\vee}}q^{\rho})\prod_{s\in\lambda}v^{-1}\Lambda\frac{1}{(1-q^{a(s)}t^{\ell(s)+1})(1-q^{-a(s)-1}t^{-\ell(s)})}$. (4.11)

If we define the perturbative part by $Z_{L}^{pert}$ $:= \sum_{\nu}Q^{|\nu|}C..\nu(q, t)C\nu(q, t)=\Pi_{0}(-Qt^{\rho}, q^{\rho})$ ,
which is independent of $\Lambda$ , then the instanton part $Z_{L}^{inst}:=Z_{L}/Z_{L}^{pert}$ is

$Z_{L}^{inst}= \sum_{\lambda}\prod_{\epsilon\in\lambda}v^{-1}\Lambda\frac{1-\tilde{Q}q^{a(s)}d^{(s)+1}1-\tilde{Q}q^{-a(s)arrow 1}t^{\sim\ell(s)}}{1-q^{a(\epsilon)}t^{p(\epsilon)+1}1-q^{-a(s)-1}t^{-p(\epsilon)}}$, (4.12)

where $\tilde{Q}=(q/t)^{\frac{1}{2}}Q$ .
The computation of $Z_{R}$ is more involved and we have to employ the traoe formula

(B.26) of [2], which was obtained by successively using (4.8). The result is

$Z_{R}= \prod_{k\geq 0}\frac{\Pi_{0}(t^{\rho},-\Lambda c^{k}q^{\rho})\Pi_{0}(t^{\rho},-Qc^{k}q^{\rho})}{\Pi_{0}(t^{\rho},-vc^{k+1}q^{\rho})\Pi_{0}(t^{\rho},-v^{-1}c^{k+1}q^{\rho})}\frac{1}{1-c^{k+1}}$
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$= \exp\{-\sum_{n>0}\frac{1}{n}\frac{1}{1-c^{n}}(\frac{(\Lambda^{n}+Q^{n})-(v^{n}+v^{-n})c^{n}}{(t^{\frac{n}{2}}-t^{-\frac{n}{2}})(q^{\frac{n}{2}}-q^{-\frac{n}{2}})}-c^{n})\}$ , (4.13)

where $c:=Q\Lambda$ . As before we define the perturbative part by $Z_{R}^{pert}:=Z_{R}(\Lambda=0)$ . Then
the instanton part $Z_{R}^{inst}:=Z_{R}/Z_{R}^{pert}$ is

$Z_{R}^{inst}= \exp\{-\sum_{n>0}\frac{1}{n}\frac{\Lambda^{n}}{1-c^{n}}\frac{(Q^{n}-(qt)^{\frac{n}{2}})(Q^{n}-(qt)^{-\frac{n}{2}})}{(t^{\frac{n}{2}}-t^{-\frac{n}{2}})(q^{\frac{n}{2}}-q^{-\frac{n}{2}})}\}$ . (4.14)

If we require that the partition function is independent of the choioe of the preferred
direction, we have $Z_{L}^{inst}=Z_{R}^{inst}$ , which meaiis

$\sum_{\lambda}\Lambda^{|\lambda|}\prod_{s\in\lambda}\frac{1-yq^{a(s)f(s)+1}1-yq^{-a(s)-1}t^{-\ell(s)}}{1-q^{a(8)}t^{\ell(s)+1}1-q^{-a(\epsilon)-1}t^{-\ell(s)}}$

$= \exp\{\sum_{n>0}\frac{1}{n}\frac{\Lambda^{n}(1-t^{n}y^{n})(1-q^{-n}y^{n})}{1-\Lambda^{n}y^{n}(1-t^{n})(1-q^{-n})}\}$ . (4.15)

Thus the consistency of the refined topological vertex formalism implies the identity (1.1)
we gave in the beginning. It is highly desirable that we can prove the identity (1.1).
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