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Abstract. In this short Note, which partially reproduces the content of the lecture given in
the workshop, we present some gradient estimates for nonnegative semiconcave functions and
for nonnegative viscosity solutions of fully nonlinear second order elliptic equations of the form
$F(D^{2}u)+H(Du)=f$ with bounded and continuous right-hand side.
The results, mostly taken from the joint paper with A. Vitolo [6], generalize to a nonlinear
setting those of Li and Nirenberg about the so-called Glaeser type estimates.
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1 Introduction

A classical inequality giving information on the intermediate derivatives in terms of
the higher derivatives and the function itself states that, for a bounded $C^{2}$ function
$u:\mathbb{R}^{n}arrow \mathbb{R}$ with bounded Hessian $D^{2}u$ ,

$||Du||_{L^{\infty}}\leq\sqrt{2||u||_{L^{\infty}}||D^{2}u||_{L^{\infty}}}$

In the l-dimensional case, the result goes back to Landau [17] and Kolmogorov [16],
see also [19], [20] and the bibliographies therein for several refinements of the above

1e-mail: $c$apuzzoQmat. uniromal. it

数理解析研究所講究録
第 1651巻 2009年 58-69 58



inequality.
If one assumes instead the less restrictive condition

$D^{2}u(x)h\cdot h\leq M|h|^{2}$ for all $x,$ $h\in \mathbb{R}^{n}$ (1.1)

for some constant $M\geq 0$ and the additional requirement that $u$ is nonnegative, the
pointwise inequality holds

$|Du(x)|\leq\sqrt{2Mu(x)}$ for all $x\in \mathbb{R}^{n}$ (1.2)

If $M=0$ , then (1.2) amounts to the well-known fact that concave nonnegative functions
on $\mathbb{R}^{n}$ are costants. The elementary proof of the validity of (1.2) in the case $M>0$ is as
follows: the Taylor’s expansion around a point $x$ gives

$0 \leq u(x+h)\leq u(x)+Du(x)\cdot h+\frac{M}{2}|h|^{2}$ (1.3)

For any fixed $x$ , the convex quadratic polynomial $q(h)=u(x)+Du(x) \cdot h+\frac{M}{2}|h|^{2}$ attains
its minimum value at $h^{*}=- \frac{1}{M}Du(x)$ . Thanks to (1.3), one deduces that

$q(h^{*})=u(x)- \frac{1}{2M}|Du(x)|^{2}\geq 0$

yielding immediately inequality (1.2). The above inequality in dimension $n=1$ is re-
ported in a paper by Glaeser [9], and attributed there to Malgrange, in the form

$|(\sqrt{u})’(x)|\leq\sqrt{\frac{M}{2}}$

for strictly positive $u$ . Note that the constant $\sqrt{2}$ is optimal in (1.2) as shown by the
function $u(x)= \frac{1}{2}|x|^{2}$ .

A sort of localized version of (1.2) in balls with appropriate radius depending on the
value of $u$ at the center $x_{0}$ and on $M$ can be easily derived. Take, for simplicity, $x_{0}=0$

and any $\gamma>0$ . Using (1.2) with $x=0$ and the Taylor’s expansion we obtain

$u(x) \leq u(0)+\sqrt{2Mu(0)}|x|+\frac{M}{2}|x|^{2}$

For $x\in B_{\sqrt{u0}}$ , then $u(x)\leq(1+\sqrt{2\gamma}+f2)u(O)$ . Insert this in (1.2) to conclude that

$|Du(x)|\leq\sqrt{(2+2\sqrt{2\gamma}+\gamma)Mu(O)}$ for all $x\in B_{\sqrt{\frac{\gamma u(0)}{M}}}$
(1.4)
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In this Note we present some generalizations of inequalities (1.2) and (1.4) to semicon-
cave functions with applications to viscosity solutions of Hamilton-Jacobi equations and
to viscosity solutions of a class of second-order fully nonlinear elliptic equations.

I am pleased to thank Stefania Patrizi, Luca Rossi and Antonio Vitolo for useful com-
ments and discussions.

2 Glaeser type estimates for semiconcave functions

A continuous function $u$ : $\mathbb{R}^{n}arrow \mathbb{R}$ is semiconcave if there exists $M\geq 0$ such that
$u atx,namexarrow u(x)-\frac{M}{1^{2}y}|x|^{2}$

is concave on $\mathbb{R}^{n}$ . For semiconcave functions, the superdifferential of

$D^{+}u(x)=\{p\in \mathbb{R}^{n}$ : $\lim_{yarrow}\sup_{x}\frac{u(y)-u(x)-p\cdot(y-x)}{|y-x|}\leq 0\}$

is a non empty, closed convex set. We refer to [5] for a general study of semiconcave
functions. From the point of view of regularity, let us only recall here that semiconcave
functions are locally Lipschitz continuous and twice differentiable almost everywhere as
sums of a $C^{2}$ function and a concave one.
Observe ako that if $u\in C^{2}(\mathbb{R}^{n})$ and (1.1) holds, then $u$ is semiconcave with semiconcavity
constant $M$ . The next statement is a simple generalization of estimates (1.2) and (1.4)
in the Introduction:

Proposition 2.1 Assume that $u\in C(\mathbb{R}^{n})$ is semiconcave and nonnegative. Then,

$|p|\leq\sqrt{2Mu(x)}$ for all $p\in D^{+}u(x),$ $x\in \mathbb{R}^{n}$ (2.1)

$|p|\leq\sqrt{(2+2\sqrt{2\gamma}+\gamma)Mu(0)}$ for all $x\in B_{R},$
$R=\sqrt{\frac{\gamma u(0)}{M}}$ (2.2)

It is a well-known fact for semiconcave functions that $p\in D^{+}u(x)$ if and only if

$u(y) \leq u(x)+p\cdot(y-x)+\frac{M}{2}|y-x|^{2}$

60



for any $y\in \mathbb{R}^{n}$ . Starting from this the proof of the Proposition proceeds as the one
indicated in the Introduction for $C^{2}$ functions with bounded above Hessian.

As an application of the estimate (2.1), consider the Hamilton-Jacobi equation

$u+H(Du)=f$ in $\mathbb{R}^{n}$ (2.3)

with $H$ convex and coercive, $f$ semiconcave. If $H(O)=0$ and $f\geq 0$ , then the unique
bounded viscosity solution of (2.3) is Lipschitz continuous, nonnegative and semiconcave
for some semiconcavity constant $M$ depending on $H$ and $f$ , see [12], [1].
Therefore, by Proposition 2.1 and the Rademacher’s theorem,

$|Du(x)|\leq\sqrt{2Mu(x)}$ almost everywhere in $\mathbb{R}^{n}$

3 Glaeser estimates for fully nonlinear equations

3.1 A quick review of known results

The condition $\Delta u\leq M$ is of course weaker then (1.1) and, as pointed out in [18], is
not sufficient to guarantee the validity of estimates (1.2) and (1.4). On the other hand,
various versions of Glaeser’s type inequalities for functions satisfying bilateral partial
differential constraints have been recently established by Li and Nirenberg.
A model result in [18] is obtained under the bilateral bound

$-M\leq\Delta u\leq M$ (3.1)

for some $M>0$ . They proved indeed that if $u$ is a nonnegative $C^{2}$ function in the ball
$B_{R}=\{x\in \mathbb{R}^{n} : |x|\leq R\}$ and (3.1) is fulfilled in $B_{R}$ , then the estimates

$|Du(x)|\leq c\sqrt{u(0)M}$ if $2|x|\leq\sqrt{\frac{u(0)}{M}}\leq R$ (3.2)

$|Du(x)| \leq C(\frac{u(0)}{R}+MR)$ if $2|x|\leq R\leq\sqrt{\frac{u(0)}{M}}$ (3.3)

hold for some constant $C$ depending only on $n,$ $\lambda,$ $\Lambda$ but not on $u$ .
Note that using inequality (3.2) one can easily produce an unusual proof of the Liouville
theorem:

$u\in C^{2}(\mathbb{R}^{n}),$ $\Delta u=0,u\geq 0$ imply $u\equiv$ constant (3.4)
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Indeed, if $u(O)=0$ then, by the Maximum Principle, $u\equiv 0$ . The other possible case is
$u(O)>0$ : since $u$ is harmonic, then $-\epsilon\leq\triangle u\leq\epsilon$ for any arbitrarily small $\epsilon>0$ so that
(3.2) applies to give

$\sup_{B_{R_{e}}}|Du(x)|\leq c\sqrt{\epsilon u(O)},$

$R_{\epsilon}= \frac{1}{2}\sqrt{\frac{u(0)}{\epsilon}}>0$

for some constant $C$ depending only on $n,$ $\lambda,$ $\Lambda$ . Since $R_{\epsilon}arrow+\infty$ as $\epsilonarrow 0^{+}$ , one can pass
to the limit by monotonicity in the above to conclude $\sup_{R^{n}}|Du(x)|=0$ .

Incidentally, this shows that the inequality (3.2) cannot hold true if one assumes only
the unilateral bound $\triangle u\leq M$ . In fact, its validity would imply the Liouville theorem

$u\in C^{2}(\mathbb{R}^{n}),$ $\triangle u\leq 0,$ $u\geq 0$ imply $u\equiv$ constant

which is known to be true for $n\leq 2$ and false in higher dimension as the following simple
example shows

$u(x)=\{\begin{array}{ll}\frac{1}{8}(15-10|x|^{2}+3|x|^{4}) if |x|<1|x|^{-1} if |x|\geq 1\end{array}$

see [21].

Further extensions considered in the same paper [18] involve either the conditons

$0\leq u\in C^{2}(B_{R}),$ $||\Delta u||_{L^{p}(B_{R})}\leq M$ in $B_{R}$ (3.5)

with $p>n$ , or
$0\leq u\in C^{2}(B_{R}),$ $-M\leq Lu\leq M$ in $B_{R}$ (3.6)

where
$L=a_{ij}(x)\partial_{ij}+b_{i}(x)\partial_{i}+c(x)$

is a second order uniformly elliptic operator with continuous coefficients and $c\leq 0$ .

The proofs are not elementary as that of the results in Section 1 since they rely on
classical techniques in ellptic pde’s such as the Maximum Principle, gradient and $W^{2,p}$

estimates and the Harnack inequality, see [18]. Since most of these techniques are also
available in the elliptic nonlinear setting, see [3], it is reasonable to guess that Glaeser’s
type estimates continue to be valid also for functions satisfying appropriate nonlinear
partial differential inequalities A different kind of remark is that if $F$ is a $C^{1}$ real-valued
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function defined on $S^{n}$ , the set of symmetric $n\cross n$ real matrices, which is uniformly
elliptic

$\lambda$ I $\xi|^{2}\leq\frac{\partial F}{\partial X_{ij}}\xi_{i}\xi_{j}\leq\Lambda|\xi|^{2},0<\lambda\leq\Lambda$

and $u\in C^{2}(B_{R})$ is a classical solution of $F(D^{2}u)=f$ in $B_{R}$ , then $u$ solves a linear
uniformly elliptic equation with continuous coefficients

$a_{ij}(x)= \int_{0}^{1}\frac{\partial F}{\partial X_{ij}}(tD^{2}u(x))dt$

Hence, it is immediate to derive the validity of the inequalities (3.2) and (3.3) from one
of the previously cited results in [18]. In this case the costant $C$ will depend on $n,$ $\lambda,$

$\Lambda$

and the moduli of continuity of the $a_{ij}$ .

3.2 Glaeser’s type estimates for reflection-invariant equations

In this Section we present some extension of the Li-Nirenberg results to nonnegative con-
tinuous viscosity solutions $u$ of quite general partial differential inequalities, comprising
possibly non smooth nonlinearities $F$ acting on second-order derivatives, such as those
arising in Bellman or Bellman-Isaacs operators.
More precisely, we will consider continuous functions $u$ satisfying in the viscosity sense,
see [8], the partial differential equation

$F(D^{2}u)+H(Du)=f$ in int $B_{R}$ (3.7)

We will assume that $F$ is uniformly elliptic

$\lambda$ Tr $(Y)\leq F(X+Y)-F(X)\leq\Lambda^{r}R(Y)$ (3.8)

for some constants $0<\lambda\leq\Lambda$ and for all $X,$ $Y\in S^{n}$ (the space of $n\cross n$ symmetric
matrices) with $Y\geq 0$ , a linear growth condition on the first-order term

$|H(p)|\leq b_{0}|p|$ for all $p\in \mathbb{R}^{n}$ (3.9)

and
$f\in C(B_{R})$ (3.10)

and also, for simplicity, that
$F(O)=0$ (3.11)
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A mapping $F:S^{n}arrow \mathbb{R}$ is reflection-invariant with respect to the direction
$\nu\in \mathbb{R}^{n},$ $|\nu|=1$ , if

$F(RXR)=F(X)$ for all $X\in S^{n}$ (3.12)

where $R$ is the reflection matrix with respect to the hyperplane of equation $\nu\cdot x=0$ .
If, for instance, $\nu=(0, \ldots, 0,1)$ then

$R=(\begin{array}{ll}II_{n- 1} 00 -1\end{array})$

where $II_{n-1}$ is the $(n-1)$-dimensional identity matrix. Examples of (non smooth) nonlinear
functions which are reflection-invariant with respect to $n$ linearly independent directions
$\nu^{1},$

$\ldots,$
$\nu^{n}$ are

$\bullet$ the Pucci extremal operators

$\mathcal{P}_{\lambda,\Lambda}^{+}(X)=\Lambda h(X^{+})-\lambda Tr(X^{-})$

$\mathcal{P}_{\lambda_{t}\Lambda}^{-}(X)=\lambda R(X^{+})$ –ATir $(X^{-})$

$\bullet$ any $F=F(X)$ depending only on the eigenvalues of $X$

$\bullet$ the Bellman operators $\inf_{j\in J}$ Tr $(A_{j}X)$ for constant symmetric positive definite
matrices $A_{j}$ , provided that $A_{j}$ commutes with $A_{i}$ for each $i,j\in J$

$\bullet$ the Bellman-Isaacs operators $\inf_{j\in J}\sup_{k\in K}$ Tr $(A_{jk}X)$ under suitable commutation
conditions,

see [6]. Observe that $\mathcal{P}_{\lambda_{7}\Lambda}^{-}(X)\leq F(X)\leq \mathcal{P}_{\lambda,\Lambda}^{+}(X)$ for any $F$ satisfying (3.8).

By suitably exploiting reflection-invariance properties of $F$ one can prove the following
gradient estimate of Glaeser type:

Theorem 3.1 Assume that the data $F,$ $H,$ $f$ satisfy conditions (3.8), (3.9), (3.10) and
(3.11). Assume also that $F$ is $reflection- inva\dot{n}ant$ with respect to $n$ linearly independent
directions $\nu^{1},$

$\ldots,$
$\nu^{n}$ . Let $u\in C(B_{R})$ be a nonnegative viscosity solution of

$F(D^{2}u)+H(Du)=f$ in int $B_{R}$

64



Then for almost every $x\in B_{R/2}$

$|Du(x)|\leq C\sqrt{u(0)\sup_{B_{R}}|f|}$ if $2|x|\leq\sqrt{\frac{u(0)}{\sup_{B_{R}}|f|}}\leq R$ (3.13)

$|Du(x)| \leq C(\frac{u(0)}{R}+R\sup_{B_{R}}|f|)$ if $2|x|\leq R\leq\sqrt{\frac{u(0)}{\sup_{B_{R}}|f|}}$ (3.14)

for some constant $C$ depending only on $n,$ $\lambda,$ $\Lambda$ but not on $u$ .

It is conceivable that the linear growth assumption (3.9) in Theorem (3.1) could be some-
what relaxed. Observe, however, that if $H$ grows quadratically in $|Du|$ then inequalities
(3.13) and (3.14) may continue to hold true but with a constant $C$ depending on $u$ itself.
Here is a simple evidence in this direction: suppose that $u\geq 0$ is smooth and such that

$-M\leq\triangle u-k|Du|^{2}\leq M$ in $B_{R}$

for positive constants $k$ and $M$ . Then, the Hopf-Cole transform $v=1-e^{-ku}$ satisfies

$-kM\leq\Delta v\leq kM$ in $B_{R}$

By the above mentioned result of [18], $Du= \frac{1}{k}e^{ku}Dv$ can be therefore estimated as

$|Du(x)|\leq c_{\frac{1}{k}e^{keupu}}\sqrt{(1-e^{-ku(0)})kM}\leq Ce^{k\sup u}\sqrt{u(0)M}$

in the case $2|x|\leq\sqrt{\frac{u(0)}{M}}\leq R$ . Hence, (3.13) holds for nonnegative solutions of the viscous
Hamilton-Jacobi equation

$\triangle u-k|Du|^{2}=f$

with bounded, continuous right-hand side with a constant $C$ depending on $\sup u$ (and
$k)$ . This is due, of course, to the presence of the quadratic term, see [15] for related issues.

A major ingredient in the proof of Theorem 3.1 is the next Lemma which is in fact a
viscosity version of a well-known property of smooth solutions of the Poisson equation,
see [10]. Its validity in the present context is guaranteed by the reflection-invariance
properties of $F$ which replace the symmetry properties of the Laplace operator.
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Lemma 3.2 Assume that $F$ and $f$ satisfy, respectively, conditions (3.8), (3.11) and
(3.10). Let $u\in C(B_{d})$ be a viscosity solution of

$F(D^{2}u)=f$ in int $B_{d}$ (3.15)

If the directional denivative $D_{\nu}$ of $u$ with respect to $\nu$ exists at $x=0$ , then

$|D_{\nu}u(0)| \leq\frac{n}{d}\sqrt{\lambda+\Lambda}\sup_{B_{d}}|u|+\frac{d}{2\sqrt{\lambda(\lambda+\Lambda)}}\sup_{B_{d}}|f|$ (3.16)

For the proof, let us observe preliminarily that since $F$ is invariant by reflection with
respect to the $n$ independent directions $\nu^{i}$ , a simple argument in linear algebra shows
that there exists an orthogonal matrix $Q$ such that

$G(X)=F(Q^{t}XQ)$

is reflection-invariant with respect to tlie standard basis vectors $e^{i}=$ $(0, \ldots, 1, . . , 0)$ .
Also, the uniform ellipticity of $F$ implies the same property for $G$ . Observe finally that if
$u$ is a viscosity solution of equation (3.15), then the function $v(x)=u(Q^{t}x)$ is a viscosity

solution of $G(D^{2}v(x))=f(Q^{t}x)$ .
We can assume therefore that $F$ is invariant by reflection with respect to the $e^{i}s$ . Using
some viscosity calculus, uniform ellipticity and the assumption of reflection-invariance
with respect to $e^{n}$ , one can check that the function

$\tilde{u}(x)=\frac{u(x’,x_{n})-u(x’,-x_{n})}{2}$ , $x=(x’, x_{n})$

satisfies the inequalities

$\mathcal{P}_{\lambda,\Lambda}^{+}(D^{2}(\tilde{u}-\Phi))\geq 0\geq \mathcal{P}_{\lambda,\Lambda}^{-}(D^{2}(\tilde{u}+\Phi))$

in the cylinder

$K^{+}= \{x=(x^{l}, x_{n})\in \mathbb{R}^{n-1}\cross \mathbb{R}:|x’|<\frac{d\sqrt{\Lambda}}{\sqrt{\lambda+\Lambda}},$ $0<x_{n}< \frac{d\sqrt{\lambda}}{\sqrt{\lambda+\Lambda}}\}\subset B_{d}$

Here, $\Phi$ is the smooth comparison function

$\Phi(x)=\frac{\sup|u|}{d^{2}}[\frac{|x’|^{2}}{\Lambda}+\frac{x_{n}}{\sqrt{\lambda}}(nd’-(n-1)\frac{x_{n}}{\sqrt{\lambda}})]+\frac{M}{2}\frac{x_{n}}{\sqrt{\lambda}}(d’-\frac{x_{n}}{\sqrt{\lambda}})$

where we set $d’=\sqrt{\lambda+}^{d}$ and $M= \sup_{B_{d}}|f|$ .
Since $\tilde{u}-\Phi\leq 0\leq\tilde{u}+\Phi$ on $\partial K^{+}$ , then from Comparison Principles for viscosity so-
lutions, see [8], it follows that $\tilde{u}-\Phi\leq 0\leq\tilde{u}+\Phi$ on $K^{+}$ and, in particular, at points
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$(0, x_{n})$ . These inequalities yield the conclusion after dividing by $x_{n}>0$ and letting
$x_{n}arrow 0^{+}$ .

The Lemma does not require $u\geq 0$ . For nonnegative solutions of equation (3.15) we can
derive Theorem 3.1 from Lemma 3.2. We will use at this purpose the Harnack inequality

$\sup_{B\S r}u\leq C(\inf_{B\S}u+r||f\Vert_{L^{n}(B_{r})})$ (3.17)

which holds for all nonnegative viscosity solutions of equation $F(D^{2}u)=f$ in $B_{r}$ with
some universal constant $C$ depending only on $n,$ $\lambda,$

$\Lambda$ , see [3].

To realize that, take $0<r<R$ and any $x\in B_{r/2}$ and observe that the inclusion
$B_{d}(x)\subset B\underline{a}_{r}$ holds, for $d=r/4$ . By translation invariance we can use (3.16) and then
the Harnack inequality to deduce

I $Du(x)| \leq C(\frac{\sup_{B_{d}}u}{r}+r\sup_{B_{R}}|f|)\leq C(\frac{u(0)+Mr^{2}}{r}+Mr)\leq C(\frac{u(0)}{r}+r\sup_{B_{R}}|f|)$

at those $x\in B_{R}$ where $u$ is differentiable. In the above, $C$ denotes different positive
constants depending only on $n,$ $\lambda,$ $\Lambda$ .
By the regularity results in [13], $u$ is Lipschitz continuous and therefore is differentiable
almost everywhere in int $B_{R}$ .
At this point, the Glaeser’s inequalities (3.13), (3.14) are deduced by optimizing the
right-hand side of the above with respect to $r\in[0, R]$ .
Once the Theorem is proved in the case $H\equiv 0$ , the general case of a non-zero first
order term $H$ with linear growth can be treated by more or le\S s standard perturbation
arguments.

A final remark is that the result of Theorem 3.1 continue to hold if we adopt the slightly
stronger notion of $L^{n}$-viscosity solutions which makes use of $W_{loc}^{2,n}$ rather than on $C^{2}$ test
functions, see [2], [4]. In this setting the assumption of continuity of $f$ can be relaxed to
$f\in L^{\infty}$ .
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