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Abstract

This expository paper explains some of the restrictions imposed by the
theory of Dynamical Systems on the Aubry set, the solutions and the critical
subsolutions of a Tonelli Hamiltonian on a surface.

This article is essentially expository, most of what we say is well-known (at
least to the specialists in Dynamical Systems) with the exception of some results
on $C^{3}$ critical subsolutions of the Hamilton-Jacobi Equation on surfaces. We hope
that it will help people with no serious background in Dynamics understand the
strong restrictions put on Mather sets, solutions and critical subsolutions of the
Hamilton-Jacobi Equation by the theory of flows on surfaces.

1 The setting
We will consider a Hamiltonian $H$ : $\mathbb{R}^{n}\cross \mathbb{R}^{n}arrow \mathbb{R},$ $(x,p)\mapsto H(x,p)$ . Here $x$

represents position and $p$ represents momentum.
We need some compactness assumptions and we want to avoid boundary ef-

fects. Therefore we will assume that $H(x,p)$ is $\mathbb{Z}^{n}$-periodic in $x$

$\forall x\in \mathbb{R}^{n},$ $\forall z\in \mathbb{Z}^{n},\forall p\in \mathbb{R}^{n},$ $H(x,p)=H(x+z,p)$ .

Hence $H$ is well defined on $T^{n}\cross \mathbb{R}^{n}$ , where $T^{n}=\mathbb{R}^{n}/\mathbb{Z}^{n}$ .
Two good examples to keep in mind are

$H^{V}(x,p)= \frac{1}{2}\Vert p\Vert_{euc}^{2}+V(x)$ , (El)

where $V$ : $T^{n}arrow \mathbb{R}$ , and $\Vert\cdot\Vert_{euc}^{2}$ is the usual Euclidean norm on $\mathbb{R}^{n}$ , and

$H^{X}(x,p)= \frac{1}{2}\Vert p\Vert_{euc}^{2}+\langle X,p\rangle_{euc}$ , (E2)

where $X$ : $T^{n}arrow \mathbb{R}^{n}$ is a vector field and $\langle\cdot,$ $\cdot\rangle_{euc}$ is the usual scalar product on $\mathbb{R}^{n}$ .
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What we will say is more generally true for a Hamiltonian $H$ : $T^{*}Marrow \mathbb{R}$ , on
the cotangent space $T^{*}M$ of the compact boundaryless manifold $M$ .

We will assume in the sequel that the Hamiltonian $H$ : $T^{n}\cross \mathbb{R}^{n}arrow \mathbb{R}$ is a
Tonelli Hamiltonian, i.e. it satisfies the following conditions:

1 $)$ The Hamiltonian $H$ is of class $C^{r}$ with $r\geq 2$ .

2 $)$ The Hamiltonian $H$ is $C^{2}$-strictly convex in $p$ , i.e. for every $(x,p)\in T^{n}\cross$

$\mathbb{R}^{n}$ , the second partial derivative $\partial^{2}H/\partial^{2}p(x,p)(\cdot,$ $\cdot)$ is positive definite as a
quadratic form on $\mathbb{R}^{n}\cross \mathbb{R}^{n}$ .

3 $)$ The Hamiltonian $H$ is superlinear

$\frac{H(x,p)}{||p\Vert}arrow+\infty$ as $\Vert p\Vertarrow+\infty$ ,

uniformly in $x\in T^{n}$ .

2 The Hamilton-Jacobi Equation: solutions and
subsolutions

The (stationary) Hamilton-Jacobi equation associated to $H$ is

$H(x, d_{x}u)=c$ $(HJE_{c})$

where $c\in \mathbb{R}$ is fixed.
Although we will say something about viscosity solutions, we will be mainly

interested in $C^{1}$ solutions and subsolutions. Let us recall that a (global, classical)
solution of $(HJE_{c})$ is a $C^{1}$ map $u:T^{n}arrow \mathbb{R}$ such that

$\forall x\in T^{n},$ $H(x, d_{x}u)=c$ ,

where $d_{x}u$ is the differential or derivative of $u$ at $x$ (here identified with its gradient
at $x$ since the second variable of $p$ is in $\mathbb{R}^{n}$ rather than in the dual space $(\mathbb{R}^{n})^{*}$

which is where $d_{x}u$ really lies). A (global, classical) subsolution of $(HJE_{c})$ is a $C^{1}$

map $v$ : $T^{n}arrow \mathbb{R}$ such that

$\forall x\in T^{n},$ $H(x, d_{x}v)\leq c$ .

If one is allowed to choose $c$ then subsolutions always exist. In fact, if $v$ : $T^{n}arrow$

$\mathbb{R}$ is $C^{1}$ and we define the Hamiltonian constant $\mathbb{H}(v)$ of $v$ by

$\mathbb{H}(v)=\sup_{x\in \mathbb{T}^{n}}H(x, d_{x}v)$ ,

then by compactness $\mathbb{H}(v)=\sup_{x\in T}{}_{n}H(x, d_{x}v)<+\infty$, and $v$ is a subsolution of
$(HJE_{c})$ for any $c\geq \mathbb{H}(v)$ . The following quantity

$\vec{H}(O)=\inf\{\mathbb{H}(v)|v$ : $T^{n}arrow \mathbb{R}$ of class $C^{1}\}$
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is therefore the challenge. Note that we can also take the infimum on the class of
$C^{\infty}$ functions, since this last subset is dense in the class of $C^{1}$ functions for the
uniform $C^{1}$ topology.

We will say that a function $v$ : $T^{n}arrow \mathbb{R}$ is a critical subsolution of the Hamilton-
Jacobi equation if it is $C^{1}$ and satisfies

$\forall x\in T^{n},$ $H(x, d_{x}v)\leq\overline{H}(0)$ .

The importance of $\overline{H}(0)$ is also illustrated by the following simple proposition.

Proposition 2.1. If (HJE$c$ ) admits a (global $C^{1}$ ) solution then $c=\overline{H}(0)$ .
In fact, the argument to prove the proposition above, yields the following more

general result.

Lemma 2.2. If $H$ : $T^{n}\cross \mathbb{R}^{n}arrow \mathbb{R}$ is a continuous Hamiltonian, for every $C^{1}$

function $u:T^{n}arrow \mathbb{R}$ , we have

$\mathbb{H}(u)=\sup_{x\in T^{n}}H(x, d_{x}u)\geq\overline{H}(0)\geq\inf_{x\in \mathbb{T}^{n}}H(x, d_{x}u)$ .

In particular, we can find a point $x_{0}\in T^{n}$ such that $H(x_{0}, d_{x_{0}}u)=\overline{H}(0)$ .

Proof. The left hand side inequality

$\mathbb{H}(u)=\sup H(x, d_{x}u)\geq\vec{H}(0)$

$x\in T^{n}$

comes from the definition of $\overline{H}(0)$ . To show the right hand side inequality, we
consider a $C^{1}$ function $v$ : $\mathbb{T}^{n}arrow \mathbb{R}$ . Since $T^{n}$ is compact $u-v$ reaches a maximum
at some point $x_{v}\in \mathbb{T}^{n}$ . At such a point, we have $d_{x_{v}}(u-v)=0$ , therefore
$d_{x_{v}}u=d_{x_{v}}v$ . This implies

$\mathbb{H}(v)\geq H(x_{v}, d_{x_{v}}v)=H(x_{v}, d_{x_{v}}u)\geq\inf_{x\in T^{n}}H(x, d_{x}u)$ .

Therefore $\overline{H}(0)=\inf_{v}\mathbb{H}(v)\geq\inf_{x\in T^{n}}H(x, d_{x}u)$ .
The existence of $x_{0}$ is now a consequence of the connectedness of $T^{n}$ .

To get some familiarity with this constant $\overline{H}(0)$ , we compute it for Examples
(El) and (E2) given above.

If we consider
$H^{X}(x,p)= \frac{1}{2}\Vert p\Vert_{euc}^{2}+\langle X,p\rangle_{euc}$ ,

where $X$ : $T^{n}arrow \mathbb{R}^{n}$ is a vector field, it is obvious that any constant function is a
solution of the Hamilton-Jacobi Equation

$H^{X}(x, d_{x}u)=0$ .

Therefore $\overline{H}^{x}(0)=0$ by Proposition 2.1.
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Let us show $\overline{H}^{V}(0)=\max V$ for the Hamiltonian

$H^{V}(x,p)= \frac{1}{2}\Vert p\Vert_{euc}^{2}+V(x)$ ,

where $V:T^{n}arrow \mathbb{R}$ , and $\Vert\cdot\Vert_{euc}^{2}$ is the usual Euclidean norm on $\mathbb{R}^{n}$ .
If $u$ : $T^{n}arrow \mathbb{R}$ is $C^{1}$ , we have

$H^{V}(x, d_{x}u)= \frac{1}{2}\Vert d_{x}u\Vert_{euc}^{2}+V(x)\geq V(x)$ .

Therefore $\mathbb{H}(u)=\max_{x\in \mathbb{T}^{n}}H^{V}(x, d_{x}u)\geq\max V$ , and $\overline{H}^{v}(0)=\inf_{u}\mathbb{H}(u)\geq$

$\max V$ . But if $u$ is constant function $d_{x}u\equiv 0$ , and $H^{V}(x, d_{x}u)=V(x)$ , which
implies $\mathbb{H}(u)=\max V$ . Hence $\overline{H}^{v}(0)=\max V$ . Notice that in this case we have
$C^{\infty}$ critical subsolutions, namely the constant functions.

3 Existence of $C^{1}$ solutions. Viscosity solutions
One does not always have a $C^{1}$ solution to the Hamilton-Jacobi Equation. To
show this, let us consider again the example of the Hamiltonian

$H^{V}(x,p)= \frac{1}{2}\Vert p\Vert_{euc}^{2}+V(x)$ ,

where $V$ : $T^{n}arrow \mathbb{R}$, and $\Vert,\Vert_{euc}^{2}$ is the usual Euclidean norm on $\mathbb{R}^{n}$ . Assume that
there exists a $C^{1}$ solution $u$ : $T^{n}arrow \mathbb{R}$ . By what we have seen in the previous
section, we have

$\forall x\in T^{n},$ $H^{V}(x, d_{x}u)= \overline{H}^{v}(0)=\max V$.

Since $u$ is a $C^{1}$ function on the compact $T^{n}$ , it has at least two distinct critical
points, i.e. two points $x_{1}\neq x_{2}$ with $d_{x_{1}}u=d_{x2}u=0$ . In fact, if $x_{\max}$ and $x_{\min}$

are points where $u$ reaches its maximum and minimum, they are critical. If they
are distinct, we have obtained our two points. If $x_{\max}=x_{\min}$ , then $u$ is constant
since its minimum and maximum are equal, therefore all points are critical. At
the distinct critical points $x_{i},$ $i=1,2$ , we have

$\max V=H^{V}(x_{i}, d_{x_{i}}u)=\frac{1}{2}\Vert d_{x_{i}}u\Vert_{euc}^{2}+V(x_{i})=V(x_{i})$.

This implies that $V$ reaches its maximum at two distinct points. In particular, if
we choose $V$ such that $V$ achieves its maximum at a unique point, there is no $C^{1}$

(global) solution of the Hamilton-Jacobi Equation. Such an example is given by
the Hamiltonian $H_{0}$ : $T\cross \mathbb{R}arrow \mathbb{R}$ defined by

$H_{0}(x,p)= \frac{1}{2}p^{2}+\cos(2\pi x)$ ,

since $\cos(2\pi x)$ reaches its maximum 1 only at $x=$ Omodl.
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P.-L. Lions and M. Crandall, see [9], have introduced the notion of viscosity
solution (for an introduction to viscosity solutions see [5], and for more complete
treatments consult [1, 2] or [6] $)$ . In 1987, in an unpublished preprint [10], P.-L.
Lions, G. Papanicolaou, and S.R.S. Varadhan have shown that there always exists
viscosity solutions for the Hamilton-Jacobi Equation.

Theorem 3.1 (Lions-Papanicolaou-Varadhan). There exists a Lipschitz func-
tion $u:T^{n}arrow \mathbb{R}$ and a $c\in \mathbb{R}$ such that $u$ is a viscosi$tysolu$tion of $(HJE_{c})$ . More-
over, the $c\in \mathbb{R}$ for which there exists a viscosity solution of $(HJE_{c})$ is unique.

It can be shown that the $c$ given in the theorem above is equal to $\overline{H}(0)$ even
if the viscosity solution is not $C^{1}$ .

We now deal with the question of existence of a $C^{1}$ solution for the Hamilton-
Jacobi Equation.

In 2000, the author realized that the theory of viscosity solutions easily gives
an answer to this question. For this, we define the Hainiltonian defect HamDef(u)
of the $C^{1}$ function $u$ : $T^{n}arrow \mathbb{R}$ by

HamDef(u) $= \sup_{x\in \mathbb{T}^{n}}H(x, d_{x}u)-\inf_{x\in T^{n}}H(x, d_{x}u)\geq 0$ ,

and the defect $\mathcal{D}(H)$ of $H$ by

$\mathcal{D}(H)=\inf$ {HamDef $(u)|u:T^{n}arrow \mathbb{R}$ of class $C^{1}$ }.

Again we could restrict in the definition above $u$ to $C^{\infty}$ functions without changing
the value of $\mathcal{D}(H)$ .

Proposition 3.2. The Hamilton-Jacobi Equation associated to the Tonelli Hamil-
$t$onian $H$ : $T^{n}\cross \mathbb{R}^{n}arrow \mathbb{R}h$as a $C^{1}solu$tion if and only if th$e$ defect $\mathcal{D}(H)$ of the
Hamiltonian is equal to $0$ .

Proof. Obviously, if $u_{0}$ is a $C^{1}$ solution we have HamDef $(u_{0})=0$ . But

$0=$ HamDef $(u_{0})\geq \mathcal{D}(H)\geq 0$ .

To prove the converse, we will need to assume that the reader has a good knowl-
edge of viscosity solutions. Since $\mathcal{D}(H)=0$ , we can find a sequence of $C^{1}$ function
$u_{\ell}$ : $T^{n}arrow \mathbb{R}$ such that $\epsilon_{\ell}=$ HamDef $(u_{\ell})\backslash O$ . Note that by Lemma 2.2, we have

$\forall x\in T^{n},\overline{H}(0)+\epsilon_{\ell}\geq H(x, d_{x}u_{\ell})\geq\overline{H}(0)-\epsilon_{\ell}$.

This implies that $u_{\ell}$ is a (viscosity) supersolution of $(HJE_{\overline{H}(0)-\epsilon_{\ell}})$ and a (viscosity)
subsolution of $($HJE$\vec{H}(0)+\epsilon\ell)$ . In particular, since $\epsilon_{\ell}$ is convergent (hence bounded),
by the coercivity of $H$ (which is in fact superlinear) we obtain that the deriva-
tives of the functions $u_{\ell}$ are bounded in norm independently of $\ell$ . Therefore the
sequence $u_{\ell}$ is equi-Lipschitzian. By the Arzela-Ascoli theorem subtracting con-
stants from the $u\ell$ and extracting a subsequenoe of the $u_{\ell}$ , we can assume that $u_{\ell}$
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converge uniformly to $u$ : $T^{n}arrow \mathbb{R}$ . By the stability theorem for viscosity subso-
lutions and supersolutions, since $\overline{H}(0)\pm\in\ellarrow 0$ , we obtain that $u$ is a viscosity
subsolution and supersolution of $(HJE_{\overline{H}(0)})$ . Hence it is a viscosity solution of
the Hamilton-Jacobi Equation. Since $H$ is a Tonelli Hamiltonian, such a viscosity
solution has to be semi-concave.

Now we can consider the Tonelli Hamiltonian $\check{H}$ defined by

$\check{H}(x,p)=H(x, -p)$ .

If we define the $C^{1}$ function $v_{\ell}=-u_{\ell}$ , we have

$\forall x\in T^{n},\overline{H}(0)+\epsilon_{\ell}\geq\check{H}(x, d_{x}v_{\ell})\geq\vec{H}(0)-\epsilon_{\ell}$.

Since $v_{\ell}$ converges uniformly to $v=-u$, we obtain as above that $v=-u$ is a
viscosity solution of the Hamilton Jacobi Equation associated to $\check{H}$ . Therefore-u
is semi-concave, and $u$ is semi-convex. Hence $u$ is both semi-concave and semi-
convex. This implies that $u$ is $C^{1,1}$ . Since $u$ is a viscosity solution of (HJE$\overline{H}(0)$),
it is a classical solution. $\square$

We end this section by the following proposition which can be proved by the
same argument as the proposition above.

Proposition 3.3. Let $U$ be an open subset of some Euclidean space $\mathbb{R}^{n}$ . Suppose
the sequence of $C^{1}$ maps $u_{n}$ : $Uarrow \mathbb{R}$ converges uniformly on $U$ to the function
$u$ : $Uarrow \mathbb{R}$ . Suppose further that the sequence of maps $x\mapsto\Vert d_{x}u\Vert_{euc}$ converges
uniformly on $U$ to the constant 1. Then $u$ is $C^{1}$ an$d\Vert d_{x}u\Vert_{euc}=1$ , for every $x\in U$ .

It would be nice to find an elementary proof of this result, i.e. a proof that
does not use a viscosity type argument (or disguised in an equivalent Optimal
Control/Calculus of Variations argument).

4 More regular critical subsolutions
Although there is in general no $C^{1}$ solution of the Hamilton-Jacobi Equation, one
can find $C^{1}$ critical subsolutions, see [7], or even better, by a result of Patrick
Bernard see [3], a $C^{1,1}$ critical sub-solution of the Hamilton-Jacobi Equation, i.e.
a $C^{1}$ critical subsolution whose derivative is Lipschitz.

Theorem 4.1 (Patrick Bernard). $IfH$ : $T^{n}\cross \mathbb{R}^{n}arrow \mathbb{R}$ is a Tonelli Hamiltonian
then there exists a $\sigma^{1}$ function $T^{n}arrow \mathbb{R}$ such that

$\forall x\in T^{n},$ $H(x, d_{x}u)\leq\overline{H}(0)$ .

By this theorem, we can characterize $\overline{H}(0)$ as the only constant $c\in \mathbb{R}$ which
satisfies the following two conditions:

(i) We have $\mathbb{H}(u)\geq c$ for every $C^{1,1}$ function $T^{n}arrow \mathbb{R}$ .
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$($ ii $)$ There exists $u_{0}:\mathbb{T}^{n}arrow \mathbb{R}$ which is $C^{1,1}$ and satisfies

$\forall x\in T^{n},$ $H(x, d_{x}u_{0})\leq c$ .

In general Theorem 4.1 is sharp, one cannot find a $C^{2}$ critical subsolution as we
will presently show.

Consider again the Hamiltonian $H_{0}:T\cross \mathbb{R}arrow \mathbb{R}$ defined by

$H_{0}(x,p)= \frac{1}{2}p^{2}+\cos(2\pi x)$ .

The maximum value of the cosine is 1, therefore $\overline{H}_{0}(0)=1$ . The equation
$H_{0}(x,p)=1$ can be solved by $p=\pm v_{0}(x)$ , where $v_{0}$ : $Tarrow \mathbb{R}$ is the continu-
ous function defined by

$v_{0}(x)=\sqrt{2-2\cos(2\pi x)}$.

Moreover, we have
$H_{0}(x,p)\leq 1\Leftrightarrow|p|\leq v_{0}(x)$ . $(^{*})$

We note that $v_{0}$ is piecewise $C^{1}$ , therefore it is Lipschitz. However, the function
$v_{0}$ is not $C^{1}$ , because it is equivalent to $\sqrt{2\pi}|x|$ near $0$ .

We set $p_{0}= \int_{r}v_{0}(x)dx$ . The function $v_{0}-p_{0}$ is obviously the derivative of
the l-periodic function

$u_{0}(x)= \int_{0}^{x}v_{0}(s)-p_{0}ds$ .

Therefore $u_{0}$ is a function from $T$ to $\mathbb{R}$ . By the properties of $v_{0}$ , it is $C^{1,1}$ but not
$C^{2}$ . Of course, we have

$v_{0}=p_{0}+u_{0}’$ .
We now define the Tonelli Hamiltonian $H:T\cross \mathbb{R}arrow \mathbb{R}$ by

$H(x,p)=H_{0}(x,p_{0}+p)$ .

We show that $\overline{H}(0)=1$ . In fact, since

$H(x, u_{0}’(x))=H_{0}(x,p_{0}+u_{0}’(x))=H(x,v_{0}(x))=1$ ,

the Hamilton-Jacobi Equation associated to $H$ admits $u_{0}$ a solution therefore
$\overline{H}(0)=1$ . Suppose now that $u$ : $Tarrow \mathbb{R}$ is a critical $C^{1}$ subsolution for the
Hamiltonian $H$ , we must have

$\forall x\in T,$ $H_{0}(x,p_{0}+u’(x))=H(x,u’(x))\leq 1$ .

Therefore by $(^{*})$ above, we obtain $p_{0}+u’(x)\leq v_{0}(x)=p_{0}+u_{0}’(x)$ . This yields
$u’\leq u_{0}’$ . In fact this inequality must be an equality because $u,$ $u_{0}$ being l-periodic
we have

$\int_{0}^{1}u’(s)ds=u(1)-u(O)=0=\int_{0}^{1}u_{0}’(s)ds$ .
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Since both functions $u’$ and $u_{0}’$ are continuous the inequality $u’\leq u_{0}’$ cannot be
strict at a point. Hence $u$ differs from $u_{0}$ by a constant and is $C^{1,1}$ but not $C^{2}$ .

Notice that the example above gives a case where all critical subsolutions are
solutions.

In the rest of the paper we want to investigate the case when there exists
critical subsolutions which are smoother than $C^{1,1}$ . For this we first need to define
$\overline{H}$ as a function from $\mathbb{R}^{n}$ to $\mathbb{R}$ .

5 The homogenized Hamiltonian $\overline{H}:\mathbb{R}^{n}arrow \mathbb{R}$

If $H$ : $T^{n}\cross \mathbb{R}^{n}arrow \mathbb{R}$ is a Tonelli Hamiltonian, then it is easy to check that for a
given $P\in \mathbb{R}^{n}$ , the Hamiltonian $H_{P}:T^{n}\cross \mathbb{R}^{n}arrow \mathbb{R}$ defined by

$H_{P}(x,p)=H(x, P+p)$

is also a Tonelli Hamiltonian. Therefore we can define the homogenized Hamilto-
nian $\overline{H}$ : $\mathbb{R}^{n}arrow \mathbb{R}$ by

$\overline{H}(P)=\overline{H}_{P}(0)$ .

Proposition 5.1. The homogenized Hamiltonian $\overline{H}$ : $\mathbb{R}^{n}arrow \mathbb{R}$ is convex and
superlinear.

Proof. We have
$\overline{H}(P)=\inf_{u}\max_{x\in T^{n}}H(x, P+d_{x}u)$ ,

where the inf is taken over all $C^{1}$ maps $u:T^{n}arrow \mathbb{R}$ .
Suppose now that $P,$ $Q\in \mathbb{R}^{n}$ and $t\in[0,1]$ are fixed. Given $C^{1}$ functions

$u_{1},$ $u_{2}:T^{n}arrow \mathbb{R}$ , we set $u=tu_{1}+(1-t)u_{2}$ . By convexity of $H$ in the $p$ variable,
we obtain

$H(x, [tP+(1-t)Q]+d_{x}u)=H(x, [tP+(1-t)Q]+[td_{x}u_{1}+(1-t)d_{x}u_{2}])$

$=H(x, t[P+d_{x}u_{1}]+(1-t)[Q+d_{x}u_{2}])$

$\leq tH(x, P+d_{x}u_{1})+(1-t)H(x, Q+d_{x}u_{2})$ .

This yields

$\max_{x}H(x, [tP+(1-t)Q]+d_{x}u)\leq t\max_{x}H(x, P+d_{x}u_{1})+(1-t)\max_{x}H(x, Q+d_{x}u_{2})$ .

Therefore

$\overline{H}(tP+(1-t)Q)\leq t\max_{x}H(x, P+d_{x}u_{1})+(1-t)\max_{x}H(x, Q+d_{x}u_{2})$,

for every pair of $C^{1}$ functions $u_{1},$ $u_{2}$ : $T^{n}arrow \mathbb{R}$ . Taking the infimum over $u_{1}$ and
$u_{2}$ , we conclude that

$\overline{H}(tP+(1-t)Q)\leq t\overline{H}(P)+(1-t)\overline{H}(Q)$ .
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This proves the convexity for $\overline{H}$ . To prove the superlinearity, we again use that
a $C^{1}$ function $u:T^{n}arrow \mathbb{R}$ has a critical point $x_{0}$ ($i.e$ . a point $x_{0}$ where $d_{x_{0}}u=0$),
to obtain

$\inf_{x\in T^{n}}H(x, P)\leq H(x_{0}, P)=H(x_{0}, P+d_{x0}u)\leq\max_{x\in T^{n}}H(x, P+d_{x}u)$ .

Taking the infimum over $u$ , we obtain

$\inf_{x\in T^{n}}H(x, P)\leq\overline{H}(P)$ .

Since $H$ is superlinear in $P$ (uniformly in $x\in T^{n}$ ), we have

$\frac{\inf_{x\in \mathbb{T}^{n}}H(x,P)}{||P\Vert}arrow+\infty$ a$s$ $\Vert P\Vertarrow+\infty$ .

Together with the inequality above this implies the superlinearity of H. $\square$

Like every convex function, the function $\overline{H}$ : $\mathbb{R}^{n}arrow \mathbb{R}$ has a subgradient
$\partial\overline{H}(P)\subset \mathbb{R}^{n}$ at each $P\in \mathbb{R}^{n}$ . Let us recall that this subgradient is defined by

$\partial\overline{H}(P)=\{v\in \mathbb{R}^{n}|\forall p\in \mathbb{R}^{n}, \langle v,p\rangle_{euc}\leq\overline{H}(P+p)-\overline{H}(P)\}$,

where $\langle\cdot,$ $\cdot\rangle_{euc}$ is the usual scalar product on $\mathbb{R}^{n}$ . As is well-known by Hahn-Banach
Theorem $\partial\overline{H}(P)$ is non-empty. It is also convex and compact.

We would now like to give a geometrical-dynamical description of $\partial\overline{H}(0)$ (hence
also of $\partial\overline{H}(P)=\partial\overline{H}_{P}(0))$ .

To do this let us consider a $C^{1,1}$ critical subsolution $u:T^{n}arrow \mathbb{R}$ for $H$ , given
by Patrick Bernard’s Theorem 4.1. The derivative $x\mapsto d_{x}u$ is Lipschitz. Since
the Hamiltonian $H$ is $C^{2}$ , it follows that the vector field

$\chi_{u}(x)=\frac{\partial H}{\partial p}(x, d_{x}u)$ ,

called the Hamiltonian gradient of $u$ , is also Lipschitz on $T^{n}$ . By compactness of
$T^{n}$ , this Lipschitz vector field $x$ defines a global flow $(\varphi_{t}^{u})_{t\in \mathbb{R}}$ on $T^{n}$ .

We introduce for such a $C^{1,1}$ critical subsolution $u:\mathbb{T}^{n}arrow \mathbb{R}$ , its tangency set
$\mathcal{T}(u)\subset T^{n}$ defined by

$\mathcal{T}(u)=\{x\in T^{n}|H(x, d_{x}u)=\overline{H}(0)\}$ .

Note that by Lemma 2.2, the subset $\mathcal{T}(u)\subset T^{n}$ is not empty. It is also compact.
We now define the compact subset $\mathcal{I}(u)\subset \mathcal{T}(u)$ by

$\mathcal{I}(u)=\bigcap_{t\in R}\varphi_{t}^{u}[\mathcal{T}(u)]$
.

This subset $\mathcal{I}(u)$ is the maximal subset of $\mathcal{T}(u)$ which is invariant by the flow $\varphi_{t}^{u}$ .
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Another description of this subset $\mathcal{I}(u)$ can be given. The Hamiltonian $H$

generates a Hamiltonian flow $\phi_{t}^{H}$ on $T^{n}\cross \mathbb{R}^{n}$ which solves the ODE

$\dot{x}=\frac{\partial H}{\partial p}(x,p)$

$\dot{p}=-\frac{\partial H}{\partial x}(x,p)$ .

The set $\mathcal{I}(u)$ is the projection of the orbits of $\phi_{t}^{H}$ contained in graph(du) $\cap$

$H^{-1}(\overline{H}(0))$ , where

graph(du) $=\{(x, d_{x}u)|x\in \mathbb{T}^{n}\}\subset T^{n}\cross \mathbb{R}^{n}$ .

This set $\mathcal{I}(u)$ is also the so-called projected Aubry set of $u$ , see [6] or [7]. The
following theorem is therefore a consequence of a result of John Mather, see [11]
or [6].

Theorem 5.2 (Mather). The subset $\mathcal{I}(u)$ is non-empty.

As is usual in Dynamical Systems, we will consider invariant probability mea-
sures. More precisely, we will denote by $\mathcal{P}(u)$ the set of probability measures
on $T^{n}$ which are invariant under the flow $\varphi_{t}^{u}$ and whose support is contained in
$\mathcal{I}(u)$ . These measures on $T^{n}$ are just the projections of the minimizing measures
introduced in the work of John Mather, see [11, 12] (it might be helpful to use
some facts shown in [6] or [7] $)$ .

Obviously, the set $\mathcal{P}(u)$ is convex and compact for the weak topology on mea-
sures. Since $\mathcal{I}(u)$ is not empty and compact, by the Krylov-Bogoliouboff theorem,
see [8, Theorem 4.1.1 page 135], the set $\mathcal{P}(u)$ is also non-empty.

We can now give the geometrical-dynamical description of $\partial\overline{H}(0)$ .

Theorem 5.3. $We$ have $\partial\overline{H}(0)=\{\int_{T^{n}}\chi_{u}(x)d\mu(x) I \mu\in \mathcal{P}(u)\}$ .

In fact, since the measures in $\mathcal{P}(u)$ are projections of minimizing measures,
the theorem above is a simple reformulation of the fact that the convex functions
$\alpha$ and $\beta$ functions defined in Mather’s work, see [11, 12], are dual functions.

We will use the notation

$S( \mu)=\int_{T^{n}}\chi_{u}(x)d\mu(x)$ ,

for $\mu\in \mathcal{P}(u)$ with this notation we have $\partial\overline{H}(0)=S(\mathcal{P}(u))$ .
We give a couple of classical examples of invariant measures. If the point

$x\in \mathcal{I}(u)$ is a fixed point of the flow $\varphi_{t}^{u}$ , then $\chi_{u}(x)=0$ , and the Dirac mass $\delta_{x}$ is
invariant by the flow $\varphi_{t}^{u}$ . We have

$S( \mu)=\int_{\mathbb{T}^{n}}\chi_{u}d\delta_{x}=0$ .
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If $x\in \mathcal{I}(u)$ is a periodic point of the flow $\varphi_{t}^{u}$ , with period $T>0$ we define the
probability measure $\mu_{x}$ on $T^{n}$ by

$\int_{T^{n}}\theta d\mu_{x}=\frac{1}{T}\int_{0}^{T}\theta(\varphi_{t}^{u}(x))dt$ ,

for $\theta$ : $T^{n}arrow \mathbb{R}$ continuous. It is not difficult to check that this measure is
invariant, and we have

$S( \mu_{x})=\frac{1}{T}/0^{\tau_{\chi_{u}(\varphi_{t}^{u}(x))dt}}$ .

The orbit of $x$ under $\varphi_{t}^{u}$ is the closed curve $\gamma_{x}(t)=\varphi_{t}^{u}(x),$ $t\in[0, T]$ . Moreover,
we have $\dot{\gamma}_{x}(t)=\chi_{u}(\varphi_{t}^{u}(x))$ . Therefore

$\int_{0}^{T}\chi_{u}(\varphi_{t}^{u}(x))dt=\int_{0}^{T}\dot{\gamma}_{x}(t)dt$ .

But this last quantity is in $\mathbb{Z}^{n}$ because

$\int_{0}^{T}\dot{\gamma}_{x}(t)dt=\varphi_{T}^{u}(x)-x=x-x=0$ mod $\mathbb{Z}^{n}$ .

This quantity $\int_{0}^{T}\dot{\gamma}_{x}(t)dt$ will be denoted by $[\gamma_{x}]\in \mathbb{Z}^{n}$ . This notation is to remind
us that the first homology group $H_{1}(T^{n}, \mathbb{R})$ is canonically isomorphic to $\mathbb{R}^{n}$ , and in

thisT canonical isomorphism the homology class of the closed curve $\gamma_{x}$ is precisely
$\int_{0}\dot{\gamma}_{x}(t)dt$ . Therefore we get

$S( \mu_{x})=\frac{1}{T}[\gamma_{x}]$ .

We conclude this section by treating the Examples (El) and (E2) given above.
For example (El), we can take the function $0$ as a critical subsolution.

$\chi_{0}(x)=\frac{\partial H^{V}}{\partial p}(x, 0)=0$ ,

Therefore the flow $\varphi_{t}^{0}$ is the identity. We have

$\mathcal{T}(0)=\{x\in T^{n}|H^{V}(x, 0)=\overline{H}^{v}(0)\}=\{x\in T^{n}|V(x)=\max V\}$ .

Since, the flow $\varphi_{t}^{0}$ is the identity, we get $\mathcal{I}(0)=\mathcal{T}(0)$ . In that case $\mathcal{P}(0)$ is simply
the set of probably measures supported in $\mathcal{I}(0)=\{x\in \mathbb{T}^{n}|V(x)=\max V\}$ .
Moreover, since $\chi_{0}\equiv 0$ , we obtain

$\partial\overline{H}^{V}(0)=\{0\}$ .

In particular, the convex function $\overline{H}^{v}$ is differentiable at $0$ .
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For example (E2), the function $0$ is a solution. This implies

$\mathcal{T}(0)=\{x\in T^{n}|H^{X}(x, 0)=\overline{H}^{X}(0)\}$

is the whole of $T^{n}$ . Hence $\mathcal{I}(0)=\mathcal{T}(0)=T^{n}$ . Since

$\frac{\partial H^{X}}{\partial p}(x,p)=p+X$ ,

we get

$\chi_{0}(x)=\frac{\partial H^{V}}{\partial p}(x, 0)=X(x)$ .

Therefore the flow $\varphi_{t}^{0}$ is simply the flow $\varphi_{t}^{X}$ of $X$ , and $\mathcal{P}(0)$ is the set of probability
measures $\mu$ which are invariant under $\varphi_{t}^{X}$ . In PDE terms, this is the set of
probability measures such that $div(X\mu)=0$ . Let us now consider, on $T^{n}$ , a
constant vector field $X=(\alpha_{1}, \ldots, \alpha_{n})\in \mathbb{R}^{n}$ . In that case, since $\chi_{0}=X$ , we get
$S(\mu)=(\alpha_{1,}\alpha_{n})$ for every probability measure. Therefore $\partial H^{(\alpha_{1},\ldots,\alpha_{n})}(0)=$

$\{(\alpha_{1}, \ldots, \alpha_{n})\}$ . In this case, the convex function is also differentiable at $0$ .
We will now consider $T^{n}=T\cross \mathbb{T}^{n-1}$ , and we will denote a point in $T^{n}$ by

$(s, x)$ with $s\in T$ and $x\in T^{n-1}$ . We fix a $C^{2}$ function $\theta$ : $T^{n-1}arrow \mathbb{R}$ . We consider
the vector field $X(s, x)=(\theta(x), 0)\in \mathbb{R}\cross \mathbb{R}^{n-1}$ . For the Hamiltonian $H^{X}$ , we get
$\chi_{0}(s,x)=X(s, x)=(\theta(x), 0)$ . Therefore, $\varphi_{t}^{0}(s, x)=\varphi_{t}^{X}(s, x)=(s+\theta(x)t, x)$ . We
have already shown that $\mathcal{I}(0)=T^{n}$ . Moreover, one can show that the invariant
measures for $\varphi_{t}^{X}$ are precisely the measures of the form $ds\otimes\nu$ , where $\nu$ is a
probability measure on $T^{narrow 1}$ . For such a measure $ds\otimes\nu$ , we have

$S(ds \otimes\nu)=\int_{T^{n}}X(s, x)ds\otimes d\nu=(\int_{\mathbb{T}^{n-1}}\theta d\nu, 0)$ .

Since $\nu$ is an arbitrary probability measure on $T^{n-1}$ , we obtain

$\partial\overline{H}^{x}(0)=\{(t, 0)|t\in[\min\theta, \max\theta]\}\subset \mathbb{R}\cross \mathbb{R}^{n-1}$.

In this case, unless $\theta$ is constant, the convex function $\partial H^{X}$ is not differentiable at
0.

6 Dynamics of flows on $T^{2}$

In this section, we recall the classical results on flows on $T^{2}$ . Going back to
Poincar\’e there has been a long tradition in studying flows on plane domains,
for example the Poincar\’e-Bendixson Theorem [8, \S 1 Chapter14], and the two-
dimensional torus $T^{2},$ [$8$ , Chapter14]. Denjoy has extended this work and shown
that there are strong restrictions on closed subsets invariant under a $C^{1}$ flow on $T^{2}$ .
These restrictions follow from the strong restrictions on the possible dynamics of
homeomorphisms on $T$ , as was also shown by Denjoy, see for example [8, Chapters
11&14].
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We start by recalling that a continuous flow $\varphi_{t}$ acting on the topological space
$S$ is a continuous map $S\cross \mathbb{R}arrow S,$ $(x, t)\mapsto\varphi_{t}(x)$ which satisfies the flow properties
$\varphi_{0}=$ Id$S$ , and $\varphi_{t+t’}=\varphi_{t^{\circ}}\varphi_{t}/$ , for all $t,$ $t’\in \mathbb{R}$ . The flow properties imply that
the $\varphi_{t}$ are homeomorphisms. The orbit of $x\in S$ for $\varphi_{t}$ is $\{\varphi_{t}(x)|t\in \mathbb{R}\}$ . The
point $x\in S$ is said to be recurrent for $\varphi_{t}$ if we can find a sequence $t_{n}\in \mathbb{R}$ , with
$|t_{n}|arrow+\infty$ such that $\varphi_{t_{n}}(x)arrow x$ when $narrow+\infty$ . Obviously, by continuity of $\varphi_{t}$

and its flow properties, if this condition is satisfied for $x$ it is satisfied at any other
point $\varphi_{t}(x)$ of the orbit of $x$ . The $\alpha$-limit $\alpha(x)$ (resp. $\omega$-limit $\omega(x)$ ) of the orbit of
$x$ is the set of limit points of $\varphi_{t}(x)$ as $tarrow-\infty$ $($resp. $tarrow+\infty)$ . Obviously by the
flow property of $\varphi_{t}$ , the $\alpha$-limit and $\omega$-limit sets are the same along an orbit of $\varphi_{t}$ .
Moreover, by the continuity of $\varphi_{t}$ and its flow properties, the $\alpha$-limit and $\omega$-limit
sets of a an orbit are both invariant under the flow $\varphi_{t}$ . With this definition, the
point $x$ is recurrent under the flow $\varphi_{t}$ if and only if $x\in\alpha(x)\cup\omega(x)$ . If $x$ is fixed
under the flow, then we have $\alpha(x)=\omega(x)=\{x\}$ . If $x$ is periodic under $\varphi_{t}$ , i,e.

there exists $t_{0}>0$ with $\varphi_{t_{0}}(x)=x$ , then $\alpha(x)$ and $\omega(x)$ are both equal to the orbit
$\{\varphi_{t}(x)|t\in \mathbb{R}\}=\{\varphi_{t}(x)|t\in[0, t_{0}]\}$ of $x$ . Note that $\alpha(x)$ and $\omega(x)$ are never
empty if the space $S$ is compact (or even if the orbit of $x$ is relatively compact).

If a point $x$ is periodic but not fixed there exists $t_{x}>0$ such that $\varphi_{t}(x)=x$ if
and only if $t=nt_{x}$ , with $n\in \mathbb{Z}$ . This $t_{x}$ is $c$alled the minimal (or smallest) period
of $x$ . The orbit of $x$ is in that case the simple closed curve $t\in[0, t_{x}]\mapsto\varphi_{t}(x)$ .

If $x$ is neither fixed nor periodic for $\varphi_{t}$ , then it is convenient to say that its
orbit is nonperiodic.

We now recall the Poincar\’e-Bendixson Theorem as it is stated for example in
[8, Theorem 14.1.1, page 452]. Although it is usually stated for $C^{1}$ flows, it is also
true for a flow $\varphi_{t}$ generated by a continuous field vector $X$ . Recall that the flow
$\varphi_{t}$ is generated by the continuous field vector $X$ , if for each $x$ the curve $s\mapsto\varphi_{s}(x)$

is $C^{1}$ and
$X(x)= \frac{d\varphi_{s}(x)}{ds}s=0$ .

By the flow property it follows that

$\forall x\in T^{n},\forall t\in \mathbb{R},$ $X( \varphi_{t}(x))=\frac{d\varphi_{s}(x)}{ds}s=t$ .

The proof in [8] applies also to a flow generated by the continuous field vector $X$ ,
since it only uses the existence of a local transversal at a regular point $x_{0}$ . We
recall that, since we are on a surface, a $C^{1}$ curve $\gamma$ : $Iarrow S$ on the surface $S$

is transversal to the continuous vector field $X$ on $S$ if for each $t\in I$ the speed
$\dot{\gamma}(t)$ is not collinear with $X(\gamma(t))$ . Note that by continuity of $X$ any non singular
smooth curve $\gamma$ : $[-\epsilon, \epsilon]$ which is such that $\gamma(0)=x_{0}$ and $\dot{\gamma}(0)\not\in \mathbb{R}X(x_{0})$ will be
transversal to $X$ on a smaller appropriate interval $[-\delta\rangle\delta]$ .

Theorem 6.1 (Poincar\’e-Bendixson). Let $U$ be an open subset of the plane $\mathbb{R}^{2}$ .
If $\varphi_{t}$ is a flow generated by the contin$uo$us vector field $X$ on $U$ , then any recurrent
orbit of $\varphi_{t}$ is either a fixed point or a periodic orbit. Moreover, if $x\in U$ an$d\alpha(x)$
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(resp. $\omega(x)$) is not empty and does not $c$ontain a fixed point, then it is necessarily
reduced to a single closed orbit.

In fact the theorem above is also true for continuous flows but it requires
construction of topological transversals which are arcs. This is a more delicate
matter.

An important well-known proposition to study recurrent non-periodic orbits
is the following one.

Proposition 6.2. If $\varphi_{t}$ is a Hovv generated by the continuous vector fi$eldX$ on
the $s$urface $M$, and th$e$ orbit of a given $x\in M$ is nonperiodic and recurrent, then
there exists a simple smooth closed curve $\gamma\subset M$ which is everywhere transversal
to the vector fi$eldX$ tangent to the flow $\varphi_{t}$ , and such that $x\in\gamma$ .

The proof of the proposition above is essentially given in the proof of [8,
Proposition 14.1.3, page 453] at least for when $X$ is $C^{1}$ . One can make adjustments
to have it work for flows generated by continuous vector fields.

To state our next proposition, we need to recall the following known topological
facts:

$\bullet$ If $\gamma$ is simple closed curve in $T^{2}$ which disconnects $T^{2}$ then one of the compo-
nents is diffeomorphic to $\mathring{\mathcal{B}}^{2}$ the open Euclidean ball of center $0$ and radius
1 in $\mathbb{R}^{2}$ .

$\bullet$ If $\gamma$ does not disconnect $T^{2}$ then $T^{2}\backslash \gamma$ is diffeomorphic to the open annulus
$\mathring{A}^{2}=\{x\in \mathbb{R}^{2}|1<\Vert x\Vert_{euc}<2\}$ , where $\Vert\cdot\Vert_{euc}$ is the usual Euclidean norm
on $\mathbb{R}^{2}$ .

Proposition 6.3. Let $\varphi_{t}$ be a flow on $T^{2}$ generated by the continuous vector
field X. Suppose $x_{0}$ is a nonperiodic point for th$e$ flow $\varphi_{t}$ which satisfies $x_{0}\in$

$\alpha(x_{0})\cap\omega(x_{0})$ ($i.e$ . $x_{0}$ is both positively and negatively recurrent). If $\gamma$ is a smooth
simpl$e$ closed curve transversal to th$e$ vector field $X$ which does intersect the orbit
of $x_{0}$ , then $\gamma$ does not disconnect $T^{2}$ , and any $0$ther recurrent nonperiodic orbit
intersects $\gamma$ .

Moreover, if $x\in T^{2}$ is such that $\{t\geq 0|\varphi_{t}(x)\in\gamma\}$ (resp. $\{t\leq 0|\varphi_{t}(x)\in\gamma\}$ )
is finite then $\omega(x)$ (resp. $\alpha(x)$ ) is disjoint from $\gamma$ and $\omega(x)$ (resp. $\alpha(x)$ ) either
contains $a$ fixed point or is reduced to a periodic orbit.

Proof. In fact, if the curve $\gamma$ bounds a disc $D$ and is transversal to $X$ , we can
assume for example that $X$ points along $\gamma$ toward the interior of $D$ (if not replace
$\varphi_{t}$ by the flow $\hat{\varphi}_{t}=\varphi_{-t}$ ). Now the orbit of $x$ enters $D$ because it cuts $\gamma$ , but it
can never get out again from $D$ because $X$ is transversal to $\gamma$ and points to the
interior of $D$ along $\gamma$ . Therefore we can apply the Poincar\’e-Bendixson Theorem
6.1 to conclude that $x$ is not positively recurrent which is a contradiction.

Therefore $\gamma$ separates $T^{2}$ . If an orbit does not cut $\gamma$ then it is entirely contained
in $T^{2}\backslash \gamma$ which is diffeomorphic to the annulus $A^{o_{2}}$ . By the Poincar\’e-Bendixson
Theorem 6.1, it cannot be recurrent.
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To prove the last statement of the Proposition, note that by transversality we
can find a neighborhood $U$ of $\gamma$ such that any orbit $\varphi_{t}(z)$ entering $U$ at time $t_{0}$

cuts $\gamma$ at a time in $[t_{0}-1, t_{0}+1]$ . Now if $\{t\geq 0|\varphi_{t}(x)\in\gamma\}$ is finite, we can
find $T>0$ such that $\varphi_{t}(x)\not\in\gamma$ , for every $t\geq T$ , therefore $\varphi_{t}(x)\not\in U$ for every
$t\geq T+1$ . This implies that $\omega(x)\subset T^{2}\backslash U$ . But this last subset is contained in
$T^{2}\backslash \gamma$ which is diffeomorphic to the annulus $A^{o_{2}}$ . By Poincar\’e-Bendixson Theorem
6.1, the set $\omega(x)$ either contains a fixed point or is precisely one periodic orbit. $\square$

Now we come to the consequences of the famous Poincar\’e-Denjoy theory of circle
homeomorphisms, see [8, Chapter 11].

Theorem 6.4 (Poincar\’e-Denjoy). Let $\varphi_{t}$ be a flow on $T^{2}$ generated by the con-
tinuous vector field X. Suppose $A$ is a closed non-empty subset of $T^{2}$ which is
invariant under $\varphi_{t}$ and does not contain any fixed point or periodic orbit. Consider
th$e$ se$tA_{0}$ of non-perio$dic$ recurrent orbits contained in A. We have:

1 $)$ The set $A_{0}$ is dosed and not empty. Every orbi$t$ of a point in $A_{0}$ is dense in
$A_{0}$ .

2$)$ There is exactly one probability measure $\mu$ carried by $A$ and invariant under
$\varphi_{t}$ . Moreover, this measure has support in $A_{0}$ .

3$)$ We $h$ave $\int_{T^{2}}Xd\mu\not\in \mathbb{R}\cdot \mathbb{Z}^{2},$ $i.e$ . the components of th$e$ planar vector $\int_{T^{2}},Xd\mu$

are rationally in$dep$endent.

Proof. By the Krylov-Bogoliouboff theorem, see [8, Theorem 4.1.1 page 135],
there exists a probability measure $\mu$ invariant under $\varphi_{t}$ with support contained in
$A$ . By the Poincar\’e Recurrence Theorem, see [8, Page 142], the set $A_{0}$ of points
in $A$ which are both positively and negatively invariant has full measure for $\mu$ . In
particular it is not empty, and we can find a closed smooth curve $\gamma$ transversal
to the vector field $X$ which intersects one of the orbits in $A_{0}$ . By the previous
proposition, since the closed invariant set $A$ contains neither a fixed point nor a
periodic orbit, every point in $A$ has an orbit which intersects $\gamma$ infinitely often
both in positive and negative time. Therefore if we set $K=A\cap\gamma\subset\gamma$ , we have
$A= \bigcup_{t\in \mathbb{R}}\varphi_{t}(K)$ . Moreover the Poincar\’e return map $R_{\gamma}$ on $\gamma$ is well defined on $K$

by
$R_{Y}(x)=\varphi_{T_{\gamma}(x)}(x)$ ,

where $T_{\gamma}(x)= \inf\{t>0|\varphi_{t}(x)\in\gamma\}$ . Both $T_{\gamma}$ and $R$, are continuous on
$K$ . Moreover. the Poincar\’e return map $R_{r}$ is a bijection of the compact set $K$ ,
because every orbit of a point $K$ intersects $\gamma$ in negative time at a point which
is also in $K=A\cap\gamma$ . Therefore $R_{\gamma}$ is even a homeomorphism of $K$ on itself.
Note that $\gamma$ is homeomorphic to $T$ and $K$ is a compact subset which is infinite.
Therefore, if $C$ is a connected component of $\gamma\backslash K$ it is homeomorphic to an open
interval, and its $\overline{C}$ is equal to $C\cup\{a_{C}, b_{C}\}$ , where $a_{C}$ and $b_{C}$ are two distinct
points in $K$ . Since for $x\neq X’\in K$ the pieces of orbits $\varphi_{t}(x),$ $t\in[0, T_{\gamma}(x)]$

and $\varphi_{t}(x’),$ $t\in[0, T_{\gamma}(x’)]$ do not intersect, the two points $R_{r}(a_{C}),$ $R_{\gamma}(b_{C})$ are the
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endpoints of a connected component $\tilde{C}$ of $\gamma\backslash K$ . We can extend the map $R_{\gamma}$ to
$C$ by extending it homeomorphically to a map from $C$ to $\tilde{C}$ . Doing this to every
connected component of $\gamma\backslash K$ , we find a map $\tilde{R}_{\gamma}$ from $\gamma$ to itself which is an
orientation preserving homeomorphism of $\gamma\approx T$ to itself, which is equal to $R_{r}$ on
$K$ . We can apply to this homeomorphism $R$ the theory of Poincar\’e and Denjoy,
see [8, Chapter 11]. Since $K$ is invariant non-empty and has only infinite orbits
the rotation number of $\tilde{R}_{\gamma}$ is irrational, and $K$ contains the non-wandering set $\Omega$

of $\tilde{R}_{r}$ . Moreover, the dynamics on $\Omega$ is minimal, i.e. every orbit in $\Omega$ is dense
in $\Omega$ , and every other orbit has an $\alpha$-limit set and an $\omega$-limit set equal to $\Omega$ . It
is then not difficult to see that $A_{0}\cap\gamma\subset\Omega$ $\subset A_{0}\cap\gamma$ . Hence, we obtain that
$A_{0}= \bigcup_{x\in\Omega}\{\varphi_{t}(x)|t\in[0, T_{\gamma}(x)]\}$ is compact, the action of $\varphi_{t}$ on $A_{0}$ is minimal
(i.e. every orbit in $A_{0}$ is dense in $A_{0}$ ), and every $\varphi_{t}$ orbit of a point in $A$ has its
$\alpha$-limit set and its $\omega$-limit set equal to $A_{0}$ . We again apply the Poincar\’e-Denjoy
theory to the homeomorphism with irrational rotation number $\tilde{R}_{\gamma}$ to obtain that
it has a unique invariant probability measure, and its support is in $\Omega$ , see $[8_{/}$.

Theorem 11.2.9 page 399]. This implies that the action of $\varphi_{t}$ on $A$ has a unique
probability measure $\mu$ invariant under $\varphi_{t}$ and its support is $A_{0}$ .

It remains to show that $\int Xd\mu$ is not in $\mathbb{R}\cdot \mathbb{Z}^{2}$ . This is a consequence of the fact
that the rotation number $\alpha$ of $\tilde{R}_{r}$ is irrational. We will explain it in the case where
the curve $\gamma$ is $T=T\cross\{0\}\subset T^{2}=T\cross T$. Since there exists a diffeomorphism
that carries the simple closed curve $\gamma$ , which is not homologous to $0$ , to $T=$

$T\cross\{0\}$ , one can reduce the general case to the case above. Therefore assuming
$\gamma=T=T\cross\{0\}$ , let us call $(x, y)$ the canonical coordinates of $T^{2}=T\cross T$ . The
vector field $X$ can be written $X(x, y)=(X_{x}(x, y), X_{y}(x, y))$ where $X_{x}$ and $X_{y}$

are real valued continuous functions. T}ransversality of $X$ to $\gamma=T=T\cross\{0\}$

means that $X_{y}(x, 0)$ is never $0$ . By connectedness, we can assume for example that
$X_{y}(x, 0)>0$ everywhere. Note that the return time $T(x)=T_{\gamma}(x, 0)=T_{T}(x, 0)$

of a point $(x, 0)\in K$ to $\gamma=T=T\cross\{0\}$ is the first time $t>0$ for which $\varphi_{t}(x, 0)$

has its $y$ coordinate equal to $0$ in T. The $y$ coordinate of $\varphi_{t}(x, 0)$ is equal to
$\int_{0}^{t}X_{y}(\varphi_{s}(x, 0))dsmod 1$ . Therefore $T(x)=\tau_{1r}(x, 0)$ is the first time $t>0$ for
which $\int_{0}^{t}X_{y}(\varphi_{s}(x, 0))ds\in \mathbb{Z}$. Since $X_{y}$ is $>0$ on $T=T\cross\{0\}$ , we see that we
necessarily have

$\forall(x, 0)\in K,$ $\int_{0}^{T(x)}X_{y}(\varphi_{s}(x, 0))ds=1$ .

How can one interpret the quantity $d(x)= \int_{0}^{T(x)}X_{x}(\varphi_{s}(x, 0))ds$ for $(x, 0)\in K$?
It is in fact the the quantity $\overline{R}_{T}(x, 0)-x$ for an appropriate lift $\overline{R}_{T}$ to $\mathbb{R}$ of the
extended Poincar\’e return map $\tilde{R}_{T}=\tilde{R}_{\gamma}$ : $Tarrow T$ . Therefore if $\alpha$ is the rotation
number of that lift, we have

$\alpha=\lim_{narrow\infty}\frac{1}{n}\sum_{i=0}^{n-1}d(\tilde{\dot{\mathbb{R}}}(x))$ ,

for every $(x, 0)\in K$ . If we set $T_{n}(x)=T(x)+T(\tilde{R}_{T}(x))+\cdots\tau(\tilde{\mathfrak{B}}^{-1}(x))$, we
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then have

$\varphi_{T_{n}(x)}(x, 0)=(\tilde{R}_{\mathbb{T}}^{n}(x), 0)$

$\int_{0}^{T_{n}(x)}X_{x}(\varphi_{s}(x, 0))ds=\sum_{i=0}^{n-1}d(\tilde{R}_{r}^{i}(x))$

$\int_{0}^{T_{n}(x)}X_{y}(\varphi_{s}(x, 0))ds=\sum_{i=0}^{n-1}\int_{0}^{T(\overline{R}}i(x))X_{y}[\varphi_{8}(\tilde{\dot{\%}}(x), 0)]ds=n$.

Therefore for each $(x, 0)\in K$ , we get

$\lim_{narrow\infty}\frac{\int_{0}^{T_{n}(x)}X_{x}(\varphi_{\epsilon}(x,0))ds}{\int_{0}^{T_{n}(x)}X_{y}(\varphi_{8}(x,0))ds}=\alpha$. $(^{*})$

Note also that
$n \max_{K}T\geq T_{n}(x)\geq n\min_{K}T>0$ .

Hence
$\frac{n}{T_{n}(x)}=\frac{1}{T_{n}(x)}\int_{0}^{T_{n}(x)}X_{y}(\varphi_{s}(x, 0))ds\geq\frac{1}{\max_{K}T}>0$ . $(^{**})$

Let us then consider the unique invariant measure $\mu$ with support in $A$ , it must
be ergodic, see [8, Proposition 4,1.8 page 138]. We can apply Birkhoff Ergodic
Theorem, see [13, Theorem 5.0.2 page 460] or [8, Theorem 4.1.2 page 136], to
obtain that for $\mu$-almost every $(x, y)$ , we have

$\lim_{tarrow\infty}\frac{1}{t}\int_{0}^{t}X_{x}(\varphi_{s}(x, y))ds=\int X_{x}d\mu$

$\lim_{tarrow\infty}\frac{1}{t}\int_{0}^{t}X_{x}(\varphi_{e}(x, y))ds=\int X_{y}d\mu$ .

Since every orbit of $A$ cuts $\gamma=T=T\cross\{0\}$ in a point $(x, 0)\in K$ , and $\mu$ is carried
by $A$ , we obtain first from $(^{**})$ that

$\int X_{y}d\mu\geq 1/\max_{K}T>0$ ,

then from $(^{*})$

$\frac{\int X_{x}d\mu}{\int X_{y}d\mu}=\alpha$ .

But $\alpha$ is irrational, since it is the rotation number of the lift of a homeomorphism
of $T$ without periodic points. $\square$

Denjoy’s work in 1932 has shown that $C^{2}$ flows on $T^{2}$ have strong restrictions
on their possible dynamics, see [4]. We will state a more general version on
surfaces due to A. Schwartz, see [14] or [8, Theorem 14.3.1 page 460], that we will
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also use in the last section to extend our observations to higher genus surfaces.
The version we state is not exactly the one given by Schwartz, but it can be
deduced from [14, Theorem page 453] and [14, Corollary page 457], using that
every compact non-empty set invariant under a flow contains a compact minimal
subset (i.e. a compact non-empty subset invariant under the flow such that every
orbit contained in that subset is dense in that subset).

Theorem 6.5 (Denjoy-Schwartz). Let $M$ be a compact 2-dimensional surface
with no boundary. Let $\varphi_{t}$ be a $C^{2}$ flow on M. Suppose that $A$ is a compact
non-empty $su$bset of $M$ which is invariant under $\varphi_{t}$ , then one of the following
three statements $h$olds:

1$)$ The set $A$ contains a fixed point of the flow $\varphi_{t}$ .
2$)$ Every recurrent orbit of $\varphi_{t}$ contained in $A$ is a closed orbit.

3$)$ Every orbit of $\varphi_{t}$ is dense in $M$ , an$d$ we have $M=A=T^{2}$ .

The reader should be warned that Denjoy has constructed counterexamples to
the theorem with $C^{1}$ flows, see for example [8, \S 2 Chapter 12]

7 The Homogenized Hamiltonian on $T^{2}$

The results in the previous section imply some restrictions on the subgradient
$\partial\overline{H}(P)$ for a $P\in T^{2}$ . It has also consequences on the form of the Mather set
$\tilde{\mathcal{M}}_{P}\subset T^{2}\cross \mathbb{R}^{2}$ of the Hamiltonian $H_{P}(x,p)=H(x, P+p)$ . Let us recall that
$\tilde{\mathcal{M}}_{P}$ is invariant under the Hamiltonian flow $\phi_{t}^{H}$ of $H$ . Moreover it is a graph on
its projection $\mathcal{M}_{P}$ in $T^{2}$ . If $u$ is a critical $C^{1_{9}1}$ subsolution of $H_{P}$ then

$\mathcal{M}_{P}=\overline{\cup\{\sup p(\mu)|\mu\in \mathcal{P}(u)\}}$ ,

and the orbits of $\phi_{t}^{H}$ contained in $\tilde{\mathcal{M}}_{P}$ project on orbits of $\varphi_{t}^{u}$ in $T^{2}$ .

Proposition 7.1. Let $H$ : $T^{2}\cross \mathbb{R}^{2}arrow \mathbb{R}$ be a Tonelli Hamiltonian. If $P\in \mathbb{R}^{2}$ ,
then one of the following things happen:

(i) We have $0\in\partial\overline{H}(P)$ , and therefore $\overline{H}(P)=\inf_{\mathbb{R}^{2}}$ H. Moreover, the Mather
set $\tilde{\mathcal{M}}_{P}$ does satisfy on$e$ of the following possibilities:

(a) $\tilde{\mathcal{M}}_{P}$ contains $a$ fxed point of $\phi_{t}^{H}$ .
(b) $\tilde{\mathcal{M}}_{P}$ contatns a closed orbit of $\phi_{t}^{H}$ whose projection on $T^{2}$ is homologous

to $0$ .
(c) $\tilde{\mathcal{M}}_{P}$ contains a pair closed orbits of $\phi_{t}^{H}$ whose projection $\gamma_{1},$ $\gamma_{2}$ on $T^{2}$

are such that $\gamma_{2}$ is homologous $to-\gamma_{1}$ .
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(ii) There is a vector $V\in \mathbb{Z}^{2}\backslash \{0\}$ , an$d\beta\geq\alpha>0$ such that

$\overline{H}(P)=\{tV|t\in[\alpha, \beta]\}$ .

In particular, we have $\partial\overline{H}(P)\subset \mathbb{R}\cdot \mathbb{Z}^{2}$ . Moreover we can choose $V$ such th$e$

Mather set $\tilde{\mathcal{M}}_{P}$ is a union of disjoint closed orbits of the Hamiltonian flow
$\phi_{t}^{H}$ whose projections in $T^{2}$ all have a $hom$ology class $eq$ual to $V$ .

(iii) The set $\partial\overline{H}(P)$ is reduced to one point contain$ed$ in $\mathbb{R}^{2}\backslash \mathbb{R}\cdot \mathbb{Z}^{2}$ . In particular,
the convex function $\overline{H}$ is differentiable at P. Moreover, in that case the
Mather set $\tilde{\mathcal{M}}_{P}$ is a minimal uniquely ergodic subset for the Hamiltonian
flow $\phi_{t}^{H}$ , with no closed orbit or fixed poin$t$ .

Proof. Replacing $H$ by $H_{P}$ we can assume $P=0$. We choose a $C^{1,1}$ critical
subsolution $u$ for $H$ . We consider the non-empty set $\mathcal{I}(u)$ , which is invariant
under the flow $\varphi_{t}^{u}$ generated by the Lipschitz vector field $\chi_{u}$ . We will use the
characterization of $\partial\overline{H}(0)$ given in Theorem 5.3.

If $\mathcal{I}(u)$ contains a fixed point $x_{0}$ for $\varphi_{t}^{u}$ , as we have seen in \S 5, the Dirac mass
$\delta_{x0}$ is invariant under the flow and $S(\delta_{x_{0}})=0$ . Therefore we are in case (i) subcase
(a).

We can from now on assume that $\mathcal{I}(u)$ does not contain any fixed point.
Suppose that the set Per of periodic points in $\mathcal{I}(u)$ is not empty. Since we are

assuming that $\mathcal{I}(u)$ does not contain any fixed point, every $x\in$ Per has a minimal
period $t_{x}>0$ . The curve $\gamma_{x}(t)=\varphi_{t}^{u}(x),$ $t\in[0, t_{x}]$ is a simple closed curve. We
can define the invariant measure $\mu_{x}$

$\int_{\Gamma^{2}}\theta d\mu_{x}=\frac{1}{t_{x}}\int_{0}^{t_{x}}\theta(\varphi_{s}^{u}(x))ds$ .

Again by \S 5, we have
$S( \mu_{x})=\frac{1}{t_{x}}[\gamma_{x}]$ .

If Per contains a point $x$ such that $\gamma_{x}$ is homologous to $0$ , then we are in case
(i) subcase (b).

We now assume that Per is not empty and consists of points $x$ such that the
orbit $[\gamma_{x}]$ is never homologous to $0$ . Let us fix one of these points $x_{0}\in$ Per, and we
set $V=[\gamma_{x_{0}}]\in \mathbb{Z}^{2}\backslash \{0\}$ . We know that $T^{2}\backslash \gamma_{x_{0}}$ is homeomorphic to the annulus
$A^{o_{2}}$ . If $x\in$ Per $\backslash \gamma_{x0}$ , since $\gamma_{x}$ is a simple curve in the annulus $T^{2}\backslash \gamma_{x_{0}}$ which is not
homologous to $0$ , then necessarily $[\gamma_{x}]=\epsilon(x)V$ with $\epsilon(x)=\pm 1$ . If for some $x$ we
have $\epsilon(x)=-1$ then we can define the invariant measure

$\mu=\frac{1}{t_{x_{0}}+t_{x}}[t_{x0}\mu_{x_{0}}+t_{x}\mu_{x}]$ .

We have

$S( \mu)=\frac{1}{t_{x_{0}}+t_{x}}[t_{x0}S(\mu_{x0})+t_{x}S(\mu_{x})]=\frac{1}{t_{x_{0}}+t_{x}}[t_{x0}(\frac{1}{t_{x_{0}}}V)+t_{x}(-\frac{1}{t_{x}}V)]=0$ .
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And we are in case (i) subcase (c).
Assume now that in fact $\epsilon(x)=1$ , for every $x\in$ Per. Since every orbit of $\varphi_{t}^{u}$

distinct from $\gamma_{x_{0}}$ is contained in $T^{2}\backslash \gamma_{x0}$ , which is homeomorphic to the annulus
$A^{2}$ , we can apply the Poincar\’e-Bendixson Theorem 6.1 to conclude that every
recurrent point $x\in \mathcal{I}(u)$ is contained in Per. By Poincar\’e Recurrence Theorem,
see [8, Page 142], any invariant measure $\mu$ with support in $\mathcal{I}(u)$ is therefore carried
by Per. This has two consequences. The first one is that the Mather set $\mathcal{M}_{0}$ is
equal to the closure of Per. The second one is

$S( \mu)=\int_{Per}\chi_{u}(x)d\mu$ .

Note that for $x\in$ Per, we have

$\lim_{tarrow+\infty}\int_{0}^{t}\chi_{u}(\varphi_{s}^{u}(x))ds=\frac{1}{t_{x}}[\gamma_{x}]$ .

Since $[\gamma_{x}]=V$ , using Birkhoff Ergodic Theorem, see [13, Theorem 5.02 page 460]
or [8, Theorem 4.1.2 page 136], we obtain

$S( \mu)=\int_{Per}\frac{1}{t_{x}}Vd\mu(x)=[\int_{Per}\frac{1}{t_{x}}d\mu(x)]]V$

Since $\partial\vec{H}(0)=S(\mathcal{P}(u))$ is compact and convex7 we get

$\partial\overline{H}(0)=[\inf^{\underline{1}}, \sup^{\underline{1}}]V$

Per $t_{x}$ Per $t_{x}$

In fact, since $\mathcal{I}(u)$ does not contain fixed points, arguments similar to the Poincar\’e-
Bendixson Theorem can show, that Per is closed in $\mathcal{I}(u)$ , hence compact, and that
$x\mapsto t_{x}>0$ is continuous. This implies that the Mather set $\mathcal{M}_{0}$ is equal to Per,
and also that $\inf_{Per}\frac{1}{t_{x}}>0$ . Therefore we are in case (ii).

It remains to consider the case when $\mathcal{I}(u)$ does not contain a fixed or a periodic
point. In that case we can invoke The Poincar\’e-Denjoy Theorem 6.4 and Theorem
5.3 to see that we are in case (iii). 口

8 Smoother critical subsolutions
What we will do in this section is to apply the Denjoy-Schwartz Theorem 6.5 to
the set $\mathcal{I}(u)$ . To be able to apply this theorem we will need the flow $(\varphi_{t}^{u})_{t\in \mathbb{R}}$

defined by the vector field

$\chi_{u}(x)=\frac{\partial H}{\partial p}(x, d_{x}u)$

to be $C^{2}$ . For this we assume, not only that $H$ is a Tonelli Hamiltonian, but also
that $\partial H/\partial p$ is of class $C^{2}$ , and that the critical subsolution $u$ is of class $C^{3}$ . In
which case $\lambda’u$ is $C^{2}$ , and therefore so is its flow $\varphi_{t}^{u}$ .
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Notice that for a Tonelli Hamiltonian of the form

$H(x,p)= \frac{1}{2}\Vert p\Vert_{euc}^{2}+V(x)$ ,

we have
$\frac{\partial H}{\partial p}(x,p)=p$ .

Therefore for such a Tonelli Hamiltonian, the partial derivative $\partial H/\partial p$ is of class
$C^{\infty}$ .

The next theorem now follows from the Denjoy-Schwartz Theorem 6.5, and
Proposition 7.1.

Theorem 8.1. Suppose $H$ : $T^{2}\cross \mathbb{R}^{2}arrow \mathbb{R}$ is a Tonelli Hamiltonian with $\partial H/\partial p$ of
class $C^{2}$ . Fix $P\in \mathbb{R}^{2}$ . If $H_{P}(x,p)=H(x, P+p)$ admits a $C^{3}$ critical $su$bsolution,
and $\partial\overline{H}(P)\cap \mathbb{R}\cdot \mathbb{Z}^{2}=\emptyset$ , then $\mathcal{I}(u)=T^{2}=\mathcal{M}_{P}$ , and $u$ is a solution of the
Hamilton-Jaco$bi$ Equation

$H(x, P+d_{x}u)=\overline{H}(P)$ .

For the sake of completeness we would like to state the consequence of the
Denjoy-Schwartz Theorem 6.5, for surfaces of higher genus. If $H$ : $T^{*}Marrow \mathbb{R}$ is a
Tonelli Hamiltonian on the compact manifold $M$ , then the homogenized Hamilto-
nian is a convex superlinear function on the first cohomology group $H^{1}(M, \mathbb{R})$ . For
$\omega\in H^{1}(M, \mathbb{R})$ , the subgradient $\partial\overline{H}(\omega)$ is in that case naturally given as a subset
of $H_{1}(M, \mathbb{R})$ , the first homology group of $M$ . Again there is a procedure to change
the Hamiltonian to reduce all statements to the case when $\omega=0\in H^{1}(M, \mathbb{R})$ .
We will therefore state the result only in the case $\omega=0$ .

Before stating the theorem we will say that a point $v$ in $H_{1}(M, \mathbb{R})$ is in a
rational direction if it is of the form $v=tz$ , with $t\in \mathbb{R}$ , and $z$ is in the part of
$H_{1}(M,\mathbb{R})$ coming from the integral homology group $H_{1}(M, \mathbb{Z})$ .

Theorem 8.2. Assume $M$ is a compac$t$ orienta$ble$ boundaxyless surface of genus
$g\geq 2$ . Assume $H$ : $T^{*}Marrow \mathbb{R}$ is a Tonelli Hamiltonian such that $\partial H/\partial p$ of
class $C^{2}$ . If $H$ has a $C^{3}$ critical subsol$u$tion then on$e$ of the two following things
happens

(i) We have $0\in\partial\vec{H}(0)\subset H_{1}(M, \mathbb{R})$ , an$d \overline{H}(0)=\inf_{H^{1}(M,\mathbb{R})}\overline{H}$ .

(ii) The subgradient $\partial\overline{H}(0)\subset H_{1}(M,\mathbb{R})$ is a polyhedron generated by at most
$6g-6$ vertices which are in rational directions

The number $6g-6$ comes from the fact that, in a surface of genus $g$ , in any
set of simple curves with cardinal $>3g-3$ we can find a couple of curves $\gamma_{1},$ $\gamma_{2}$ ,
with $\gamma_{2}$ is homologous to $\pm\gamma_{1}$ .
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