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1 Introduction
This note consists of partial results of my recent paper [Fu]. In [Fu], we discuss several
topics which are not treated here.

Let $\Omega$ be an open and connected subset of $\mathbb{R}^{n}$ , and $H$ : $\Omega\cross \mathbb{R}^{n}arrow \mathbb{R}$ a given function.
In this paper, we consider the Hamilton-Jacobi equation

(1.1) $H(x, Du(x))=0$ in $\Omega$ .

Let $\mathcal{A}$ and $\overline{\mathcal{A}}$ be, respectively, its (projected) Aubry set and the quotient Aubry set.
As for their definitions and properties, see Section 2 below. The quotient Aubry set $\overline{\mathcal{A}}$

plays an essential role to study viscosity solutions of (1.1) (cf. [CI, DS, FU, I, IM]).
In particular, several authors provided sufficient conditions in order that 7 is totally
disconnected (i.e., every connected component consists of a single point in the topology
of A) [FFR, Ml, M2, $S$ ].

In this note, we explain a reason why total disconnectedness of $\overline{\mathcal{A}}$ is important. Let
$\pi(x)$ be the equivalent class of $\overline{\mathcal{A}}$ containing $x\in \mathcal{A}$ . We study how $\pi(x)$ behaves in
$\mathcal{A}$ when $\overline{\mathcal{A}}$ is total disconnected. We show that a necessary condition in order that $\overline{\mathcal{A}}$

is totally disconnected is that $\pi(x)\supset C(x)$ holds for each $x\in \mathcal{A}$ . Here, $C(x)$ is the
connected component of $\mathcal{A}$ containing $x\in \mathcal{A}$ . On the other hand, we show that if $\mathcal{A}$ is
a compact set in $\Omega$ , then a necessary and sufficient condition in order that $\overline{\mathcal{A}}$ is totally
disconnected is that $\pi(x)=C(x)$ holds for each $x\in \mathcal{A}$ .

The state such that $\pi(x)=C(x)$ for each $x\in \mathcal{A}$ is preferable, because we can un-
derstand and calculate $\pi(x)$ of this case clearly. Our result shows that if $\mathcal{A}$ is a compact
set in $\Omega$ , this preferable state occurs when and only when $\overline{\mathcal{A}}$ is totally disconnected.
This is a reason why we propose that totally disconnectedness of $\overline{\mathcal{A}}$ is important.

The contents of this note are as follows: In Section 2, we provide some preliminaries,
In Section 3, we state our results.
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2 Preliminaries
Let $B(x, r)=\{y\in \mathbb{R}^{n}||y-x|\leq r\}$ for $x\in \mathbb{R}^{n}$ and $r>0$ . We assume:

(Al) $H\in C(\Omega\cross \mathbb{R}^{n})$ .

(A2) $H$ is coercive, that is, for any compact subset $K$ of $\Omega$ ,

$\lim_{rarrow\infty}\inf\{H(x,p)|x\in K, p\in \mathbb{R}^{n}\backslash B(0, r)\}=\infty$ .

(A3) For any $x\in\Omega$ , the function $p\mapsto H(x,p)$ is convex on $\mathbb{R}^{n}$ .

(A4) There is a continuous viscosity subsolution of (1.1).

Let $S$ (resp., $S^{-}$ ) denotes the space of continuous viscosity solutions (resp., viscosity
subsolutions) of (1.1). If necessary, we write $S(\Omega)$ and $S^{-}(\Omega)$ for $S$ and $S^{-}$ , respectively,
in order to refer the domain under consideration. Then, (A4) implies that $S^{-}(\Omega)\neq\emptyset$ .

Next, we explain the (projected) Aubry set for the Hamilton-Jacobi equation (1.1).
The Aubry set is defined as follows: Define the function $d:\Omega\cross\Omega\mapsto(-\infty, \infty]$ by

(2.1) $d(x, y)= \sup\{v(x)-v(y)|v\in S^{-}(\Omega)\}$ .

Then, by [IM, Theorem 1.4 and Proposition 1.6], we have the following:

(2.2) $d$ is locally Lipschitz continuous on $\Omega\cross\Omega$ .
(2.3) $u(x)-u(y)\leq d(x, y)$ for all $u\in S^{-}(\Omega)$ and $x,$ $y\in\Omega$ .
(2.4) For all $y\in\Omega,$ $d(\cdot, y)\in S^{-}(\Omega)$ and $d(\cdot, y)\in S(\Omega\backslash \{y\})$ .
(2.5) For all $x,$ $y,$ $z\in\Omega,$ $d(x, z)\leq d(x, y)+d(y, z)$ and $d(x, x)=0$ .
(2.6) $d(x, y)= \inf\{\int_{0}^{t}L(\gamma(s),\dot{\gamma}(s))ds|t>0,$ $\gamma\in C(x, t;y, 0)\}$ ,

where $C(x, t;y, 0)$ is the set of all absolutely continuous curves $\gamma$ : $[0, t]\mapsto\Omega$ satisfying
$(\gamma(t), \gamma(0))=(x, y)$ , and $L\in C(\Omega\cross \mathbb{R}^{n})$ is the convex conjugate of $H$ defined by

(2.7) $L(x, \xi)=\sup\{\xi\cdot p-H(x,p)|p\in \mathbb{R}^{n}\}$ for $(x, \xi)\in\Omega\cross \mathbb{R}^{n}$ .

The Aubry set $\mathcal{A}$ is defined by

(2.8) $\mathcal{A}=\{y\in\Omega|d(\cdot, y)\in S(\Omega)\}$ .

In the following, we assume

(A5) $\mathcal{A}\neq\emptyset$ .

We note that $\mathcal{A}$ is a closed set in $\Omega$ , which is due to the stability of the viscosity property
under uniform convergence. The assumptions $(A1)-(A5)$ are considered to be natural
to discuss the Aubry set for the Hamilton-Jacobi equation (1.1).
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Now, we explain an equivalence relation on $\mathcal{A}$ , which is important to study $S(\Omega)$ and
$S^{-}(\Omega)$ . By (2.5), we see that the function $\lambda$ : $\mathcal{A}\cross \mathcal{A}arrow \mathbb{R}$ defined by $\lambda(x, y)=d(x, y)+$

$d(y, x)$ is a pseudo-metric on $\mathcal{A}$ , i.e., it is non-negative, symmetric, and satisfies the
triangle inequality and $\lambda(x, x)=0$ ; but the condition $\lambda(x, y)=0$ does not necessarily
imply $x=y$ . Let $x,$ $y\in \mathcal{A}$ . If $\lambda(x, y)=0$ , then we write $x\delta y$ . This relation $\delta$ is an
equivalence relation on $\mathcal{A}$ . We set

(2.9) $\pi(y)$ $=$ $\{z\in \mathcal{A}|z\delta y\}$ , $y\in \mathcal{A}$ ,
$\overline{\mathcal{A}}=$ $\{\pi(y)|y\in \mathcal{A}\}$ .

Then, $\pi$ is considered as the canonical surjection from $\mathcal{A}$ to $\overline{\mathcal{A}}$, and we see that $\overline{\mathcal{A}}=\mathcal{A}/\delta$ .
Note that we may regard $\xi\in\overline{\mathcal{A}}$ as a subset of $\mathcal{A}$ and $\xi=\pi^{-1}(\{\xi\})$ . Note also that if
$x\in\pi(y)$ , then $\pi(x)=\pi(y)$ . We define the function A : $\overline{\mathcal{A}}\cross\overline{\mathcal{A}}arrow \mathbb{R}$ by

(2.10) $\overline{\lambda}(\pi(x), \pi(y))=d(x, y)+d(y, x)$ .

The following proposition is well-known.

Proposition 1. A is well defined, and $(\overline{\mathcal{A}}, \overline{\lambda})$ is a metric space.

3 Results
In this section, we state our results of this note. For their proofs, see [Fu]. Let $C(x)$ be
the connected component of $\mathcal{A}$ containing $x$ . In the following, as the topology of 4, we
always consider the one induced by the metric $\overline{\lambda}$ . Note that, by (2.2) and (2.10), $\pi$ is
a continuous mapping from $\mathcal{A}$ to $\overline{\mathcal{A}}$ .

Proposition 2. Assume $(Al)-(A5)$ . If $\overline{\mathcal{A}}$ is totally disconnected, then $\pi(x)\supset$

$C(x)$ for each $x\in \mathcal{A}$ .

By Proposition 2, the condition that $\pi(x)\supset C(x)$ for each $x\in \mathcal{A}$ is a necessary con-
dition in order that $\overline{\mathcal{A}}$ is totally disconnected. Next, we consider a sufficient condition
in order that $\overline{\mathcal{A}}$ is totally disconnected. In the following, we assume:

(A6) $\mathcal{A}$ is a compact set of $\Omega$ .

We provide a simple consequence of (A6).

Lemma 1. Assume $(Al)-(A\theta)$ . Then, $\pi(x)$ is a connected set of $\mathcal{A}$ for each $x\in A$ .

Now, we are in the position to state our sufficient condition in order that $\overline{\mathcal{A}}$ is totally
disconnected.

Proposition 3. Assume that $(Al)-(A6)$ . Then, $\overline{\mathcal{A}}$ is totally disconnected if and
only if $\pi(x)=C(x)$ for each $x\in \mathcal{A}$ .
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