Some results on quotient Aubry sets

Yasuhiro FUJITA * Department of Mathematics, University of Toyama, Toyama 930-8555, Japan.

December 19, 2008

1 Introduction

This note consists of partial results of my recent paper [Fu]. In [Fu], we discuss several topics which are not treated here.

Let Ω be an open and connected subset of \mathbb{R}^n , and $H: \Omega \times \mathbb{R}^n \to \mathbb{R}$ a given function. In this paper, we consider the Hamilton-Jacobi equation

(1.1) $H(x, Du(x)) = 0 \quad \text{in } \Omega.$

Let \mathcal{A} and $\overline{\mathcal{A}}$ be, respectively, its (projected) Aubry set and the quotient Aubry set. As for their definitions and properties, see Section 2 below. The quotient Aubry set $\overline{\mathcal{A}}$ plays an essential role to study viscosity solutions of (1.1) (cf. [CI, DS, FU, I, IM]). In particular, several authors provided sufficient conditions in order that $\overline{\mathcal{A}}$ is totally disconnected (i.e., every connected component consists of a single point in the topology of $\overline{\mathcal{A}}$) [FFR, M1, M2, S].

In this note, we explain a reason why total disconnectedness of $\overline{\mathcal{A}}$ is important. Let $\pi(x)$ be the equivalent class of $\overline{\mathcal{A}}$ containing $x \in \mathcal{A}$. We study how $\pi(x)$ behaves in \mathcal{A} when $\overline{\mathcal{A}}$ is total disconnected. We show that a necessary condition in order that $\overline{\mathcal{A}}$ is totally disconnected is that $\pi(x) \supset C(x)$ holds for each $x \in \mathcal{A}$. Here, C(x) is the connected component of \mathcal{A} containing $x \in \mathcal{A}$. On the other hand, we show that if \mathcal{A} is a compact set in Ω , then a necessary and sufficient condition in order that $\overline{\mathcal{A}}$ is totally disconnected is that $\pi(x) = C(x)$ holds for each $x \in \mathcal{A}$.

The state such that $\pi(x) = C(x)$ for each $x \in \mathcal{A}$ is preferable, because we can understand and calculate $\pi(x)$ of this case clearly. Our result shows that if \mathcal{A} is a compact set in Ω , this preferable state occurs when and only when $\overline{\mathcal{A}}$ is totally disconnected. This is a reason why we propose that totally disconnectedness of $\overline{\mathcal{A}}$ is important.

The contents of this note are as follows: In Section 2, we provide some preliminaries. In Section 3, we state our results .

^{*}Supported in part by Grant-in-Aid for Scientific Research, No. 18540165, 18204009, JSPS.

2 Preliminaries

Let $B(x,r) = \{y \in \mathbb{R}^n \mid |y-x| \le r\}$ for $x \in \mathbb{R}^n$ and r > 0. We assume:

(A1) $H \in \mathcal{C}(\Omega \times \mathbb{R}^n).$

(A2) H is coercive, that is, for any compact subset K of Ω ,

$$\lim_{r \to \infty} \inf \left\{ H(x, p) \, | \, x \in K, \ p \in \mathbb{R}^n \setminus B(0, r) \right\} = \infty.$$

(A3) For any $x \in \Omega$, the function $p \mapsto H(x, p)$ is convex on \mathbb{R}^n .

(A4) There is a continuous viscosity subsolution of (1.1).

Let \mathcal{S} (resp., \mathcal{S}^-) denotes the space of continuous viscosity solutions (resp., viscosity subsolutions) of (1.1). If necessary, we write $\mathcal{S}(\Omega)$ and $\mathcal{S}^-(\Omega)$ for \mathcal{S} and \mathcal{S}^- , respectively, in order to refer the domain under consideration. Then, (A4) implies that $\mathcal{S}^-(\Omega) \neq \emptyset$.

Next, we explain the (projected) Aubry set for the Hamilton-Jacobi equation (1.1). The Aubry set is defined as follows: Define the function $d: \Omega \times \Omega \mapsto (-\infty, \infty]$ by

(2.1)
$$d(x,y) = \sup \left\{ v(x) - v(y) \mid v \in \mathcal{S}^{-}(\Omega) \right\}.$$

Then, by [IM, Theorem 1.4 and Proposition 1.6], we have the following:

(2.4) For all $y \in \Omega$, $d(\cdot, y) \in \mathcal{S}^{-}(\Omega)$ and $d(\cdot, y) \in \mathcal{S}(\Omega \setminus \{y\})$.

(2.5) For all
$$x, y, z \in \Omega$$
, $d(x, z) \le d(x, y) + d(y, z)$ and $d(x, x) = 0$.

(2.6)
$$d(x,y) = \inf\left\{\int_0^t L(\gamma(s),\dot{\gamma}(s))ds \,\middle|\, t > 0, \ \gamma \in \mathcal{C}(x,t;y,0)\right\},$$

where $\mathcal{C}(x,t;y,0)$ is the set of all absolutely continuous curves $\gamma:[0,t] \mapsto \Omega$ satisfying $(\gamma(t),\gamma(0)) = (x,y)$, and $L \in \mathbb{C}(\Omega \times \mathbb{R}^n)$ is the convex conjugate of H defined by

(2.7)
$$L(x,\xi) = \sup\{\xi \cdot p - H(x,p) \mid p \in \mathbb{R}^n\} \quad \text{for } (x,\xi) \in \Omega \times \mathbb{R}^n.$$

The Aubry set \mathcal{A} is defined by

(2.8)
$$\mathcal{A} = \{ y \in \Omega \mid d(\cdot, y) \in \mathcal{S}(\Omega) \}.$$

In the following, we assume

(A5)
$$\mathcal{A} \neq \emptyset$$
.

We note that \mathcal{A} is a closed set in Ω , which is due to the stability of the viscosity property under uniform convergence. The assumptions (A1)-(A5) are considered to be natural to discuss the Aubry set for the Hamilton-Jacobi equation (1.1). Now, we explain an equivalence relation on \mathcal{A} , which is important to study $\mathcal{S}(\Omega)$ and $\mathcal{S}^{-}(\Omega)$. By (2.5), we see that the function $\lambda : \mathcal{A} \times \mathcal{A} \to \mathbb{R}$ defined by $\lambda(x, y) = d(x, y) + d(y, x)$ is a pseudo-metric on \mathcal{A} , i.e., it is non-negative, symmetric, and satisfies the triangle inequality and $\lambda(x, x) = 0$; but the condition $\lambda(x, y) = 0$ does not necessarily imply x = y. Let $x, y \in \mathcal{A}$. If $\lambda(x, y) = 0$, then we write $x\delta y$. This relation δ is an equivalence relation on \mathcal{A} . We set

(2.9)
$$\pi(y) = \{z \in \mathcal{A} \mid z\delta y\}, \quad y \in \mathcal{A}, \\ \overline{\mathcal{A}} = \{\pi(y) \mid y \in \mathcal{A}\}.$$

Then, π is considered as the canonical surjection from \mathcal{A} to $\overline{\mathcal{A}}$, and we see that $\overline{\mathcal{A}} = \mathcal{A}/\delta$. Note that we may regard $\xi \in \overline{\mathcal{A}}$ as a subset of \mathcal{A} and $\xi = \pi^{-1}(\{\xi\})$. Note also that if $x \in \pi(y)$, then $\pi(x) = \pi(y)$. We define the function $\overline{\lambda} : \overline{\mathcal{A}} \times \overline{\mathcal{A}} \to \mathbb{R}$ by

(2.10) $\overline{\lambda}(\pi(x),\pi(y)) = d(x,y) + d(y,x).$

The following proposition is well-known.

Proposition 1. $\overline{\lambda}$ is well defined, and $(\overline{\mathcal{A}}, \overline{\lambda})$ is a metric space.

3 Results

In this section, we state our results of this note. For their proofs, see [Fu]. Let C(x) be the connected component of \mathcal{A} containing x. In the following, as the topology of $\overline{\mathcal{A}}$, we always consider the one induced by the metric $\overline{\lambda}$. Note that, by (2.2) and (2.10), π is a continuous mapping from \mathcal{A} to $\overline{\mathcal{A}}$.

Proposition 2. Assume (A1)-(A5). If \overline{A} is totally disconnected, then $\pi(x) \supset C(x)$ for each $x \in A$.

By Proposition 2, the condition that $\pi(x) \supset C(x)$ for each $x \in \mathcal{A}$ is a necessary condition in order that $\overline{\mathcal{A}}$ is totally disconnected. Next, we consider a sufficient condition in order that $\overline{\mathcal{A}}$ is totally disconnected. In the following, we assume:

(A6) \mathcal{A} is a compact set of Ω .

We provide a simple consequence of (A6).

Lemma 1. Assume (A1)-(A6). Then, $\pi(x)$ is a connected set of \mathcal{A} for each $x \in \mathcal{A}$.

Now, we are in the position to state our sufficient condition in order that $\overline{\mathcal{A}}$ is totally disconnected.

Proposition 3. Assume that (A1)-(A6). Then, \overline{A} is totally disconnected if and only if $\pi(x) = C(x)$ for each $x \in A$.

Acknowledgments. I would like to thank Professor Antonio Siconolfi for giving a nice lecture on their paper [FS2] at the Fukuoka University in October 2006, and Professor Naoki Yamada for inviting me to this lecture. This lecture is very helpful to write the manuscript.

References

- [BCD] M. BARDI AND I. CAPUZZO-DOLCETTA, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser, Boston, 1997.
- [CI] G. CONTRERAS AND R. ITURRIAGA, Grobal Minimizers of Autonomous Lagrangians, 22nd Brazilian Mathematics Colloquium, Instituto de Matematica Pura e Aplicada, Rio de Janeiro, 1999.
- [CP] G. CONTRERAS AND G. PATERNAIN, Connecting orbits between static classes for generic Lagrangian systems, Topology 41 (2002), pp. 645–666.
- [DS] A. DAVINI AND A. SICONOLFI, A generalized dynamical approach to the large time behavior of Hamilton-Jacobi equations, SIAM J. Math. Anal. 38 (2006), pp. 478-502
- [F1] A. FATHI, Théoreme KAM et théorie de Mather pour les systèmes lagrangiens, C.R. Acad. Sci. Paris Sér. I 324 (1997), pp. 1034-1046.
- [F2] A. FATHI, Sur la convergence du semi-group de Lax-Oleinik, C.R. Acad. Sci. Paris Sér. I 327 (1998), pp. 267-270.
- [F3] A. FATHI, Weak KAM theorem in Lagrangian dynamics, to appear.
- [FFR] A. FATHI, A. FIGALLI AND L. RIFFORD, On the Hausdorff dimension of the Mather quotient, to appear in Comm. Pure Appl. Math.
- [FS1] A. FATHI AND A. SICONOLFI, Existence of C^1 critical subsolutions of the Hamilton-Jacobi equation, Invent. Math. 155 (2004), pp. 363-388.
- [FS2] A. FATHI AND A. SICONOLFI, PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians, Calculus of Variations and Partial Differential Equations 22 (2005), pp. 185–228.
- [Fu] Y. FUJITA, A relation between uniqueness sets and total disconnectedness of quotient Aubry sets, in progress.
- [FIL] Y. FUJITA, H. ISHII AND P. LORETI, Asymptotic solutions of Hamilton-Jacobi equations in Euclidean n space, Indiana Univ. Math. J. 55 (2006), pp. 1671-1700.
- [FU] Y. FUJITA AND K. UCHIYAMA, Asymptotic solutions with slow convergence rate of Hamilton-Jacobi equations in Euclidean n space, Differential and Integral Equations 20 (2007), pp.1185-1200.

- H. ISHII, Asymptotic solutions for large time of Hamilton-Jacobi equations in Euclidean n space, to appear in Annales de l'IHP-Analyse non lineaire 25 (2008), pp.231-266
- [IM] H. ISHII AND H. MITAKE, Representation formulas for solutions of Hamilton-Jacobi equations, Indiana Univ. Math. J., 56 (2007), pp.2159-2184.
- [M1] J. N. MATHER, Total disconnectedness of the quotient Aubry set in low dimensions, Comm. Pure Appl. Math., 56 (2003), pp.1178-1183.
- [M2] J. N. MATHER, Examples of Aubry sets, Ergod. Th. & Dynami. Sys., 24 (2004), pp.1667-1723.
- [S] A. SORRENTINO, On the total disconnectedness of the quotient Aubry set, Ergod. Th. & Dynami. Sys., 28 (2007), pp.267-290.
- [W] G. T. WHYBURN, Open mappings on locally compact spaces, Mem. Amer. Math. Soc., 1950, (1950). no. 1, American Mathematical Society, Providence, R.I.