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1 Introduction

This note consists of partial results of my recent paper [Fu]. In [Fu], we discuss several
topics which are not treated here.

Let €2 be an open and connected subset of R”, and H : 2 x R” — R a given function.
In this paper, we consider the Hamilton-Jacobi equation

(1.1) H(z,Du(z)) =0 in Q.

Let A and A be, respectively, its (projected) Aubry set and the quotient Aubry set.
As for their definitions and properties, see Section 2 below. The quotient Aubry set A
plays an essential role to study viscosity solutions of (1.1) (c¢f. [CI, DS, FU, I, IM]).
In particular, several authors provided sufficient conditions in order that A is totally
disconnected (i.e., every connected component consists of a single point in the topology
of A) [FFR, M1, M2, S].

In this note, we explain a reason why total disconnectedness of A is important. Let
7(z) be the equivalent class of A containing z € .A. We study how 7(z) behaves in
A when A is total disconnected. We show that a necessary condition in order that A
is totally disconnected is that m(z) O C(z) holds for each z € A. Here, C(z) is the
connected component of A containing r € .A. On the other hand, we show that if A is
a compact set in 2, then a necessary and sufficient condition in order that A is totally
disconnected is that 7(z) = C(z) holds for each z € A.

The state such that n(z) = C(z) for each x € A is preferable, because we can un-
derstand and calculate 7(z) of this case clearly. Our result shows that if A is a compact
set in Q, this preferable state occurs when and only when A is totally disconnected.
This is a reason why we propose that totally disconnectedness of A is important.

The contents of this note are as follows: In Section 2, we provide some preliminaries.
In Section 3, we state our results .
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2 Preliminaries

Let B(z,r) ={y € R" ||y —z| < r} for x € R” and r > 0. We assume:
(Al) HeC(QxR".

(A2) H is coercive, that is, for any compact subset K of Q,

lim inf {H(z,p)|z € K, p€ R*\ B(0,7)} = oo.

(A3) For any z € , the function p — H(z,p) is convex on R".

(A4)  There is a continuous viscosity subsolution of (1.1).

Let S (resp., §7) denotes the space of continuous viscosity solutions (resp., viscosity
subsolutions) of (1.1). If necessary, we write S(Q) and S™(Q2) for S and S, respectively,
in order to refer the domain under consideration. Then, (A4) implies that S=(Q) # 0.

Next, we explain the (projected) Aubry set for the Hamilton-Jacobi equation (1.1).
The Aubry set is defined as follows: Define the function d : 2 x Q — (—o0, 00] by

(2.1) d(z,9) = sup {v(z) — v() |v € S~(V} .

Then, by [IM, Theorem 1.4 and Proposition 1.6], we have the following:

(2.2) d is locally Lipschitz continuous on  x Q.

(2.3) u(z) — u(y) < d(z,y) for all w € S~(Q) and z,y € Q.

(2.4) Forall y € Q, d(-,y) € S7(Q) and d(-,y) € S(Q\ {y}).

(2.5) For all z,y,z € Q, d(z, z) < d(z,y) + d(y, 2) and d(z,z) = 0.
. t

(26) d(z,y) = inf { [ L(7(s), ¥())ds |t > 0, v € C(a, i3, 0)},

where C(z,t;y,0) is the set of all absolutely continuous curves v : [0, t] —  satisfying
(v(t),7(0)) = (z,y), and L € C(Q x R™) is the convex conjugate of H defined by

(2.7) L(z,&) =sup{¢-p— H(z,p) |p € R*} for (z,£) € Q x R".
The Aubry set A is defined by

(2.8) A={y€Qld(,y) € SO}

In the following, we assume

(A5) A#0.

We note that A is a closed set in 2, which is due to the stability of the viscosity property
under uniform convergence. The assumptions (A1)-(A5) are considered to be natural
to discuss the Aubry set for the Hamilton-Jacobi equation (1.1).
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Now, we explain an equivalence relation on .4, which is important to study §(£2) and
S7(9Q). By (2.5), we see that the function A : A x 4 — R defined by A(z,y) = d(z,y) +
d(y,z) is a pseudo-metric on A, i.e., it is non-negative, symmetric, and satisfies the
triangle inequality and A(z,z) = 0; but the condition A(z,y) = 0 does not necessarily
imply z = y. Let z,y € A. If A(z,y) = 0, then we write xéy. This relation ¢ is an
equivalence relation on A. We set

(2.9) m(y) = {z€.A| 28y}, y€E A,

A = {7(y) | y€ A}.

Then, 7 is considered as the canonical surjection from A to A, and we see that 4 = A/6.
Note that we may regard £ € A as a subset of A and & = 7~}({¢}). Note also that if
z € m(y), then 7(z) = m(y). We define the function A : 4 x A — R by

(2.10) A (z), 7(y)) = d(2,y) + d(y, z).
The following proposition is well-known.

Proposition 1. X is well defined, and (A, ) is a metric space.

3 Results

In this section, we state our results of this note. For their proofs, see [Fu]. Let C(z) be
the connected component of A containing z. In the following, as the topology of A, we
always consider the one induced by the metric X. Note that, by (2.2) and (2.10), 7 is
a continuous mapping from A to A.

Proposition 2. Assume (A1)-(A5). If A is totally disconnected, then w(z) D
C(z) for each z € A.

By Proposition 2, the condition that 7(z) O C(z) for each z € A is a necessary con-
dition in order that A is totally disconnected. Next, we consider a sufficient condition
in order that A is totally disconnected. In the following, we assume:

(A6) .Ais a compact set of .

We provide a simple consequence of (A6).
Lemma 1. Assume (A1)-(A6). Then, m(z) is a connected set of A for each z € A.

Now, we are in the position to state our sufficient condition in order that A is totally
disconnected.

Proposition 3. Assume that (A1)-(A6). Then, A is totally disconnected if and
only if m(x) = C(z) for each z € A.
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