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ABSTRACT. Let $N\geq 2$ and $\mathcal{D}\subset \mathbb{R}^{N-1}$ be a bounded domain with smooth
boundary. In this paper, we consider the existence of homoclinic solutions
for nonlinear elliptic problem

$\{\begin{array}{l}\Delta u+g(x,u) =0 in \Omega,\frac{\partial u}{\partial\nu} =0 on \partial\Omega,\end{array}$

where $\nu(x)$ is the outward pointing normal derivative to $\partial D$ and $g\in$

$C^{1}(Nx\mathcal{D}, \mathbb{R}^{N})$ has a spacially periodicity.

1. INTRODUCTION
Let $N\geq 2$ and $\Omega\subset \mathbb{R}^{N}$ be a cylindrical domain, i.e., $\Omega=\mathbb{R}\cross \mathcal{D}$ , where

$\mathcal{D}\subset \mathbb{R}^{N-1}$ is a bounded open domain with a smooth boundary. In the present
paper, we consider the existence of homoclinic solutions of boundary value
problem

(P) $\{\begin{array}{l}\Delta u+g(x,u) =0 in \Omega,T\nu\partial u =0 on \partial\Omega,\end{array}$

where $g\in C^{1}(\mathbb{R}^{N}\cross \mathbb{R}_{\}}\mathbb{R})$ and $\nu=\nu(y)$ denotes the outward pointing normal
derivative to $\partial \mathcal{D}$ . For $x\in\Omega$ , we set $x=(x_{1},y)$ , where $x_{1}\in \mathbb{R}$ and $y\in \mathcal{D}$ . We
impose the following conditions on $g$ :

(gl) $g(x, z)\in C^{1}(\overline{\Omega}\cross \mathbb{R},\mathbb{R})$ and is l-periodic with respect to $x_{1}$ ;

(g2) $G(x, z)= \int_{0}^{z}g(x,\tau)d\tau$ is 1-periodic with respect to $z$ .

In [2] and [3], Rabinowitz considered the existence of spacially heteroclinic
solutions of problem (P) under the assumptions (gl), (g2) and an additional
condition

(g3) $g(x, z)$ is even with respect to $x_{1}\in \mathbb{R}$ .

In [5], the existence of the heteroclinic solutions of (P) was established with-
out the evenness condition (g3). Recently, using the results in these papers, the
existence of homoclinic solutions of (P) was established in [4].

The purpose of this paper is to investigate the existence of homoclinic solu-
tions of (P) and give sharper characterizations of the solutions. We will show
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that there is a sequence of homoclinic solutions of (P) such that each solution
is given as a local minimal of corresponding functional to (P).

2. STATEMENT OF MAIN RESULT

Throughout the rest of this paper, we assume that $N\geq 2$ , and conditions
(gl) and (g2) hold. For $x,$ $y\in \mathbb{R}^{N}$ , we denote by $x\cdot y$ the inner product
of $x$ and $y$ . For each bounded open set $U\subset \mathbb{R}^{n}$ , we denote by $\Vert\cdot\Vert_{H^{1}(U)}$ and
$\Vert\cdot\Vert_{L^{2}(U)}$ the norm of $H^{1}(\Omega)$ and $L^{2}(\Omega)$ defined by $\Vert u\Vert_{H^{1}(U)}^{2}=\int_{U}|\nabla u|^{2}dx$ and
$\Vert v\Vert^{2}=\int_{U}|v|^{2}dx$ for each $u\in H^{1}(U)$ and $v\in L^{2}(U)$ , respectively. We denote
by $\langle\cdot,$ $\cdot\rangle_{U}$ the inner product of $H^{1}(U)$ . Put $\Omega_{i}=[i, i+1]\cross \mathcal{D}$ for each $i\in \mathbb{Z}$ . For
each function $u:H_{loe}^{1}(\Omega)arrow \mathbb{R}$ and $m\in \mathbb{Z}$ , we denote by $u[m]$ the restriction
of $u$ on $H_{t^{1}oc}(\Omega_{m})$ . Let $v\in H_{loc}^{1}(\Omega)$ and $j\in \mathbb{Z}$ . We denote by $\tau_{j}v$ the function
defined by

$\tau_{t}v(x_{1},y)=v(x_{1}-t,y)$ for all $(x_{1},y)\in \mathbb{R}\cross \mathcal{D}$ .
We set

$L(u)(x)= \frac{1}{2}|\nabla u(x)|^{2}-G(x,u)$ for $u\in H_{loc}^{1}(\Omega)$ and $x\in\Omega$ .
Put

$I_{i}(u)= \int_{\Omega_{i}}L(u)dx$ for $i\in \mathbb{Z}$ and $u\in H^{1}(\Omega_{i})$

and
$E=\{u\in H^{1}(\Omega_{0}):u$ is l-periodic in $x_{1}\}$ .

We put
$c_{0}= \inf_{u\in E}I_{0}(u)$ and $M_{0}=\{u\in E:I_{0}(u)=c_{0}\}$ .

Then the following is known.

Proposition 1 ([3]). $M_{0}\neq\emptyset$ and $M_{0}$ is an ordered set, $i.e$ . for each $u,v\in M_{0}$

with $u\neq v,$ $u<v$ on $\Omega_{0}$ or $u>v$ on $\Omega_{0}$ holds.

Here we put

$a_{j}(u)= \int_{\Omega_{j}}L(u)dx-c_{0}$ for $j\in \mathbb{Z}$ and $u\in H^{1}(\Omega_{j})$ ,

and

$J_{l,m}(u)= \sum_{j=l}^{m}a_{j}(u)$ for $l,m\in \mathbb{Z}$ with $l\leq m$ .

We also put

$J(u)= \lim_{larrow}\underline{\inf_{\infty}}J_{l,0}(u)+\lim_{marrow}\inf_{\infty}J_{1,m}(u)$ for $u\in H_{loc}^{1}(\Omega)$ ,

$J_{-\infty,m}(u)= \lim_{\iotaarrow-}\inf_{\infty}J_{l,0}(u)+J_{1,m}(u)$ for $u\in H_{loc}^{1}(\Omega)$ and $m\geq 1$ ,

$J_{m,\infty}(u)=J_{m,0}(u)+ \lim\inf J_{1,l}(u)larrow\infty$ for $u\in H_{loc}^{1}(\Omega)$ and $m\leq 0$ .
For each $v,w\in M_{0}$ with $v<w$ , we set

$[v, w]=\{u\in H_{loc}^{1}(\Omega)$ : $v\leq u\leq w\}$ , $[v,w]_{m}=\{u|_{\Omega_{m}}$ : $u\in[v,w]\}$ ,
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$\Gamma_{-}(z)=\{u\in[v, w]$ : $J(u)<\infty,$ $\Vert u-z\Vert_{L^{2}(\Omega_{j})}arrow 0$ , as $jarrow-\infty\}$ for $z\in\{v, w\}$ ,

$\Gamma_{+}(z)=\{u\in[v, w]$ : $J(u)<\infty,$ $\Vert u-z\Vert_{L^{2}(\Omega_{j})}arrow 0$ , as $jarrow\infty\}$ for $z\in\{v, w\}$ ,
and

$\Gamma(z_{1}, z_{2})=\Gamma_{-}(z_{1})\cap\Gamma_{+}(z_{2})$ for $z_{1},$ $z_{2}\in\{v, w\}\cdot$ .

Let $v,$ $w\in M_{0}$ and $v<w$ . We assume $v,$ $w$ are adjacent minimizers in
$H_{loc}^{1}(\Omega)$ , that is there are no other minimizers $u_{0}$ with $v<u_{0}<w$ . We call
$u\in H_{loc}^{1}(\Omega)$ a heteroclinic solution of (P) in $[v,$ $w]$ if $u\in\Gamma(v, w)$ and $u$ is a
solution of (P). A solution $u\in H_{loc}^{1}(\Omega)$ of (P) is called a homoclinic solution in
$[v, w]$ if $u\in\Gamma(v, v)$ or $u\in\Gamma(w, w)$ .

We put

$c(v, w)= \inf_{u\in\Gamma(v,w)}J(u)$ , for $v,$ $w\in M_{0}$

and
$\mathcal{M}(v, w)=\{u\in\Gamma(v, w) : J(u)=c(v, w)\}$ for $v,$ $w\in M_{0}$ .

Then we have

Proposition 2 ([2]). For each $v,$ $w\in M_{0}$ which are adjacent and $v<w$ ,
$\mathcal{M}(v, w)$ is a nonempty ordered set.

We will consider the existence of homoclinic solution of (P) under the follow-
ing conditions:

$(*)$ $v,w\in M_{0}$ are adjacent elements such that $v<w$ .
$(**)$ $\mathcal{M}(v,w),$ $\mathcal{M}(w,v)$ have adjacent elements.

(C) $\inf\{I(v)$ : $v\in H^{1}(\Omega_{0})\}=c_{0}$ .

It is known that under the condition (C), we have
Proposition 3 (cf. [4, 5]). For each $v,$ $w\in M_{0}$ and $u\in\Gamma(v, w),$ $\lim_{larrow-\infty}J_{l,0}(u)$

and $\lim_{marrow\infty}J_{1,m}(u)$ exists.

Remark 1. From Proposition $3_{f}$ it follows that for each $u\in\Gamma_{-}(v)$

$J_{-\infty,m}(u)= \lim_{larrow-\infty}J_{l_{\dagger}0}(u)+J_{1,m}(u)$ for $m\geq 1$ .
Similarly, we have for each $u\in\Gamma_{+}(w)$ ,

$J_{m,\infty}(u)=J_{m,0}(u)+ \lim_{larrow\infty}J_{1,l}(u)$ for $m\leq 0$ .

We can now state our main result:
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Theorem 1. Assume that $(gl),$ $(g2),$ $(*),$ $(**)$ and $(C)$ hold. Let $v_{1},$ $v_{2}\in$

$\mathcal{M}(v, w)$ be adjacent with $v_{1}<v_{2}$ . Then there estst a positive integer $n_{0}$ and a
sequence $\{u_{n}\}\subset\Gamma(v, v)$ of homoclinic solutions of $(P)$ such that

(1) $u_{n}\leq u_{n+1}$ for each $n\geq 1$ ;
(2) $\tau_{-n0-n+1}v_{1}[0]<u_{n}[0]<\tau_{-n_{0}-n}v_{2}[0]$ for each $n\geq 1$ ;
(3) $\lim_{narrow\infty}J(u_{n})=c(v,w)+c(w,v)$ .

Remark 2. The analogous result holds for $\Gamma(w,w)$ .

3. SKETCH OF PROOF OF THEOREM 1.

In this section, we will show the sketch of the proof of Theorem 1. Detailed
proof is given in [1].

Throughout the rest of this paper, we assume that (gl), (g2), $(*),$ $(**)$ , and
$(C)$ hold. By the assumption $(**)$ , we have that there are $v_{1},$ $v_{2}\in \mathcal{M}(v,w)$ and
$w_{1},w_{2}\in \mathcal{M}(w, v)$ such that $v_{1},$ $v_{2}$ are adjacent with $v_{1}<v_{2}$ and $w_{1},w_{2}$ are
adjacent with $w_{1}<w_{2}$ . In the following, we fix $v_{1},v_{2},w_{1}$ and $w_{2}$ . We put

$\mathcal{M}_{m}(v,w)=\{u[m]\in C(\Omega_{m}) : u\in \mathcal{M}(v, w)\}$ for $m\in \mathbb{Z}$ .
Then we have that $\tau_{-1}\mathcal{M}_{m}(v, w)=\mathcal{M}_{m+1}(v, w)$ for $m\in \mathbb{Z}$ . Let $m\in \mathbb{Z}$ . Then
since $\mathcal{M}(v,w)$ is an ordered set(cf. [2]), $\mathcal{M}_{m}(v,w)$ is also an ordered set. Since
$v_{1},$ $v_{2}\in \mathcal{M}(v, w)$ are adjacent, we have that $v_{1}[m]$ and $v_{2}[m]$ are adjacent in
$\mathcal{M}_{m}(v,w)$ and $v_{1}[m]<v_{2}[m]$ . One can see

(3.1) $(\tau_{n}v_{1})[m]<(\tau_{n}v_{2})[m]<(\tau_{n-1}v_{1})[m]$

$<(\tau_{n-1}v_{2})[m]<(\tau_{n-2}v_{1})[m]<(\tau_{n-2}v_{2})[m]$

for $m,$ $n\in \mathbb{Z}$ . Similarly, we have

(3.2) $(\tau_{n}w_{1})[m]<(\tau_{n}w_{2})[m]<(\tau_{n+1}w_{1})[m]$

$<(\tau_{n+1}w_{2})[m]<(\tau_{n+2}w_{1})[m]<(\tau_{n+2}w_{2})[m]$

for $m,n\in \mathbb{Z}$ . We put
$W(m)=\{u\in[v,w]_{0} : (\tau_{-m}v_{2})[0]\leq u[0]\leq(\tau_{-m-1}v_{1})[0]\}$ for each $m\in \mathbb{Z}$ .

Then we find
$u_{1}<u_{2}$ for all $u_{1}\in W(m)$ and $u_{2}\in W(m+1)$ .

As a direct consequence from the regularity argument for elliptic problem, we
have the following lemma. We put

$U(m)=[W(m)+\overline{B_{r_{m}}(0)}]\cap\{u\in[v,w]_{0} : (\tau_{-m}v_{1})[0]\leq u[0]\leq(\tau_{arrow m-1}v_{2})[0]\}$ ,

where $B_{r}(0)$ is an open ball in $L^{2}(\Omega_{0})$ centered at $0$ with radius $r>0$ and $r_{m}$

is a positive number, and $\overline{B_{r}(0)}$ stands for the closure of $B_{r}(0)$ with respect to
the $L^{2}(\Omega_{0})$ norm. Then $U(m)$ is a closed convex set in $H^{1}(\Omega_{0})$ .

Lemma 1. The sequence $\{U(m)\}_{m\in Z}$ satisfies the following conditions:
(i) For each $m\in \mathbb{Z}$

(3.3) $U(m)\cap U(m+1)=\emptyset$ .
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(ii) If $u_{1},$ $u_{2}$ are solutions of $(P)$ such that
$J(u_{i})<2[c(v, w)+c(w, v)]$ for $i=1,2$ ,

and
$u_{1}[0]\in U(m)$ and $u_{2}[0]\in U(m+1)$ for some $m\in \mathbb{Z}$ ,

then
$\tau_{-m}v_{1}[0]<u1[0]<\tau_{-m-1}v2[0]$ ,

$\tau_{-m-1}v_{1}[0]<u_{2}[0]<\tau_{-m-2}v_{2}[0]$ on $\Omega_{0}$

and
$u_{1}[0]<u_{2}[0]$ on $\Omega_{0}$ .

In the rest of this paper, we fix $\{U(m)\}_{m\in Z}$ which satisfies the properties (i)
and (ii) in Lemma 1. $U(m)\subset H^{1}(\Omega_{0})$ for each $m\in \mathbb{Z}$ . From the definition, we
have that

Lemma 2. There exists $\epsilon_{1}>0$ such that for each $u\in\Gamma_{-}(v)$ such that $u[0]\in$

$\bigcup_{m\geq m_{v,1}}U(m)$ and $J(u) \leq c(v, w)+\frac{c(w,v)}{4}$ ,

$m>m_{v,1} \inf_{arrow}\Vert v-u\Vert_{L^{2}(\Omega_{m})}^{2}\geq\epsilon_{1}$ .

To show the existence of a sequence of homoclinic solutions, we consider the
shift of $U(m)$ . We put

$U_{n}(m)=\{\tau_{n}v:v\in U(m)\}$ for each $m,n\in \mathbb{Z}$ .
Then $U_{n}(m)\subset H^{1}(\Omega_{n})$ for each $m,n\in \mathbb{Z}$ .

Lemma 3. For each $n\geq m_{v,1}$ , there emst $\delta_{v,1}(n)>0$ and $m_{v,2}(n)>m_{v,1}$ such
that

$J_{-\infty_{I}m}(u)\geq c(v,w)+\delta_{v_{t}1}(n)$

for all $m\geq m_{v_{t}2}(n),$ $u\in\Gamma_{-}(v)$ satisfying $J(u)<\infty$ , and $u[m_{v,1}]\in\partial U_{m_{v,1}}(n)$ .

Lemma 4. For each $n\geq m_{v,1}$ and $\epsilon>0$ , there exists $m_{v_{t}3}(n,\epsilon)>0>m_{v,2}(n)$

such that $m_{v,3}(n,\epsilon)>m_{v,2}(n)$ and
$J_{-\infty m\}}(u)\geq c(v,w)-\epsilon$

for all $m\geq m_{v,3}(n,\epsilon)$ and $u\in\Gamma_{-}(v)$ with $u[m_{v,1}]\in U_{m_{v,1}}(n)$ .

We also consider $w_{1},w_{2}$ which are adjacent pair elements in $\mathcal{M}(w,v)$ . We
put for each $m\in \mathbb{Z}$

$\overline{W}(m)=\{u\in[v,w]0 : (\tau_{m2}w)[0]\leq u[0]\leq(\tau_{m+1}w_{1})[0]\}$ for each $m\in \mathbb{Z}$ .
and set

$\tilde{U}(m)=[\tilde{W}(m)+\overline{B_{r_{m}}(0)}]\cap\{u\in[v,w]_{0} : (\tau_{m}w_{1})[0]\leq u[0]\leq(\tau_{m+1}w_{2})[0]\}$ .
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By analogous arguments as in the proof of Lemma 1, Lemma ?? and Lemma
2, we have

Lemma 5. There exists a sequence $\{\tilde{U}(m)\}_{m\in Z}$ of closed convex sets in $L^{2}(\Omega_{0})$

satisfying the following conditions:
(i) For each $m\in \mathbb{Z}$

(3.4) $\tilde{U}(m)\cap\tilde{U}(m+1)=\emptyset$ .
(ii) If $u_{1},u_{2}$ are solutions of $(P)$ such that

$J(u_{i})<2[c(v,w)+c(w,v)]$ for $i=1,2$ ,

and
$u_{1}[0]\in\tilde{U}(m)$ and $u_{2}[0]\in\tilde{U}(m+1)$ for some $m\in \mathbb{Z}$ ,

then
$\tau_{m}w_{1}[0]<u_{1}[0]<\tau_{m+1}w_{2}[0]$ ,

$\tau_{m+1}w_{1}[0]<u_{2}[0]<\tau_{m+2}w_{2}[0]$ on $\Omega_{0}$

and
$u_{1}[0]<u_{2}[0]$ on $\Omega_{0}$ .

Lemma 6. (1) There exist $m_{w,1}>0$ such that for each $u\in\Gamma(v, v)$ with
$u[0] \in\bigcup_{m\geq m_{w,1}}\tilde{U}(m)$ ,

(3.5) $J(u)>c(v,w)+ \frac{c(w,v)}{2}$ .
(2) For each $n\geq m_{w,1}$ , there eststs $\delta_{w,1}(n)>0$ and $m_{w,2}(n)>m_{w,1}$ such that

$J_{-m\infty})(u)\geq c(w,v)+\delta_{w,1}(n)$

for all $m\geq m_{w,2}(n)$ and $u\in\Gamma_{+}(v)$ with $u[-m_{w,1}]\in\partial\tilde{U}_{-m_{w_{I}1}}(n)$ .

Lemma 7. For each $n\geq m_{w,1}$ and $\epsilon>0$ , there exists $m_{w_{r}3}(n,\epsilon)>m_{w2,)}(n)$

such that
$J_{-m,\infty}(u)\geq c(w,v)-\epsilon$

for all $m\geq m_{w,3}(n,\epsilon)$ and $u\in\Gamma_{+}(v)$ with $u[-m_{w,1}]\in\tilde{U}_{-m_{w,1}}(n)$ .

Sketch of Proof of Theorem 1. Fix a positive integer $n_{0} \geq\max\{m_{v,1}, m_{w,1}\}$ .
Fix $\epsilon>0$ such that

$\epsilon<\frac{1}{2}\min\{\delta_{v,1}(n_{0}), \delta_{w_{t}1}(n_{0})\}$ ,

where $\delta_{v_{2}1}$ and $\delta_{w,1}$ are positive numbers obtained in Lemma 3 and Lemma
6. We fix $m=m(n o)>\max\{m_{v,3}(n_{0}, \epsilon), m_{w,3}(n_{0},\epsilon)\}$ , where $m_{v,3}(n_{0}, \epsilon)$ and
$m_{w,3}$ (no, $\epsilon$ ) are positive integers obtained in Lemma 4 and Lemma 7. Let

$u_{0}= \min\{\tau_{-n0-1+m_{v,1}}v_{1},$ $\tau_{no+1+2m-m_{w,1}}w_{1}\}$ .
From the definition of $v_{1}$ and $w_{1}$ , we find that

(3.6) $J(u_{0})arrow c(v,w)+c(w,v)$ , a$s$ $marrow\infty$ .
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Then by choosing $m\geq 1$ sufficiently large, we have that

$J(u_{0})<c_{2}(n_{0}):=c(v,w)+c(w,v)+ \frac{\min\{\delta_{v_{1}1}(n_{0}),\delta_{w,1}(n_{0})\}}{2}$ .

Let $m_{1}=m_{v,1}$ and $m_{2}$ $:=m_{2}(n_{0})$ $:=2m-m_{w,1}$ . We may assume, by choosing
$m$ sufficiently large, that $u_{0}[m_{1}]=\tau_{-n0-1}v_{1}[m_{1}]$ and $u_{0}[m_{2}]=\tau_{no+1}w_{1}[m_{2}]$ .
Then we have

$u_{0}[m_{1}]\in U_{m_{1}}(n_{0})$ and $u_{0}[m_{2}]\in\tilde{U}_{m_{2}}(n_{0})$ .
Here we put

$\Gamma=\{u\in\Gamma(v, v)$ : $J(u)\leq c2$ (no), $u[m_{1}]\in U_{m_{1}}(n_{0})$ and $u[m_{2}]\in\tilde{U}_{m2}(n_{0})\}$ .
Then since $u_{0}\in\Gamma,$ $\Gamma\neq\emptyset$ . We put $\gamma=\inf_{z\in\Gamma}J(z)$ and $u\in\Gamma$ such that $J(u)=\gamma$ .
The existence of $u$ can be proved by the same argument as before. Then to
prove that $u$ is a solution of (P), it is sufficient to show that $u[m_{1}]\not\in\partial U_{m_{1}}(n_{0})$

and $u[m_{2}]\not\in\partial\tilde{U}_{m}2(n_{0})$ . By Lemma 3, we have that if $u[m_{1}]\in\partial U_{m_{1}}(n_{0})$ , then
$J_{-\infty,m}(u)\geq c(v, w)+\delta_{v,1}(n_{0})$ . On the other hand, noting that

$\tau_{-2m}u[-m_{w,1}]\in\tilde{U}_{-m_{w,1}}(n_{0})$ ,
we have by Lemma 7 that
(3.7) $J_{m+1,\infty}(u)=J_{-m+1,\infty}(\tau_{arrow 2m}u)$

$\geq c(w, v)-\epsilon$

$\geq c(w,v)-\frac{\min\{\delta_{v,1}(no),\delta_{w,1}(n_{0})\}}{2}$ .
Then we have that $J(u)\geq c(v, w)+c(w,v)+\delta_{v,1}(n_{0})/2$ . This is a contradiction.
Similarly, we find that $u[m_{2}]\not\in\partial\tilde{U}_{m}2(n_{0})$ . Therefore we obtain that there exists
a solution $u_{1}\in\Gamma(v, v)$ such that

$u_{1}[m_{1}]\in U_{m_{1}}(n_{0})$ and $u_{1}[m_{2}]\in\tilde{U}_{m}2(n_{0})$ .
By the same way, we have that there exists a positive integer $m_{2}(n_{0}+1)>$

$m_{2}(n_{0})$ and a solution $u_{2}\in\Gamma(v, v)$ such that

$u_{2}[m_{1}]\in U_{m}1(n_{0}+1)$ and $u_{2}[m_{2}(n_{0}+1)]\in\tilde{U}_{m2}(n_{0}+1)$ .
That is

$\tau_{-m_{1}}u_{1}[0]\in U(n_{0})$ and $\tau_{arrow m_{1}2}u[0]\in U(n_{0}+1)$ .
By Lemma ??, we find that

$\tau_{-n_{0}}v_{1}[0]<\tau_{-m}1u_{1}[0]<\tau_{-n_{0}-1}v_{2}[0]$ on $\Omega_{0}$ ,
$\tau_{-n_{0}-1}v_{1}[0]<\tau_{-m_{1}}u_{2}[0]<\tau_{-n0-2}v_{2}[0]$ on $\Omega_{0}$

and
$\tau_{-m}1u_{1}[0]<\tau_{-m_{1}}u_{2}[0]$ on $\Omega_{0}$ .

We prove $u_{1}\leq u_{2}$ . Since $z\leq\tau_{-n_{0}-1}v_{1}[0]<\tau_{-m_{1}}u_{2}[0]$ for all $z\in W(no)$ , we
find that

$\Vert\min\{\tau_{-m_{1}}u_{1}[0],\tau_{-m_{1}}u_{2}[0]\}-W(n_{0})\Vert_{L^{2}(\Omega_{0})}\leq\Vert\tau_{-m_{1}}u_{1}[0]-W(n_{0})\Vert_{L^{2}(\Omega_{0})}$ .
Then by the definition of $U(n_{0})$ , we have

$\min\{\tau_{-m_{1}}u_{1}[0],\tau_{-m_{1}}u_{2}[0]\}\in U(no)$ .
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Similarly, we find that
$\max\{\tau_{-m_{1}}u_{1}[0],\tau_{-m_{1}}u_{2}[0]\}\in U(n_{0}+1)$ .

By the same argument, we have
$\min\{\tau_{-m_{2}}u_{1}[0],\tau_{-m}2u_{2}[0]\}\in\tilde{U}(n_{0}),\max\{\tau_{-m_{2}}u_{1}[0],\tau_{-m_{2}}u_{2}[0]\}\in\tilde{U}(n_{0}+1)$ .
Here we put

$z_{1}= \min\{u_{1},u_{2}\}$ and $z_{2}= \max\{u_{1},u_{2}\}$ .
Then by the argument above, we have

$z_{1}[m_{1}]\in U_{m_{1}}(n_{0})$ and $z_{1}[m_{2}]\in\overline{U}_{m2}(n_{0})$

and
$z_{2}[m_{1}]\in U_{m_{1}}(n_{0}+1)$ and $z_{2}[m_{2}]\in\tilde{U}_{m2}(n_{0}+1)$ .

Then it follow that
$J(z_{1})\geq J(u_{1}),$ $J(z_{2})\geq J(u_{2})$ and $J(z_{1})+J(z_{2})=J(u_{1})+J(u_{2})$ .

This implies that $z_{1}$ is a minimizer of $\Gamma$ , i.e., $z_{1}$ is a solution of (P). Therefore
we find that $u_{1}\leq u_{2}$ . By repeating the argument above, we have a sequence
$\{u_{n}\}\subset\Gamma(v, v)$ of solutions of (P) such that

$u_{n}\in U_{m_{1}}(n0+n-1)$ for each $n\geq 1$

and
$u_{1}\leq u_{2}\leq u_{3}\leq\cdots$

We also have
$\tau_{-n0-n+1}v_{1}[0]<u_{n}[0]<\tau_{-n_{0}-n}v_{2}[0]$ for all $n\geq 1$ .

This completes the proof. 口
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