A generalization of Weierstrass semigroups on a double covering of a curve ${ }^{1}$

神奈川工科大学•基䊙•教養教育センター 米田 二良（Jiryo Komeda） Center for Basic Education and Integrated Learning Kanagawa Institute of Technology

Abstract

Let $\pi: \tilde{C} \longrightarrow C$ be a double covering of a non－singular curve with a rami－ fication point \tilde{P} ．Let $H(\tilde{P})$ and $H(\pi(\tilde{P}))$ be the Weierstrass semigroups of the points \tilde{P} and $\pi(\tilde{P})$ respectively．We extend the notions of $H(\tilde{P})$ and $H(\pi(\tilde{P}))$ to the numerical semigroups \tilde{H} and H respectively，and classify the pairs of (\tilde{H}, H) by their genera．Moreover，we study about the property of such a pair (\tilde{H}, H) which means whether H（respectively \tilde{H} ）is Weierstrass or not．

1 The d_{2}－map

Let $\mathbb{N}_{0}=\{0,1,2,3, \ldots\}$ be the additive semigroup of non－negative integers． A subsemigroup H of \mathbb{N}_{0} is called a numerical semigroup if its complement $\mathbb{N}_{0} \backslash H$ in \mathbb{N}_{0} is a finite set．The cardinality $\sharp\left(\mathbb{N}_{0} \backslash H\right)$ is called the genus of H ，which is denoted by $g(H)$ ．The symbols H and \tilde{H} mean numerical semigroups throughout this paper．For any elements a_{1}, \ldots, a_{m} of \mathbb{N}_{0} we denote by $\left\langle a_{1}, \ldots, a_{m}\right\rangle$ the semigroup generatd by a_{1}, \ldots, a_{m} ．Let \mathcal{H} be the set of numerical semigroups．We define the $\operatorname{map} d_{2}: \mathcal{H} \longrightarrow \mathcal{H}$ sending \tilde{H} to $d_{2}(\tilde{H})=\left\{\left.\frac{\tilde{h}}{2} \right\rvert\, \tilde{h} \in \tilde{H}\right.$ is even $\}$ ，which is called the $d_{2}-m a p$.

Example 1．1 i）$d_{2}: \mathbb{N}_{0} \longmapsto \mathbb{N}_{0}$ ．
ii）$d_{2}:\langle 2,3\rangle \longmapsto \mathbb{N}_{0}$ ．
iii）$d_{2}:\langle 3,4,5\rangle \longmapsto\langle 2,3\rangle$ ．
iv）$d_{2}:\langle 3,5\rangle \longmapsto\langle 3,4,5\rangle$ ．
v）$d_{2}:\langle 4,6,7\rangle \longmapsto\langle 2,3\rangle$ ．
vi）$d_{2}:\langle 5,7,9\rangle \longmapsto\langle 5,6,7,8,9\rangle$ ．
vii）$d_{2}:\langle 6,8,10,11\rangle \longmapsto\langle 3,4,5\rangle$ ．

[^0]
2 A geometric meaning of the d_{2}-map

A complete non-singular 1-dimensional algebraic variety over an algebraically closed field is abbreviated to a curve in this paper. Let (C, P) be a pointed curve and $k(C)$ the field of rational functions on C. We define the Weierstrass semigroup of P as follows:

$$
H(P)=\left\{n \in \mathbb{N}_{0} \mid \exists f \in k(C) \text { such that }(f)_{\infty}=n P\right\}
$$

A numerical semigroup H is said to be Weierstrass if there exists a pointed curve (C, P) such that $H=H(P)$.

Lemma 2.1 Let $\pi: \tilde{C} \longrightarrow C$ be a double covering of a curve, i.e., the degree of $k(\tilde{C}) \supset k(C)$ is two, with a ramification point \tilde{P}. Then $d_{2}(H(\tilde{P}))=$ $H(\pi(\tilde{P}))$. (For example see Lemma 2 in [4])
A numerical semigroup \tilde{H} is called the double covering type, abbreviated to $D C$ if there exists a double covering $\pi: \tilde{C} \longrightarrow C$ with a ramification point \tilde{P} such that $\tilde{H}=H(\tilde{P})$.
Example 2.1 Let $\pi: \tilde{C} \longrightarrow \mathbb{P}^{1}$ be a double covering of the projective line \mathbb{P}^{1}. If \tilde{P} is a ramification point of π, then $H(\tilde{P})=\langle 2,2 g+1\rangle$ where g is the genus of \tilde{C}. Hence, $\langle 2,2 g+1\rangle$ is DC.

By the definition of DC we have the following:
Remark 2.2 If \tilde{H} is $D C$, then \tilde{H} and $d_{2}(\tilde{H})$ are Weierstrass.
Using Riemann-Hurwitz' formula we see the following:
Lemma 2.3 If \tilde{H} is $D C$, then $g(\tilde{H}) \geqq 2 g\left(d_{2}(\tilde{H})\right)$.
The following is the known fact which is due to Torres [8].
Remark 2.4 If \tilde{H} is a Weierstrass semigroup with $g(\tilde{H}) \geqq 6 g\left(d_{2}(\tilde{H})\right)+4$, then it is $D C$.

Example 2.2 Let $\tilde{H}=\langle 6,8,33\rangle$. Then $d_{2}(\tilde{H})=\langle 3,4\rangle$. We have

$$
g(\tilde{H})=22 \geqq 6 * 3+4=6 g(\langle 3,4\rangle)+4
$$

Hence, \tilde{H} is DC , because it is Weierstrass.

A numerical semigroup \tilde{H} is said to be lower-Weierstrass, abbreviated to ℓ-Weierstrass if $d_{2}(\tilde{H})$ is Weierstrass. The definition of DC means the following:

Remark 2.5 If \tilde{H} is $D C$, then it is ℓ-Weierstrass.
Remark 2.6 $B=\langle 13,14,15,16,17,18,20,22,23\rangle$ is non-Weierstrass (see [1]), but ℓ-Weierstrass, because $d_{2}(B)=\langle 7,8,9,10,11,13\rangle$ is of genus 7 , which implies that $d_{2}(B)$ is Weierstrass (see [3]).

3 Classification and existence

By Lemma 2.3 and Remark 2.4 we have the following table:
Table I: Numerical semigroups \tilde{H}

Genus	Weierstrass			Non-Weierstrass	
$6 g+4 \leqq \tilde{g}$	xii) $D C$	$\nexists n o n-D C, \ell-W e i$	$\nexists n o n-\ell-W$	vi) $\ell-W e i$	iii) non- $\ell-W$
$2 g \leqq \tilde{g} \leqq 6 g+3$	xi) $D C$	x) non-DC, $\ell-W e i$	viii) non- $\ell-W$	v) ℓ-Wei	ii) non- $-W$
$\tilde{g} \leqq 2 g-1$	$\overline{\nexists D C}$	ix) non-DC, $\ell-W e i$	vii) non- $\ell-W$	iv) $\ell-W e i$	i) non- $\ell-W$

Here we set $\tilde{g}=g(\tilde{H})$ and $g=g\left(d_{2}(\tilde{H})\right)$.
We note that the bigger the roman numeral numbering the boxes in the table, the more special a numerical semigroup \tilde{H} belonging to the box numbered by it. After deleting the boxes in Table I to which no numerical semigroup belongs, the above table becomes the following:

Table II : Numerical semigroups \tilde{H}

Genus	Weierstrass			Non-Weierstrass	
$6 g+4 \leqq \tilde{g}$	xii) $D C$			vi) $\ell-$ Wei	iii) non- $\ell-W$
$2 g \leqq \tilde{g} \leqq 6 g+3$	xi) $D C \mid$	$\mathbf{x})$ non-DC, $\ell-W e i$	viii) non- $\ell-W$	v) ℓ-Wei	ii) non- $\ell-W$
$\tilde{g} \leqq 2 g-1$	ix) non-DC, $\ell-W e i$		vii) non- $\ell-W$	iv) $\ell-W e i$	i) non- $\ell-W$

We have the following problem:
Problem A. Is a Weierstrass semigroup $\tilde{H} \ell$-Weierstrass? Namely, is there no numerical semigroup belonging to the box numbered by viii) (respectively vii) ?

Problem B. Is there a Weierstrass semigroup which belongs to the box numbered by x) ?
Problem C. Is there a non-Weierstrass semigroup which belongs to the box numbered by vi)?

We will show that some numerical semigroup belongs to each box except vi), vii), viii) and x).

3.1 Special Cases

The following is known:
Remark 3.1 ([7]) Let H be a Weierstrass semigroup and n an odd number $\geqq 4 g(H)-1$. We set $\tilde{H}=2 H+n \mathbb{N}_{0}$. Then $d_{2}(\tilde{H})=H$ and \tilde{H} is DC. In this case we have $g(\tilde{H})=2 g(H)+\frac{n-1}{2} \geqq 4 g(H)-1$.
Hence this remark shows the existence of a numerical semigroup belonging to the box numbered by xii) (resp. xi))
Remark 3.2 ([6]) Let $\tilde{H}=\langle 2 n, 2 n+2 \times 1-1, \ldots, 2 n+2 \times n-1\rangle$ with $n \geqq 3$. Then \tilde{H} is Weierstrass and $d_{2}(\tilde{H})=\langle n, 2 n+1, \ldots, 2 n+n-1\rangle$, which is Weierstrass. Hence, \tilde{H} is ℓ-Weierstrass. In this case we have $g(\tilde{H})=$ $\frac{3}{2} g(H)+1 \leqq 2 g(H)-1$.

The numerical semigroups in Remark 3.2 are in the box numbered by ix). Let $a, b \in \mathbb{N}_{0}$ with $a<b$. The symbol $a \longrightarrow b$ stands for consecutive numbers $a, a+1, \ldots, b$. We know the following result:

Remark 3.3 ([5]) Let $\tilde{H}_{g}=\langle 2 g-1 \longrightarrow 4 g-10,4 g-8,4 g-6,4 g-5\rangle$ for $g \geqq 7$. Then it is non-Weierstrass.
It is not difficult to show the following:
Proposition 3.4 Let \tilde{H}_{g} be as in Remark 3.3. Then $d_{2}\left(\tilde{H}_{g}\right)=\langle g \longrightarrow 2 g-$ $3,2 g-1\rangle$, which is Weierstrass. In this case we have $g\left(\tilde{H}_{g}\right)=2 g\left(d_{2}\left(\tilde{H}_{g}\right)\right)+2$. \tilde{H}_{7} is the numerical semigroup in Remark 2.6.
Hence this proposition shows that the box numbered by v) contains the above numerical semigroups.

3.2 General Cases

By Remark 2.4 we see the following:
Proposition 3.5 Let H be a non-Weierstrass semigroup and n an odd number $\geqq 8 g(H)+9$. We set $\tilde{H}=2 H+n \mathbb{N}_{0}$. Then \tilde{H} is non-Weierstrass. In this case we have $g(\tilde{H})=2 g(H)+\frac{n-1}{2} \geqq 6 g(H)+4$.
Thus, the above numerical semigroups belong to the box numbered by iii). A numerical semigroup H is said to be primitive if the largest integer in $\mathbb{N}_{0} \backslash H$ is less than twice the least positive integer in H.

Example 3.1 The numerical semigroup $H=\langle 13 \longrightarrow 18,20,22,23\rangle$ is primitive, because $\mathbb{N}_{0} \backslash H=\{1 \longrightarrow 12,19,21,24,25\}$.
Example 3.2 The numerical semigroup $H=\langle 13,15 \longrightarrow 18,20,22,23\rangle$ is non-primitive, because $\mathbb{N}_{0} \backslash H=\{1 \longrightarrow 12,14,19,21,24,25,27\}$.
We call H an n-semigroup if n is the least positive integer in H.
Lemma 3.6 Let H be a primitive n-semigroup. We set

$$
\mathbb{N}_{0} \backslash H=\left\{1 \longrightarrow n-1, l_{n}<l_{n+1}<\cdots<l_{g(H)}\right\}
$$

Take odd integers $\gamma_{n+1}<\gamma_{n+2}<\cdots<\gamma_{n+m}$ between $2 n$ and $4 n$. Let \tilde{H} be a subset of \mathbb{N}_{0} such that

$$
\begin{gathered}
\mathbb{N}_{0} \backslash \tilde{H}=\left\{2,4, \ldots, 2(n-1), 2 l_{n}, 2 l_{n+1}, \ldots, 2 l_{g(H)}\right\} \\
\cup\left\{1,3, \ldots, 2 n-1, \gamma_{n+1}, \gamma_{n+2}, \ldots, \gamma_{n+m}\right\}
\end{gathered}
$$

Then \tilde{H} is a primitive $2 n$-semigroup of genus $g(H)+n+m$ with $d_{2}(\tilde{H})=H$. For a numerical semigroup H we set $L_{2}(H)=\left\{l+l^{\prime} \mid l, l^{\prime} \in \mathbb{N}_{0} \backslash H\right\}$. The following remark is well-known:

Remark 3.7 ([1]) A numerical semigroup H with $\sharp L_{2}(H) \geqq 3 g(H)-2$ is non-Weierstrass.

Example 3.3 In Lemma 3.6 let $H=\langle 13 \longrightarrow 18,20,22,23\rangle, m=1$ and $\gamma_{14}=51$. In this case, \tilde{H} is a primitive 26 -semigroup such that

$$
\mathbb{N}_{0} \backslash \tilde{H}=\{1 \longrightarrow 25\} \cup\{38,42,48,50\} \cup\{51\}
$$

Hence, $g(\tilde{H})=30=2 g(H)-2$. We have $\sharp L_{2}(\tilde{H})=88=3 g(\tilde{H})-2$, which implies that \tilde{H} is non-Weierstrass.

Hence this example belongs to the box numbered by i)
Example 3.4 In Lemma 3.6 let $H=\langle 13 \longrightarrow 18,20,22,23\rangle, m=3$ and $\gamma_{14}=43, \gamma_{15}=49, \gamma_{16}=51$. In this case, \tilde{H} is a primitive 26 -semigroup such that

$$
\mathbb{N}_{0} \backslash \tilde{H}=\{1 \longrightarrow 25\} \cup\{38,42,48,50\} \cup\{43,49,51\}
$$

Hence, $g(\tilde{H})=32=2 g(H)$. We have $\sharp L_{2}(\tilde{H})=94=3 g(\tilde{H})-2$, which implies that \tilde{H} is non-Weierstrass.

Thus, the box numbered by ii) contains the above numerical semigroup.
Lemma 3.8 ([2]) Let H be a primitive numerical semigroup such that $\mathbb{N}_{0} \backslash H=\{1 \longrightarrow 13,15,18,27\}$, i.e., $H=\langle 14,16,17,19 \longrightarrow 26,29\rangle$. Then H is Weierstrass.

Example 3.5 First Step. In Lemma 3.6 let $H=\tilde{H}_{0}=\langle 14,16,17,19 \longrightarrow$ $26,29\rangle, m=1$ and $\gamma_{n+1}=55$. In this case, $\tilde{H}_{1}=\tilde{H}$ is a primitive 28 semigroup such that

$$
\mathbb{N}_{0} \backslash \tilde{H}=\{1 \longrightarrow 27\} \cup\{30,36,54\} \cup\{55\}
$$

Hence, $g(\tilde{H})=31=2 g(H)-1$. We have $\sharp L_{2}(\tilde{H})=88=3 g(\tilde{H})-5$.
Second Step. In Lemma 3.6 let $H=\tilde{H}_{1}, m=1$ and $\gamma_{n+1}=111$. In this case, $\tilde{H}_{2}=\tilde{H}$ is a primitive 56 -semigroup such that

$$
\mathbb{N}_{0} \backslash \tilde{H}=\{1 \longrightarrow 55\} \cup\{60,72,108,110\} \cup\{111\}
$$

Hence, $g(\tilde{H})=60=2 g(H)-2$. We have $\sharp L_{2}(\tilde{H})=177=3 g(\tilde{H})-3$.
Third Step. In Lemma 3.6 let $H=\tilde{H}_{2}, m=1$ and $\gamma_{n+1}=223$. In this case, $\tilde{H}_{3}=\tilde{H}$ is a primitive 56 -semigroup such that

$$
\mathbb{N}_{0} \backslash \tilde{H}=\{1 \longrightarrow 111\} \cup\{120,144,216,220,222\} \cup\{223\}
$$

Hence, $g(\tilde{H})=117=2 g(H)-3$. We have $\sharp L_{2}(\tilde{H})=351=3 g(\tilde{H})$, which implies that $\tilde{H}_{3}=\tilde{H}$ is non-Weierstrass.

By the above three steps we get a sequence

$$
\tilde{H}_{3} \xrightarrow{d_{2}} \tilde{H}_{2} \xrightarrow{d_{2}} \tilde{H}_{1} \xrightarrow{d_{2}} \tilde{H}_{0}
$$

where \tilde{H}_{0} is Weierstrass, \tilde{H}_{3} is non-Weierstrass and $g\left(\tilde{H}_{i}\right) \leqq 2 g\left(\tilde{H}_{i-1}\right)-1$ for $i=1,2,3$.
(1) If \tilde{H}_{1} is non-Weierstrass, then it belongs to the box numbered by iv).
(2) If \tilde{H}_{1} is Weierstrass and \tilde{H}_{2} is non-Weierstrass, then \tilde{H}_{2} belongs to the box numbered by iv).
(3) If \tilde{H}_{1} and \tilde{H}_{2} are Weierstrass, then \tilde{H}_{3} belongs to the box numbered by iv).

Hence the above shows that the box numbered by iv) contains some numerical semigroup.

References

[1] R.O. Buchweitz, On Zariski's criterion for equisingularity and nonsmoothable monomial curves. preprint 113, University of Hannover, 1980.
[2] J. Komeda, On primitive Schubert indices of genus g and weight $g-1$, J. Math. Soc. Japan 43 (1991) 437-445.
[3] J. Komeda, On the existence of Weierstrass gap sequences on curves of genus ≤ 8, J. Pure Appl. Alg. 97 (1994) 51-71.
[4] J. Komeda, Cyclic coverings of an elliptic curve with two branch points and the gap sequences at the ramification points, Acta Arithmetica LXXXI (1997) 275-297.
[5] J. Komeda, Non-Weierstrass numerical semigroups, Semigroup Forum 57 (1998) 157-185.
[6] J. Komeda, Weierstrass semigroups whose minimum positive integers are even, Arch. Math. 89 (2007) 52-59.
[7] J. Komeda and A. Ohbuchi, On double coverings of a pointed nonsingular curve with any Weierstrass semigroup, Tsukuba J. Math. 31 (2007) 205-215.
[8] F. Torres, Weierstrass points and double coverings of curves with application: Symmetric numerical semigroups which cannot be realized as Weierstrass semigroups, Manuscripta Math. 83 (1994) 39-58.

[^0]: ${ }^{1}$ This paper is an extended abstract and the details will appear elsewhere．

