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Abstract

Let $\pi$ : $\tilde{C}arrow C$ be a double covering of a non-singular curve with a rami-
fication point $\tilde{P}$ . Let $\sim H(\tilde{P})$ and $H(\pi(\tilde{P}))$ be the Weierstrass semigroups of
the points $P$ and $\pi(P)$ respectively. We extend the notions of $H(\overline{P})$ and
$H(\pi(\tilde{P}))$ to the numerical semigroups $\tilde{H}$ and $H$ respectively, and classify the
pairs of $(H, H_{\sim})$ by their genera. Moreover, we study about the property of
such a pair $(H, H)$ which means whether $H$ (respectively $\tilde{H}$) is Weierstrass
or not.

1 The $d_{2}$-map
Let $\mathbb{N}_{0}=\{0,1,2,3, \ldots\}$ be the additive semigroup of non-negative integers.
A subsemigroup $H$ of $N_{0}$ is called a numerical semigroup if its complement
$\mathbb{N}_{0}\backslash H$ in $\mathbb{N}_{0}$ is a finite set. The cardinality $\#(\mathbb{N}_{0}\backslash H)$ is called the genus
of $H$ , which is denoted by $g(H)$ . The symbols $H$ and $\tilde{H}$ mean numerical
semigroups throughout this paper. For any elements $a_{1},$ $\ldots,$ $a_{m}$ of $\mathbb{N}_{0}$ we
denote by $\langle a_{1},$

$\ldots,$
$a_{m}\rangle$ the semigroup generatd by $a_{1},$ $\ldots,$ $a_{m}$ . Let $\mathcal{H}$ be the

set of numerical semigroups. We define the map $d_{2}$ : $\mathcal{H}arrow \mathcal{H}$ sending $\tilde{H}$ to
$d_{2}( \tilde{H})=\{\frac{h}{2}$

$\overline{h}\in\tilde{H}$ is even $\}$ , which is called the $d_{2}$ -map.

Example 1. 1 i) $d_{2}:N_{0}\mapsto \mathbb{N}_{0}$ . ii $)$ $d_{2}$ : $\langle$ 2, $3\rangle\mapsto N_{0}$ .

iii) $d_{2}$ : $\langle$ 3, 4, $5\rangle\mapsto\langle 2,3\rangle$ .

v $)$ $d_{2}:\langle 4,6,7\rangle\mapsto\langle 2,3\rangle$ .
vii) $d_{2}$ : $\langle$ 6, 8, 10, $11\rangle\mapsto\langle 3,4,5\rangle$ .

iv) $d_{2}:\langle 3,5\rangle\mapsto\langle 3,4,5\rangle$ .

vi) $d_{2}:\langle 5,7,9\rangle\mapsto\langle 5,6,7,8,9\rangle$ .

lThis paper is an extended abstract and the details will appear elsewhere.
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2 A geometric meaning of the $d_{2}$-map
A complete non-singular l-dimensional algebraic variety over an algebraically
closed field is abbreviated to a curve in this paper. Let $(C, P)$ be a pointed
curve and $k(C)$ the field of rational functions on $C$ . We define the Weierstrass
semigroup of $P$ as follows:

$H(P)=\{n\in \mathbb{N}_{0}|$ ョ$f\in k(C)$ such that $(f)_{\infty}=nP\}$ .

A numerical semigroup $H$ is said to be Weierstrass if there exists a pointed
curve $(C, P)$ such that $H=H(P)$ .

$Lemm_{\sim}$a 2.1 Let $\pi$ : $\tilde{C}arrow C$ be a double covering of a curve, i. e., the degree
of $k(C_{\sim})\supset k(C)$ is two, with a ramification point P. Then $d_{2}(H(\tilde{P}))=$

$H(\pi(P))$ . (For example see Lemma 2 in [4])

A numerical semigroup $\overline{H}$ is called the double covering type, abbreviated to
$DC$ if there exists a double covering $\pi$ : $\tilde{C}arrow C$ with a ramification point
$\tilde{P}$ such that $\tilde{H}=H(\tilde{P})$ .
Example 2. 1 Let $\pi$ : $\tilde{C}arrow \mathbb{P}^{1}$ be a double covering of the projective line
$\mathbb{P}^{1}$ . If $Pis\sim$ a ramification point of $\pi$ , then $H(\tilde{P})=\langle 2,2g+1\rangle$ where $g$ is the
genus of $C$ . Hence, $\langle$ 2, $2g+1\rangle$ is DC.

By the definition of DC we have the following:

Remark 2.2 If $\tilde{H}$ is $DC$, then $\tilde{H}$ and $d_{2}(\tilde{H})$ are Weierstrass.
Using Riemann-Hurwitz’ formula we see the following:

Lemma 2.3 If $\tilde{H}$ is $DC_{j}$ then $g(\tilde{H})\geqq 2g(d_{2}(\tilde{H}))$ .
The following is the known fact which is due to Torres [8].

Remark 2.4 If $\tilde{H}$ is a Weierstmss semigroup with $g(\tilde{H})\geqq 6g(d_{2}(\tilde{H}))+4_{f}$

then it is $DC$.

Example 2. 2 Let $\overline{H}=\langle 6,8,33\rangle$ . Then $d_{2}(\tilde{H})=\langle 3,4\rangle$ . We have
$g(\tilde{H})=22\geqq 6*3+4=6g(\langle 3,4\rangle)+4$ .

Hence, $\tilde{H}$ is DC, because it is Weierstrass.
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A numerical semigroup $\tilde{H}$ is said to be lower-Weierstrass, abbreviated to
$\ell$-Weierstrass if $d_{2}(\tilde{H})$ is Weierstrass. The definition of DC means the fol-
lowing:

Remark 2.5 If $\tilde{H}$ is $DC$, then it is $\ell$-Weierstrass.

Remark 2.6 $B=\langle 13,14,15,16,17,18,20,22,23\rangle$ is non-Weierstrass (see [1]),
but $\ell$-Weierstrass, because $d_{2}(B)=\langle 7,8,9,10,11,13\rangle$ is of genus 7, which
implies that $d_{2}(B)$ is Weierstrass (see [3]).

3 Classification and existence
By Lemma 2.3 and Remark 2.4 we have the following table:

Here we set $\tilde{g}=g(\tilde{H})$ and $g=g(d_{2}(\tilde{H}))$ .

We note that the bigger the roman numeral numbering the boxes in the table,
the more special a numerical semigroup $\tilde{H}$ belonging to the box numbered
by it. After deleting the boxes in Table I to which no numerical semigroup
belongs, the above table becomes the following:

We have the following problem:

Problem A. Is a Weierstrass semigroup $\tilde{H}\ell$-Weierstrass ? Namely, is there
no numerical semigroup belonging to the box numbered by viii) (respectively
vii) ?
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Problem B. Is there a Weierstrass semigroup which belongs to the box
numbered by x) ?

Problem C. Is there a non-Weierstrass semigroup which belongs to the box
numbered by vi) ?

We will show that some numerical semigroup belongs to each box except vi),
vii $)$ , viii $)$ and x$)$ .

3.1 Special Cases
The following is known:

Remark 3.1 ([7]) Let $H$ be a Weierstrass semigroup and $n$ an odd number
$\geqq 4g(H)-1$ . We set $\tilde{H}=2H+nN_{0}$ . Then $d_{2}(\tilde{H})=H$ and $\tilde{H}$ is $DC$. In
this case we have $g(\tilde{H})=2g(H)+\overline{2}\geqq 4g(H)-1$ .$n-1$

Hence this remark shows the existence of a numerical semigroup belonging
to the box numbered by xii) (resp. xi) $)$

Remark 3.2 ([6]) Let $\tilde{H}=\langle 2n,$ $2n+2\cross 1-1,$ $\ldots,$ $2n+2\cross n-1\rangle$ with
$n\geqq 3$ . Then $\tilde{H}$ is Weierstmss and $d_{2}(\tilde{H})=\langle n,$ $2n+1,$ $\ldots,$ $2n+n-1\rangle$ , which
is Weierstrass. Hence, $\tilde{H}$ is $\ell$-Weierstrass. In this case we have $g(\tilde{H})=$

$\vec{2}3_{g(H)+1}\leqq 2g(H)-1$ .

The numerical semigroups in Remark 3.2 are in the box numbered by ix).
Let $a,$ $b\in \mathbb{N}_{0}$ with $a<b$ . The symbol $aarrow b$ stands for consecutive numbers
$a,$ $a+1,$ $\ldots,$

$b$ . We know the following result:

Remark 3.3 ([5]) Let $\tilde{H}_{g}=\langle 2g-1arrow 4g-10,4g-8,4g-6,4g-5\rangle$ for
$g\geqq 7$ . Then it is non-Weierstrass.

It is not difficult to show the following:

Proposition 3.4 Let $\tilde{H}_{g}$ be as in Remark 3.3. Then $d_{2}(\tilde{H}_{9})=\langle garrow 2g-$

$3,2g-1\rangle$ , which is Weierstrass. In this case we have $g(\tilde{H}_{g})=2g(d_{2}(\tilde{H}_{g}))+2$ .
$\tilde{H}_{7}$ is the numerical semigroup in Remark 2.6.
Hence this proposition shows that the box numbered by v) contains the above
numerical semigroups.
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3.2 General Cases
By Remark 2.4 we see the following:

Proposition 3.5 Let $H$ be a non-Weierstrass semigroup and $n$ an odd num-
$ber\geqq 8g(H)+9$ . We set $\tilde{H}=2H+nN_{0}$ . Then $\tilde{H}$ is non-Weierstrass. $In$

this case we have $g( \tilde{H})=2g(H)+\frac{n-1}{2}\geqq 6g(H)+4$ .
Thus, the above numerical semigroups belong to the box numbered by iii). A
numerical semigroup $H$ is said to be primitive if the largest integer in $\mathbb{N}_{0}\backslash H$

is less than twice the least positive integer in $H$ .

Example 3.1 The numerical semigroup $H=\langle 13arrow 18,20,22,23\rangle$ is
primitive, because $\mathbb{N}_{0}\backslash H=\{1arrow 12,19,21,24,25\}$ .
Example 3.2 The numerical semigroup $H=\langle 13,15arrow 18,20,22,23\rangle$ is
non-primitive, because $\mathbb{N}_{0}\backslash H=\{1arrow 12,14,19,21,24,25,27\}$ .
We call $H$ an n-semigroup if $n$ is the least positive integer in $H$ .
Lemma 3.6 Let $H$ be a primitive n-semigroup. We set

$\mathbb{N}_{0}\backslash H=\{1arrow n-1, l_{n}<l_{n+1}<\cdots<l_{g(H)}\}$ .
Take odd integers $\gamma_{n+1}<\gamma_{n+2}<\cdots<\gamma_{n+m}$ between $2n$ and $4n$ . Let $\tilde{H}$ be a
subset $of\mathbb{N}_{0}$ such that

$\mathbb{N}_{0}\backslash \tilde{H}=\{2,4, \ldots, 2(n-1), 2l_{n}, 2l_{n+1}, \ldots, 2l_{g(H)}\}$

$U\{1,3, \ldots, 2n-1, \gamma_{n+1}, \gamma_{n+2}, \ldots, \gamma_{n+m}\}$

Then $\tilde{H}$ is a primitive $2n$ -semigroup of genus $g(H)+n+m$ with $d_{2}(\tilde{H})=H$ .
For a numerical semigroup $H$ we set $L_{2}(H)=\{l+l’|l,$ $l’\in \mathbb{N}_{0}\backslash H\}$ . The
following remark is well-known:

Remark 3.7 ([1]) A numerical semigroup $H$ with $\# L_{2}(H)\geqq 3g(H)-2$ is
non-Weierstrass.

Example 3.3 In Lemma 3.6let $H=\langle 13arrow 18,20,22,23\rangle,$ $m=1$ and
$\gamma_{14}=51$ . In this case, $\tilde{H}$ is a primitive 26-semigroup such that

$\mathbb{N}_{0}\backslash \tilde{H}=\{1arrow 25\}\cup\{38,42,48,50\}\cup\{51\}$ .
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Hence, $g(\tilde{H})=30=2g(H)-2$ . We have $\# L_{2}(\tilde{H})=88=3g(\tilde{H})-2$ , which
implies that $\tilde{H}$ is non-Weierstrass.
Hence this example belongs to the box numbered by i)

Example 3.4 In Lemma 3.6let $H=\langle 13arrow 18,20,22,23\rangle,$ $m=3$ and
$\gamma_{14}=43,$ $\gamma_{15}=49,$ $\gamma_{16}=51$ . In this case, $\tilde{H}$ is a primitive 26-semigroup
such that

$\mathbb{N}_{0}\backslash \tilde{H}=\{1arrow 25\}\cup\{38,42,48,50\}\cup\{43,49,51\}$ .
Hence, $g(\tilde{H})_{\sim}=32=2g(H)$ . We have $\# L_{2}(\tilde{H})=94=3g(\tilde{H})-2$ , which
implies that $H$ is non-Weierstrass.
Thus, the box numbered by ii) contains the above numerical semigroup.

Lemma 3.8 ([2]) Let $H$ be a primitive numerical semigroup such that
$\mathbb{N}_{0}\backslash H=\{1arrow 13,15,18,27\}$ , i. e., $H=\langle 14,16,17,19arrow 26,29\rangle$ . Then $H$

is Weierstmss.

Example 3.5 First Step. In Lemma 3.6let $H=\tilde{H}_{0}=\langle 14,16,17,19arrow$

$26,29\rangle,$ $m=1$ and $\gamma_{n+1}=55$ . In this case, $\tilde{H}_{1}=\tilde{H}$ is a primitive 28-
semigroup such that

$N_{0}\backslash \tilde{H}=\{1arrow 27\}\cup\{30,36,54\}\cup\{55\}$ .
Hence, $g(\tilde{H})=31=2g(H)-1$ . We have $\# L_{2}(\tilde{H})=$ SS $=3g(\tilde{H})-5$ .
Second Step. In Lemma 3.6let $H=\tilde{H}_{1},$ $m=1$ and $\gamma_{n+1}=111$ . In this case,
$H_{2}=H$ is a primitive 56-semigroup such that

$\mathbb{N}_{0}\backslash \tilde{H}=\{1arrow 55\}\cup\{60,72,108,110\}\cup\{111\}$ .
Hence, $g(\tilde{H})=60=2g(H)-2$ . We have $\# L_{2}(\tilde{H})=177=3g(\tilde{H})-3$ .
Third $Step\sim$ . In Lemma 3.6let $H=\tilde{H}_{2},$ $m=1$ and $\gamma_{n+1}=223$ . In this case,
$H_{3}=H$ is a primitive 56-semigroup such that

$\mathbb{N}_{0}\backslash \tilde{H}=\{1arrow 111\}\cup\{120,144,216,220,222\}\cup\{223\}$ .
Hence, $g(\tilde{H})=117=2g(H)-3$ . We have $\# L_{2}(\tilde{H})=351=3g(\tilde{H})$ , which
implies that $\tilde{H}_{3}=\tilde{H}$ is non-Weierstrass.
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By the above three steps we get a sequence
$\tilde{H}_{3}arrow^{d_{2}}\tilde{H}_{2}\frac{d_{2_{1}}}{r}\tilde{H}_{1}\frac{d_{2_{1}}}{\prime}\tilde{H}_{0}$

where $\tilde{H}_{0}$ is Weierstrass, $\tilde{H}_{3}$ is non-Weierstrass and $g(\tilde{H}_{i})\leqq 2g(\tilde{H}_{i-1})-1$ for
$i=1,2,3$ .

(1) If $\tilde{H}_{1}$ is non-Weierstrass, then it belongs to the box numbered by iv).

(2) If $\tilde{H}_{1}$ is Weierstrass and $\tilde{H}_{2}$ is non-Weierstrass, then $\tilde{H}_{2}$ belongs to the
box numbered by iv).

(3) If $\tilde{H}_{1}$ and $\tilde{H}_{2}$ are Weierstrass, then $\tilde{H}_{3}$ belongs to the box numbered by
iv).

Hence the above shows that the box numbered by iv) contains some
numerical semigroup.
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