A generalization of Weierstrass semigroups on a double covering of a curve ¹

神奈川工科大学・基礎・教養教育センター 米田 二良 (Jiryo Komeda) Center for Basic Education and Integrated Learning Kanagawa Institute of Technology

Abstract

Let $\pi: \tilde{C} \longrightarrow C$ be a double covering of a non-singular curve with a ramification point \tilde{P} . Let $H(\tilde{P})$ and $H(\pi(\tilde{P}))$ be the Weierstrass semigroups of the points \tilde{P} and $\pi(\tilde{P})$ respectively. We extend the notions of $H(\tilde{P})$ and $H(\pi(\tilde{P}))$ to the numerical semigroups \tilde{H} and H respectively, and classify the pairs of (\tilde{H}, H) by their genera. Moreover, we study about the property of such a pair (\tilde{H}, H) which means whether H (respectively \tilde{H}) is Weierstrass or not.

1 The d_2 -map

Let $\mathbb{N}_0 = \{0, 1, 2, 3, ...\}$ be the additive semigroup of non-negative integers. A subsemigroup H of \mathbb{N}_0 is called a *numerical semigroup* if its complement $\mathbb{N}_0 \setminus H$ in \mathbb{N}_0 is a finite set. The cardinality $\#(\mathbb{N}_0 \setminus H)$ is called the *genus* of H, which is denoted by g(H). The symbols H and \tilde{H} mean numerical semigroups throughout this paper. For any elements a_1, \ldots, a_m of \mathbb{N}_0 we denote by $\langle a_1, \ldots, a_m \rangle$ the semigroup generatd by a_1, \ldots, a_m . Let \mathcal{H} be the set of numerical semigroups. We define the map $d_2 : \mathcal{H} \longrightarrow \mathcal{H}$ sending \tilde{H} to $d_2(\tilde{H}) = \left\{ \frac{\tilde{h}}{2} \mid \tilde{h} \in \tilde{H} \text{ is even} \right\}$, which is called the d_2 -map. **Example 1.1** i) $d_2 : \mathbb{N}_0 \longmapsto \mathbb{N}_0$. ii) $d_2 : \langle 2, 3 \rangle \longmapsto \mathbb{N}_0$. iii) $d_2 : \langle 3, 4, 5 \rangle \longmapsto \langle 2, 3 \rangle$. iv) $d_2 : \langle 3, 5 \rangle \longmapsto \langle 3, 4, 5 \rangle$. v) $d_2 : \langle 4, 6, 7 \rangle \longmapsto \langle 2, 3 \rangle$. vi) $d_2 : \langle 5, 7, 9 \rangle \longmapsto \langle 5, 6, 7, 8, 9 \rangle$. vii) $d_2 : \langle 6, 8, 10, 11 \rangle \longmapsto \langle 3, 4, 5 \rangle$.

¹This paper is an extended abstract and the details will appear elsewhere.

2 A geometric meaning of the d_2 -map

A complete non-singular 1-dimensional algebraic variety over an algebraically closed field is abbreviated to a *curve* in this paper. Let (C, P) be a pointed curve and k(C) the field of rational functions on C. We define the *Weierstrass* semigroup of P as follows:

$$H(P) = \{ n \in \mathbb{N}_0 \mid \exists f \in k(C) \text{ such that } (f)_{\infty} = nP \}.$$

A numerical semigroup H is said to be Weierstrass if there exists a pointed curve (C, P) such that H = H(P).

Lemma 2.1 Let $\pi : \tilde{C} \longrightarrow C$ be a double covering of a curve, i.e., the degree of $k(\tilde{C}) \supset k(C)$ is two, with a ramification point \tilde{P} . Then $d_2(H(\tilde{P})) = H(\pi(\tilde{P}))$. (For example see Lemma 2 in [4])

A numerical semigroup \tilde{H} is called the double covering type, abbreviated to DC if there exists a double covering $\pi : \tilde{C} \longrightarrow C$ with a ramification point \tilde{P} such that $\tilde{H} = H(\tilde{P})$.

Example 2.1 Let $\pi: \tilde{C} \longrightarrow \mathbb{P}^1$ be a double covering of the projective line \mathbb{P}^1 . If \tilde{P} is a ramification point of π , then $H(\tilde{P}) = \langle 2, 2g + 1 \rangle$ where g is the genus of \tilde{C} . Hence, $\langle 2, 2g + 1 \rangle$ is DC.

By the definition of DC we have the following:

Remark 2.2 If \tilde{H} is DC, then \tilde{H} and $d_2(\tilde{H})$ are Weierstrass.

Using Riemann-Hurwitz' formula we see the following:

Lemma 2.3 If \tilde{H} is DC, then $g(\tilde{H}) \geq 2g(d_2(\tilde{H}))$.

The following is the known fact which is due to Torres [8].

Remark 2.4 If \tilde{H} is a Weierstrass semigroup with $g(\tilde{H}) \geq 6g(d_2(\tilde{H})) + 4$, then it is DC.

Example 2.2 Let $\tilde{H} = \langle 6, 8, 33 \rangle$. Then $d_2(\tilde{H}) = \langle 3, 4 \rangle$. We have

 $g(\tilde{H}) = 22 \ge 6 * 3 + 4 = 6g(\langle 3, 4 \rangle) + 4.$

Hence, \tilde{H} is DC, because it is Weierstrass.

A numerical semigroup \tilde{H} is said to be *lower-Weierstrass*, abbreviated to ℓ -Weierstrass if $d_2(\tilde{H})$ is Weierstrass. The definition of DC means the following:

Remark 2.5 If \tilde{H} is DC, then it is ℓ -Weierstrass.

Remark 2.6 $B = \langle 13, 14, 15, 16, 17, 18, 20, 22, 23 \rangle$ is non-Weierstrass (see [1]), but ℓ -Weierstrass, because $d_2(B) = \langle 7, 8, 9, 10, 11, 13 \rangle$ is of genus 7, which implies that $d_2(B)$ is Weierstrass (see [3]).

3 Classification and existence

By Lemma 2.3 and Remark 2.4 we have the following table:

Table 1: Numerical semigroups H								
Genus	Weierstrass			Non-Weierstrass				
$6g + 4 \leqq \tilde{g}$	xii) DC	A non-DC, l-Wei	A non-l-W	vi) l-Wei	iii)non-l-W			
$2g \leqq \tilde{g} \leqq 6g + 3$	xi) DC	x) non-DC, l-Wei	viii) non-l-W	v)l-Wei	ii)non-l-W			
$\tilde{g} \leq 2g - 1$	A DC	ix) non-DC, l-Wei	vii) non-l-W	iv)l-Wei	i) non-l-W			

Table I : Numerical semigroups \tilde{H}

Here we set $\tilde{g} = g(\tilde{H})$ and $g = g(d_2(\tilde{H}))$.

We note that the bigger the roman numeral numbering the boxes in the table, the more special a numerical semigroup \tilde{H} belonging to the box numbered by it. After deleting the boxes in Table I to which no numerical semigroup belongs, the above table becomes the following:

Genus	Weierstrass	Non-Weierstrass		
$6g + 4 \leqq \tilde{g}$	xii) DC	vi) <i>l-Wei</i>	iii)non-l-W	
$2g \leqq ilde{g} \leqq 6g + 3$	xi) DC x) non- DC , ℓ -Wei	viii) non-l-W	v) <i>l-Wei</i>	ii)non-l-W
$\tilde{g} \leqq 2g - 1$	ix) non-DC, l-Wei	vii) non-l-W	iv) <i>l-Wei</i>	i) non-l-W

Table II : Numerical semigroups \tilde{H}

We have the following problem:

Problem A. Is a Weierstrass semigroup \tilde{H} ℓ -Weierstrass ? Namely, is there no numerical semigroup belonging to the box numbered by viii) (respectively vii) ?

Problem B. Is there a Weierstrass semigroup which belongs to the box numbered by x)?

Problem C. Is there a non-Weierstrass semigroup which belongs to the box numbered by vi) ?

We will show that some numerical semigroup belongs to each box except vi), vii), viii) and x).

3.1 Special Cases

The following is known:

Remark 3.1 ([7]) Let H be a Weierstrass semigroup and n an odd number $\geq 4g(H) - 1$. We set $\tilde{H} = 2H + n\mathbb{N}_0$. Then $d_2(\tilde{H}) = H$ and \tilde{H} is DC. In this case we have $g(\tilde{H}) = 2g(H) + \frac{n-1}{2} \geq 4g(H) - 1$.

Hence this remark shows the existence of a numerical semigroup belonging to the box numbered by xii) (resp. xi))

Remark 3.2 ([6]) Let $\tilde{H} = \langle 2n, 2n + 2 \times 1 - 1, \dots, 2n + 2 \times n - 1 \rangle$ with $n \geq 3$. Then \tilde{H} is Weierstrass and $d_2(\tilde{H}) = \langle n, 2n+1, \dots, 2n+n-1 \rangle$, which is Weierstrass. Hence, \tilde{H} is ℓ -Weierstrass. In this case we have $g(\tilde{H}) = \frac{3}{2}g(H) + 1 \leq 2g(H) - 1$.

The numerical semigroups in Remark 3.2 are in the box numbered by ix). Let $a, b \in \mathbb{N}_0$ with a < b. The symbol $a \longrightarrow b$ stands for consecutive numbers $a, a + 1, \ldots, b$. We know the following result:

Remark 3.3 ([5]) Let $\tilde{H}_g = \langle 2g - 1 \longrightarrow 4g - 10, 4g - 8, 4g - 6, 4g - 5 \rangle$ for $g \geq 7$. Then it is non-Weierstrass.

It is not difficult to show the following:

Proposition 3.4 Let \tilde{H}_g be as in Remark 3.3. Then $d_2(\tilde{H}_g) = \langle g \longrightarrow 2g - 3, 2g - 1 \rangle$, which is Weierstrass. In this case we have $g(\tilde{H}_g) = 2g(d_2(\tilde{H}_g)) + 2$. \tilde{H}_7 is the numerical semigroup in Remark 2.6.

Hence this proposition shows that the box numbered by v) contains the above numerical semigroups.

3.2 General Cases

By Remark 2.4 we see the following:

Proposition 3.5 Let H be a non-Weierstrass semigroup and n an odd number $\geq 8g(H) + 9$. We set $\tilde{H} = 2H + n\mathbb{N}_0$. Then \tilde{H} is non-Weierstrass. In this case we have $g(\tilde{H}) = 2g(H) + \frac{n-1}{2} \geq 6g(H) + 4$.

Thus, the above numerical semigroups belong to the box numbered by iii). A numerical semigroup H is said to be *primitive* if the largest integer in $\mathbb{N}_0 \setminus H$ is less than twice the least positive integer in H.

Example 3.1 The numerical semigroup $H = \langle 13 \rightarrow 18, 20, 22, 23 \rangle$ is primitive, because $\mathbb{N}_0 \setminus H = \{1 \rightarrow 12, 19, 21, 24, 25\}$.

Example 3.2 The numerical semigroup $H = \langle 13, 15 \rightarrow 18, 20, 22, 23 \rangle$ is non-primitive, because $\mathbb{N}_0 \setminus H = \{1 \rightarrow 12, 14, 19, 21, 24, 25, 27\}$.

We call H an *n*-semigroup if n is the least positive integer in H.

Lemma 3.6 Let H be a primitive n-semigroup. We set

$$\mathbb{N}_0 \setminus H = \{1 \longrightarrow n-1, l_n < l_{n+1} < \cdots < l_{g(H)}\}.$$

Take odd integers $\gamma_{n+1} < \gamma_{n+2} < \cdots < \gamma_{n+m}$ between 2n and 4n. Let \tilde{H} be a subset of \mathbb{N}_0 such that

$$\mathbb{N}_{0} \setminus H = \{2, 4, \dots, 2(n-1), 2l_{n}, 2l_{n+1}, \dots, 2l_{g(H)}\}$$
$$\cup \{1, 3, \dots, 2n-1, \gamma_{n+1}, \gamma_{n+2}, \dots, \gamma_{n+m}\}$$

Then \tilde{H} is a primitive 2n-semigroup of genus g(H) + n + m with $d_2(\tilde{H}) = H$.

For a numerical semigroup H we set $L_2(H) = \{l + l' \mid l, l' \in \mathbb{N}_0 \setminus H\}$. The following remark is well-known:

Remark 3.7 ([1]) A numerical semigroup H with $\sharp L_2(H) \ge 3g(H) - 2$ is non-Weierstrass.

Example 3.3 In Lemma 3.6 let $H = \langle 13 \rightarrow 18, 20, 22, 23 \rangle$, m = 1 and $\gamma_{14} = 51$. In this case, \tilde{H} is a primitive 26-semigroup such that

$$\mathbb{N}_0 \setminus H = \{1 \longrightarrow 25\} \cup \{38, 42, 48, 50\} \cup \{51\}.$$

Hence, $g(\tilde{H}) = 30 = 2g(H) - 2$. We have $\sharp L_2(\tilde{H}) = 88 = 3g(\tilde{H}) - 2$, which implies that \tilde{H} is non-Weierstrass.

Hence this example belongs to the box numbered by i)

Example 3.4 In Lemma 3.6 let $H = \langle 13 \rightarrow 18, 20, 22, 23 \rangle$, m = 3 and $\gamma_{14} = 43$, $\gamma_{15} = 49$, $\gamma_{16} = 51$. In this case, \tilde{H} is a primitive 26-semigroup such that

$$\mathbb{N}_0 \setminus \tilde{H} = \{1 \longrightarrow 25\} \cup \{38, 42, 48, 50\} \cup \{43, 49, 51\}.$$

Hence, $g(\tilde{H}) = 32 = 2g(H)$. We have $\sharp L_2(\tilde{H}) = 94 = 3g(\tilde{H}) - 2$, which implies that \tilde{H} is non-Weierstrass.

Thus, the box numbered by ii) contains the above numerical semigroup.

Lemma 3.8 ([2]) Let H be a primitive numerical semigroup such that $\mathbb{N}_0 \setminus H = \{1 \longrightarrow 13, 15, 18, 27\}$, i.e., $H = \langle 14, 16, 17, 19 \longrightarrow 26, 29 \rangle$. Then H is Weierstrass.

Example 3.5 First Step. In Lemma 3.6 let $H = \tilde{H}_0 = \langle 14, 16, 17, 19 \rightarrow 26, 29 \rangle$, m = 1 and $\gamma_{n+1} = 55$. In this case, $\tilde{H}_1 = \tilde{H}$ is a primitive 28-semigroup such that

$$\mathbb{N}_0 \setminus H = \{1 \longrightarrow 27\} \cup \{30, 36, 54\} \cup \{55\}.$$

Hence, $g(\tilde{H}) = 31 = 2g(H) - 1$. We have $\sharp L_2(\tilde{H}) = 88 = 3g(\tilde{H}) - 5$.

Second Step. In Lemma 3.6 let $H = \tilde{H}_1$, m = 1 and $\gamma_{n+1} = 111$. In this case, $\tilde{H}_2 = \tilde{H}$ is a primitive 56-semigroup such that

$$\mathbb{N}_0 \setminus \tilde{H} = \{1 \longrightarrow 55\} \cup \{60, 72, 108, 110\} \cup \{111\}.$$

Hence, $g(\tilde{H}) = 60 = 2g(H) - 2$. We have $\sharp L_2(\tilde{H}) = 177 = 3g(\tilde{H}) - 3$.

Third Step. In Lemma 3.6 let $H = \tilde{H}_2$, m = 1 and $\gamma_{n+1} = 223$. In this case, $\tilde{H}_3 = \tilde{H}$ is a primitive 56-semigroup such that

 $\mathbb{N}_0 \setminus \tilde{H} = \{1 \longrightarrow 111\} \cup \{120, 144, 216, 220, 222\} \cup \{223\}.$

Hence, $g(\tilde{H}) = 117 = 2g(H) - 3$. We have $\sharp L_2(\tilde{H}) = 351 = 3g(\tilde{H})$, which implies that $\tilde{H}_3 = \tilde{H}$ is non-Weierstrass.

By the above three steps we get a sequence

$$\tilde{H}_3 \xrightarrow{d_2} \tilde{H}_2 \xrightarrow{d_2} \tilde{H}_1 \xrightarrow{d_2} \tilde{H}_0$$

where \tilde{H}_0 is Weierstrass, \tilde{H}_3 is non-Weierstrass and $g(\tilde{H}_i) \leq 2g(\tilde{H}_{i-1}) - 1$ for i = 1, 2, 3.

(1) If H_1 is non-Weierstrass, then it belongs to the box numbered by iv).

(2) If \tilde{H}_1 is Weierstrass and \tilde{H}_2 is non-Weierstrass, then \tilde{H}_2 belongs to the box numbered by iv).

(3) If \tilde{H}_1 and \tilde{H}_2 are Weierstrass, then \tilde{H}_3 belongs to the box numbered by iv).

Hence the above shows that the box numbered by iv) contains some numerical semigroup.

References

- [1] R.O. Buchweitz, On Zariski's criterion for equisingularity and nonsmoothable monomial curves. preprint 113, University of Hannover, 1980.
- [2] J. Komeda, On primitive Schubert indices of genus g and weight g 1, J. Math. Soc. Japan 43 (1991) 437-445.
- [3] J. Komeda, On the existence of Weierstrass gap sequences on curves of genus ≤ 8, J. Pure Appl. Alg. 97 (1994) 51-71.
- [4] J. Komeda, Cyclic coverings of an elliptic curve with two branch points and the gap sequences at the ramification points, Acta Arithmetica LXXXI (1997) 275-297.
- [5] J. Komeda, Non-Weierstrass numerical semigroups, Semigroup Forum 57 (1998) 157-185.
- [6] J. Komeda, Weierstrass semigroups whose minimum positive integers are even, Arch. Math. 89 (2007) 52-59.
- [7] J. Komeda and A. Ohbuchi, On double coverings of a pointed nonsingular curve with any Weierstrass semigroup, Tsukuba J. Math. 31 (2007) 205-215.

[8] F. Torres, Weierstrass points and double coverings of curves with application: Symmetric numerical semigroups which cannot be realized as Weierstrass semigroups, Manuscripta Math. 83 (1994) 39-58.