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1 Introduction
The notion of $C_{2}$-cofiniteness of vertex algebras has recently been become very
important in the representation theory of vertex operator algebra. The $C_{2^{-}}$

cofiniteness property is a finite codimensionality of a particuler subspace of
vertex operator algebra and follows a lot of other finiteness properties (see [M]
for example).

$iThe$ final aim of the work is to show that the following conjecture ’ any
orbifold model of a simple, $C_{2}$-cofinite vertex operator algebra is $C_{2}$-cofinite”.
For this purpose, as a first step, we experimentally consider the case of com-
mutative vertex algberas. In commutative case, it seems not to be natural
to assume that a vertex algebras is simple. Then we have an example of $C_{2^{arrow}}$

cofinite commutative vertex algebra whose $\mathbb{Z}_{2}$-orbifold model is not $C_{2}$-cofinite.
We give a criterion for the $C_{2}$-cofiniteness of $\mathbb{Z}_{2}$-orbifold models of $C_{2}$-cofinite,
finitely generated commutative vertex algebra.

2 Vertex algebras and some notions
A vertex algebra is a triple $(V, Y(\cdot, z), 1)$ of a vector space over $\mathbb{C}$ , a linear map
$Y(\cdot, z)$ : $V\mapsto$ End $V[[z, z^{-1}]]$ and a distinguished vector 1 called a vacuum
vector, where End $V[[z, z^{-1}]]$ is a formal integral power series of $z$ with End $V$

as coefficients. For $a\in V$ , we write $Y(a, z)= \sum_{m\in \mathbb{Z}}a_{(m)}z^{-n-1}$ where the
coefficients $a_{(}m$) $\in$ End $V$ . We may regards the map $V\cross V\ni(a, b)\mapsto a_{(m)}b\in$

$V$ with $a,$ $b\in V$ and $m\in \mathbb{Z}$ as a bilinear multiplication on $V$ . Then the
following is satisfied:

(1) For any $a,$ $b\in V,$ $a_{(n)}b=0$ for sufficiently large integer $n$ .

(2) (Borcherds identity) For any $a,$ $b\in V$ ,

$\sum_{i=0}^{\infty}(\begin{array}{l}qi\end{array})(a_{(p+i)}b)_{(q+r-i)^{C}}$

(2.1)
$= \sum_{i=0}^{\infty}(-1)^{i}(\begin{array}{l}pi\end{array})(a_{(p+q-i)}b_{(r+i)}c-(-1)^{p}b_{(p+r-i)}a_{(q+i)})c$ .

16 Jan. 2009, $($Groups $r$ Vertex operator algebras and Combinatorics” at RIMS
2Part of the work has been done during the stay in The Erwin Schr\"oedinger International

Institution for Mathematical Physics

数理解析研究所講究録
第 1656巻 2009年 7-12 7



(3) $1_{(n)}=\delta_{n,-1}$ id $V$ for $n\in \mathbb{Z}$ .

We canonically have a linear map $D$ : $V\ni a\mapsto a_{(-2)}1\in V$ . The linear map
$D$ satisfies the following identities;

$(Da)_{(m)}=-ma_{(m-1)}$ for $a\in V,$ $m\in \mathbb{Z}$ , (2.2)
$D(a_{(m)}b)=(Da)_{(m)}b+a_{(m)}D(b)$ for $a,$ $b\in V,$ $m\in \mathbb{Z}$ . (2.3)

The second identity means that $D$ is a derivation of $V$ .
A vertex algebra $V$ is said to be commutative if $a_{(n)}b=0$ for any $n\in \mathbb{Z}_{\geq 0}$ .

In this case, we have $[a_{(m)}, b_{(n)}]=0$ in End $V$ for any $a,$ $b\in V$ and $m,$ $n\in \mathbb{Z}$ .
Let $S$ be a finite set of $V$ . If $V$ is spanned by a set of the form

$\{a_{(-n_{1})}^{1}\cdots a_{(-n_{f})}^{r}1|a^{i}\in S, n_{i}\in \mathbb{Z}>0\}$

then it is called that $V$ is strongly generated by $S$ (see [Ar] for more prop-
erties). By (2.2), we have $a_{(-m-1)}= \frac{1}{m!}(D^{m}a)_{(-1)}$ for $a\in V$ and $m\in \mathbb{Z}_{\geq 0}$ .
Therefore $V$ is strongly generated by $S$ if and only if $V$ is generated by $S$ when
$V$ is regarded as a noncommutative, nonassociative differential algebra with
$-1$-product as multiplication and with derivation $D$ .

We consider a subspace $C_{2}(V)$ defined by

$C_{2}(V)=$ span$\{a_{(-2)}b|a, b\in V\}$ .

A vertex algebra $V$ is called $C_{2}$-cofinite if $V/C_{2}(V)$ is finite dimensional. We
set

$C_{2}(U, W)=$ span$\{a_{(-2)}b|a\in U, b\in W\}$

for a subset $U,$ $W$ of $V$ .
An $automo7phism$ of a vertex algebra $(V, Y(\cdot, z), 1)$ is a linear isomorphism

$g$ satisfying $g(a_{(m)}b)=g(a)_{(m)}g(b)$ for $a,$ $b\in V$ and $g(1)=1$ . For a finite
automorphism group $G,$ $V^{G}=\{a\in V|g(a)=a\}$ has naturally a vertex
algebra structure. This vertex algebra is called an orbifold model of $V$ .

3 Commutative vertex algebras

Borcherds introduced a notion of a vertex algebra in [B]. In this paper he
showed that a commutative vertex algebra is nothing but a unital commutative
associative algebra with a derivation. We recall the correspondence in this
section.

Let $A$ be a commutative associative algebra with unit 1, and $D$ its arbitrary
derivation. We denote the triple by $(A, D, 1)$ and call it a unital differential
commutative algebra.

For a unital differential commutative algebra $(A, D, 1)$ , we set $1=1$ and
define $Y(a, z)= \sum_{i=0}^{\infty}\rho(D^{i}a)\frac{z^{i}}{i!}$ for $a\in A$ , where $\rho$ is the (left) regular represen-
tation of $A$ . Then $(A, Y(\cdot, z), 1)$ becomes a vertex algebra. Since $a_{(m)}=0$ for
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$m\in \mathbb{Z}_{\geq 0},$ $A$ is commutative, and we also have $a_{(-m)}=\rho(D^{m-1}a)/(m-1)!$ for
$m\in \mathbb{Z}_{>0}$ . On the other hand, for a commutative vertex algebra $A(Y(. , z), 1)$ ,
$A$ has a unital commutative associative algebra structure with multiplication
$ab=a_{(-1)}b$ and unit 1. Then as mentioned above, $D\in$ End $A$ defined by
$D(a)=a_{(-2)}1$ for $a\in A$ is a derivation. Thus we have a unital differential
commutative algebra $(A, D, 1)$ .

Let $(A, D, 1)$ be a unital differential commutative algebra. A D-invariant
ideal $I$ of $A$ is an ideal of $A$ as commutative algebra satisfying $D(I)\subset I$ . For
any ideal $I$ of $A$ , we have D-invariant ideal $\sum_{i=0}^{\infty}D^{i}(I)$ . We see that an ideal
$I$ of $A$ as commutative algebra is D-invariant if and only if an ideal of $A$ as
a vertex algebra. For $a_{1},$

$\ldots,$
$a_{r}\in A$ , we set $(a_{1}, a_{2}, \ldots, a_{f};D)$ a D-invariant

ideal generated by $a_{1},$ $\ldots,$
$a_{r}$ .

If $A$ is a commutative vertex algebra, then $C_{2}(A)$ is a D-invariant ideal
generated by $D(V)$ . In fact for any subspace $U\subset A,$ $C_{2}(U, A)$ is a D-invariant
ideal of $A$ generated by $D(U)$ .

4 Polynomial ring
Let $\Lambda=\{1, \ldots , k\}$ and set

$A=\mathbb{C}[x_{j}^{(i)}|i\in\Lambda,j\in \mathbb{Z}>0]$ (4.1)

be the ring of all polynomials in formal variable $x_{j}^{(i)}$ with $i\in\Lambda$ and $j\in \mathbb{Z}_{>0}$ .
Let $D$ be a derivation mapping $x_{j}^{(i)}$ to $x_{j+1}^{(i)}$ for any $i\in\Lambda,j\in \mathbb{Z}_{>0}$ . Then $A$

is a unital differential commutative algebra. As a vertex algebra it is strongly
generated by $S=\{x_{1}^{(i)}|i\in\Lambda\}$ , and we have

$C_{2}(A)=(x_{j}^{(i)}|i\in\Lambda,j\geq 2)$ .

Hence $A/C_{2}(A)\cong \mathbb{C}[S]$ .
We define an automorphism $g$ of $A$ by $g(x_{j}^{(i)})=-x_{j}^{(i)}$ for $i\in\Lambda,j\in \mathbb{Z}_{>0}$ .

Set $A^{\pm}=\{a\in A|g(a)=\pm a\}$ respectively. Next we consider the subset
$C_{2}(A^{+}, A)$ . We can first show that the following lemma:

Lemma 4.1. $x_{j_{1}}^{(i_{1})}\cdots x_{j_{r}}^{(i_{r})}\in C_{2}(A^{+}, A)$ if $r\geq 3,$ $i_{p}=i_{q}$ for some $1\leq p\neq q\leq$

$r$ and $j_{8}\geq 2$ for some $1\leq s\leq r$ .

Proof. We may assume that $i_{1}=i_{2}$ . First we note that for $a,$ $b\in A^{-}$ ,
$D(a)b+aD(b)=D(ab)\in D(A^{+})$ . Thus for any $c\in A,$ $D(a)bc\equiv-aD(b)c$

modulo $C_{2}(A^{+}, A)$ . Hence we see that $j_{s}$ with $2\leq s\leq r$ can be reduced to 1
by adding $j_{s}-1$ to $j_{1}$ and multiplying $(-1)^{j_{s}-1}$ . For example, we have the con-
gruence relations $x_{3}x_{2}x_{5}u\equiv-x_{4}x_{1}x_{5}u\equiv x_{5}x_{1}x_{4}u\equiv\cdots\equiv-x_{S}x_{1}x_{1}u$ . There-
fore, $x_{j_{1}}^{(i_{1})}\cdots x_{j_{r}}^{(i_{r})}$ is congruent to a nonzero scalar multiple of the monomila
$x_{p}^{(i_{1})}x_{1}^{(i_{1})}\cdots x_{1}^{(i_{r})}$ , where $p= \sum j_{8}-r+1$ or $x_{p}^{(i_{1})}x_{2}^{(i_{1})}\cdots x_{1}^{(i_{r})}$ , where $p= \sum j_{s}-r$ .
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On the other hand for $m,$ $n\in \mathbb{Z}_{>0}$ , if $m-n$ is odd then

$x_{m}^{(i_{1})}x_{n}^{(i_{1})} \equiv\pm\frac{1}{2}D((x\frac{(i_{1})m+n-1}{2})^{2})\equiv 0$ $mod C_{2}(A^{+})$ .

Hence both of $x_{p}^{(i_{1})}x_{1}^{(i_{1})}\cdots x_{1}^{(i_{r})}$ and $x_{p}^{(i_{1})}x_{2}^{(l_{1})}\cdots x_{1}^{(i_{r})}$ are in $C_{2}(A^{+}, A)$ . $\square$

In the proof we show that $x_{m}^{(i)}x_{n}^{(i)}\in \mathbb{C}_{2}(A^{+})$ if $m-n$ is odd. We also see
that if $m-n$ is even then $x_{m}^{(i)}x_{n}^{(i)}$ is congruent to a nonzero multiple of the
square of $x_{p}^{(i)}$ with $p=(m+n)/2$ . Actually, we have

$A/C_{2}(A^{+}, A)$

$\cong \mathbb{C}[S]\oplus\bigoplus_{r=2}^{\infty}\bigoplus_{i=1}^{k}\mathbb{C}(x_{r}^{(i)})^{2}\oplus\bigoplus_{t=3}^{k}\bigoplus_{1\leq i_{1}<\cdots<i_{t}\leq k}\bigoplus_{p=2}^{\infty}\mathbb{C}x_{p}^{(i_{1})}x_{1}^{(i_{2})}\cdots x_{1}^{(i_{t})}$

(4.2)

as vector spaces3. We see that both $A$ and $A^{+}$ are not $C_{2}$-cofinite.
To construct a $C_{2}$-cofinite commutative vertex algebra strongly generated

by a finite set, we take a D-invariant ideal $I$ of $A$ and consider the quotient
algebra $V=A/I$ . Since $C_{2}(V)=(C_{2}(A)+I)/I,$ $V/C_{2}(V)=A/(C_{2}(A)+I)$

which is isomorphic to the quotient of $A/C_{2}(A)$ by $(I+C_{2}(A))/C_{2}(A)$ . There-
fore $V$ is $C_{2}$-cofinite if and only if $(I+C_{2}(A))/C_{2}(A)$ is finite codimensional
in the polynomial ring $\mathbb{C}[S]$ .

We assume that $g(I)=I$ , that is, $I=I^{+}\oplus I^{-}$ with $I^{\pm}=I\cap A^{\pm}$ respectively.
Then $g$ acts on $V$ as an automorphism. We set $V^{\pm}$ the $\pm 1$-eigenspace for $g$

respectively. We shall see in the next section that in general $V^{+}$ is not $C_{2^{-}}$

cofinite if $V$ is $C_{2}$-cofinite.

5 A condition for the $C_{2}$-cofiniteness of $V^{+}$

Let $I$ be a D-invariant ideal of the polynomial ring $A$ . Suppose that $V=A/I$
is $C_{2}$-cofinite. In this section we seek a sufficient and necessary condition for $I$

such that $V^{+}$ is $C_{2}$-cofinite. Before doing this, we give an example that $V^{+}$ is
not $C_{2}$-cofinite. We consider the case $\Lambda=\{1\}$ and omit the upper index (1)

form the generators $x_{j}^{(1)}$ for simplicity.

Example 5.1. Let $I=(x_{1}^{2}-x_{2}^{2};D)$ . Since $D(x_{1}^{2}-x_{2}^{2})\in C_{2}(A^{+})$ , we have

$I+C_{2}(A^{+}, A)=A(x_{1}^{2}-x_{2}^{2})+C_{2}(A^{+}, A)$ .

By Lemma 4.1, we see that the quotient space of the right hand side in the
above formula by $C_{2}(A^{+}, A)$ becomes

$(\mathbb{C}(x_{1}^{2}-x_{2}^{2})+\mathbb{C}x_{1}^{3}+C_{2}(A^{+},$ $A))/C_{2}(A^{+},$ $A)$ .

$\overline{3The}$algebra structure of $A/C_{2}(A^{+}, A)$ can be seen easily. But we do not state here

10



On the other hand $V/C_{2}(V^{+}, V)$ is isomorphic to the quotient of $A/C_{2}(A^{+}, A)$

by $(I+C_{2}(A^{+}, A))/C_{2}(A^{+}, A)$ . Thus we see that $V^{+}/C_{2}(V^{+})$ is contains the
direct sum $\oplus_{r=2}^{\infty}\mathbb{C}(x_{r})^{2}$ of infinitely many one dimensional vector spaces.
Therefore $V^{+}/C_{2}(V^{+})$ is infinite dimensional and $V^{+}$ is not $C_{2}$-cofinite. In
this case we have no polynomial in $I$ with the monomial $x_{1}$ .

Example 5.2. We consider the case $I=(x_{1}-x_{2};D)$ . In this case, it is easy
to see that $V=A/I$ is isomorphic to $\mathbb{C}[x]$ , where $x$ corresponds to the image
of $x_{1}$ in $V$ , and $D$ is given by $D=x \frac{d}{dx}$ . Thus $C_{2}(V)=(x)$ and hence $V$ is
$C_{2}$-cofinite. We find that $C_{2}(V^{+})$ is an ideal generated by $x^{2}$ in $\mathbb{C}[x^{2}]$ . Thus
$V^{+}$ is also $C_{2}$-cofinite. In this case $x_{1}-x_{2}\in I$ has the monomial $x_{1}$ .

In the above two examples, $x_{1}$ is a generator of $A$ as a vertex algebra, and
the difference of them is that $I$ contains a polynomial with a nonzero scalar
multiple of the generator $x_{1}$ as one of monomials or not. We can generalize
this to the case $A$ is generated by more than one generator as a vertex algebra.

Theorem 5.3. Let $A$ be as in (4.1), I a D-invariant ideal, and $g$ an auto-
morphism such that $g(x_{j}^{(i)})=-x_{j}^{(i)}$ for $i\in\Lambda,$ $j\in \mathbb{Z}_{\geq 0}$ . For a positive integer
$r$ , let $A_{\geq r}$ be the ideal consisting of all polynomials whose degrees are greater
than or equal to $r$ . Suppose that $V=A/I$ is $C_{2}$ -cofinite and that $g(I)=I$ . Set
$V^{+}=\{u\in V|g(u)=u\}$ the $\mathbb{Z}_{2}$ -orbifold model of $V$ with respect to $g$ . Then
$V/C_{2}(V^{+}, V)$ is finite dimensional if and only if $(I+A_{\geq 1})/(I+A_{\geq 2})$ is finite
dimensional.

We first note that

$V/C_{2}(V^{+}, V)\cong(A/I)/((C_{2}(A^{+}, A)+I)/I)\cong A/(C_{2}(A^{+}, A)+I)$

$\cong(A/C_{2}(A^{+}, A))/((C_{2}(A^{+}, A)+I)/C_{2}(A^{+}, A))$ .

By using Lemma 4.1 and the explicit description of $A/C_{2}(A^{+}, A)$ in (4.2), we
can show the theorem. The main idea is that the condition $(I+A\geq 1)/(I+A\geq 2)$

of the ideal $I$ implies that for large enough $p\in \mathbb{Z}$ , degree one monomial
$x_{p}^{(i)}$ is equivalent to a polynomial consisting of monomials whose degrees are
greater than one modulo $I$ . This fact shows that any monomials in which the
sum of lower indices $j$ of generators $x_{j}^{(l)}$ are sufficiently large are congruent to
polynomials whose degrees are greater than $k+1$ modulo $I$ , where $k$ is the
cardinality of $\Lambda$ . Such polynomials are in $C_{2}(A^{+}, A)+I$ by Lemma 4.1. This
is the rough sketch of a proof.

6 Conclusion
In this report, we consider only $\mathbb{Z}_{2}$-orbifold models of finitely, strongly gener-
ated commutative vertex algebra and give a sufficient and necessary condition
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for its $C_{2}$-cofiniteness under the assumption that based vertex algebra is $C_{2^{-}}$

cofinite. We expect that the theorem can be extend to the case any cyclic
group whose order is not only two but arbitrary positive integer.

As for the noncommutative case, the idea using to prove Theorem 5.3 can
not be applied to show the same statement directly although give some new
idea. One of the tool to avoid the noncommutativity is an abelianization of
vertex algebra by means of Li’s standard filtration (see [Li4] and [Ar]). This
abelianization is very useful to show the $C_{2}$-cofiniteness of vertex algebra itself.
But it does not still give enough property for proving $C_{2}$-cofiniteness of orbifold
models. We need further study on information which a noncommutativity of
a vertex algebra has to get hints for the problem.
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