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1 INTRODUCTION
For a reductive group $G$ defined over a number field $k$ , an unitary representations of $G(A_{k})$

on the space of $L^{2}$-automorphic forms $L^{2}(G(k)\backslash G(A_{k}))$ is defined by the right regular
action. As for the irreducible decomposition of its discrete spectrum $L_{disc}^{2}(G(k)\backslash G(A_{k}))$ ,
Arthur gave a conjecture [2]. It says that $L_{disc}^{2}(G(k)\backslash G(A_{k}))$ should decompose into $G(A_{k})-$

invariant subspaces parametrized by elliptic A-parameters. For an elliptic A-parameter $\psi$ ,
the set $\Pi_{\psi}$ of irreducible automorphic representations of $G(A_{k})$ appearing the associated
subspaces is called A-packet for $\psi$ . For any place $v$ of $k$ , a finite set $\Pi_{\psi_{v}}$ of irreducible
admissible representations of $G(k_{v})$ , which is called a local A-packet, should exist so that
$\Pi_{\psi}$ is a subset of

{ $\otimes_{v}’\pi_{v}|\pi_{v}\in\Pi_{\psi_{v}}$ and $\pi_{v}$ is unramified for almost all $v$ }.

Arthur also conjectured the multiplicity of $\pi\in\Pi_{\psi}$ in the associated subspace for $\psi$ . To
describe the multiplicity, we need the information about global and local S-group for $\psi$ ,
and pairings between S-groups and A-packets.

In this note, we treat the case that $G$ is a non-split inner form of $Sp(4)$ . $(Sp(4)$ is the
isometry group of 4-dimensional symplectic space.) I give an evaluation of the multiplicities
of non-tempered irreducible automorphic representations which appear in the residual
spectrum, or are CAP representations (Theorem 4.1, Theorem 5.1 and Proposition 6.2).
Here a cuspidal representation $\pi$ is said to be of CAP if for any cusp form $\phi$ in $\pi$ which is
K-finite where $K$ is a maximal compact subgroup of $G(A_{k})$ , there exists an element $\phi’$ of an
irreducible component of the residual spectrum such that $\phi$ and $\phi’$ share the same absolute
values of Hecke eigenvalues at almost all places of $k$ . According to Arthur’s conjecture,
any irreducible non-tempered automorphic representation of $G(A_{k})$ appears in A-packet
for some A-parameter $\psi$ of DAP type. Here an A-parameter $\psi$ : $\mathcal{L}_{k}\cross SL(2, \mathbb{C})arrow LG$

where $\mathcal{L}_{k}$ is the hypothetical Langlands group of $k$ and $LG$ is the L-group of $G$ is said to
be of DAP type if $\psi$ is elliptic and the restriction to $SL(2, \mathbb{C})$ of $\psi$ is non-trivial. This
implies that irreducible non-tempered automorphic representations should be exhausted
by the irreducible components of the residual spectrum and CAP representations.

From the evaluation of the multiplicity for irreducible non-tempered automorphic rep-
resentation of $G(A_{k})$ , we can guess a explicit description of multiplicity of these repre-
sentations (Expectation 8.1). Our interest is whether this description coincides with the
Arthur’s conjectural multiplicity. More precisely, the problem is whether there are pair-
ings between S-groups and A-packets such that the description coincides with the Arthur’s
multiplicity defined by these pairings. Our main result is that such pairings exist (Section
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8 $)$ . Remark that the local pairings defined in this result satisfy the conjecture of Hiraga
and Saito.

2 INNER FORMS OF $Sp(2)$

Let $k$ be a number field and A its adele ring. $||_{A}$ denotes the idele norm of $A^{x}$ . For any
place $v$ of $k$ , we write $k_{v}$ for the completion of $k$ at $v$ and $||_{v}$ for the v-adic norm. Let $\mu$

be a non-trivial character of A which is trivial on $k$ .
Let $D$ be a quaternion division algebra over $k$ . We write $\nu,$ $\tau$ and $\iota$ for the reduced

norm, the reduced trace and the main involution of $D$ , respectively. We write $S_{D}$ for
the set of places $v$ of $k$ at which $D$ is ramified, which has finite and even elements. Let
$W=D^{\oplus 2}$ be the free left module over $D$ with rank two, and we equip it with a hermitian
form $\langle,$ $\rangle$ given by

$\langle(x_{1}, y_{1}),$ $(x_{2}, y_{2})\rangle=x_{1}^{\iota}y_{2}+y_{1^{l}}x_{2}$ $(x_{1}, x_{2}, y_{1}, y_{2}\in D)$ .
Let $G$ be the unitary group of this form, so that

$G=\{g\in GL(2, D)|g(\begin{array}{ll}0 11 0\end{array})*g=(\begin{array}{ll}0 11 0\end{array})\}$ .

Here we write $*(a_{i)j})=(^{\iota}a_{j,i})$ for $(a_{i,j})\in M(2, D)$ . It can be regarded as a reductive group
defined over $k$ . It is non-quasisplit and an inner form of $Sp(2)$ with respect to a quadratic
extension $k’$ of $k$ such that all $v\in S_{D}$ do not split fully in $k’/k$ . Fix a k-parabolic subgroup
$P$ and its Levi factor $M$ as

$P=\{(* **)\in G\}$ , $M=\{$ $(\begin{array}{ll}x 00 (^{\iota}x)^{-1}\end{array})|x\in D^{x}\}$ ,

$P$ is the unique proper parabolic subgroup of $G$ up to $G(k)$-conjugate and corresponds to
the Siegel parabolic subgroup via an inner twist. We write again $\nu$ for the character of $M$

corresponding to the reduced norm. $U$ denotes the unipotent radical of $P$ , so that

$U=\{(\begin{array}{ll}1 y0 l\end{array})|\tau(y)=0\}$ .

$G(k)\backslash G(A)$ becomes a locally compact Hausdorff space and has a non-zero $G(A)-$

invariant measure up to scalars. Fix such a measure $dg$ . Then the space $L^{2}(G(k)\backslash G(A))$

of square-integrable functions on $G(k)\backslash G(A)$ is defined and the representation $\rho$ of $G(A)$

on $L^{2}(G(k)\backslash G(A))$ is defined by

$\rho(g)f(x)=f(xg)$ $(x, g\in G(A))$ .
This representation has an orthogonal decomposition;

$L^{2}(G(k)\backslash G(A))=L_{disc}^{2}(G)\oplus L_{cont}^{2}(G)$ ,

where $L_{disc}^{2}(G)$ is the maximal completely reducible closed subspace of $L^{2}(G(k)\backslash G(A))$

and $L_{cont}^{2}(G)$ is its orthogonal complement. For $\phi\in L^{2}(G(k)\backslash G(A))$ its constant term $\phi_{P}$

along $P=MU$ is defined by

$\phi_{P}(g)=\int_{U(k)\backslash U(A)}\phi(ug)du$ $(g\in G(A))$
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where $du$ is a Haar measure of $U(k)\backslash U(A)$ . $L_{0}^{2}(G)$ denotes the space of cuspidal elements of
$L^{2}(G(k)\backslash G(A))$ , that is, elements whose constant terms along $P$ vanish. It is known that
$L_{0}^{2}(G)$ is a $G(A)$ -invariant closed subspace contained in $L_{disc}^{2}(G)[7]$ . We write $L_{res}^{2}(G)$ for
its orthogonal complement in $L_{disc}^{2}(G)$ , which is called the residual spectrum. In this note,
we call an irreducible component of $L_{disc}^{2}(G)$ an irreducible automorphic representation of
$G(A)$ . Any irreducible automorphic representation $\pi$ of $G(A)$ has a decomposition into a
restricted tensor product $\pi\simeq\otimes_{v}’\pi_{v}$ . From the Langlands’ spectral theory of Eisenstein
series, the residual spectrum of $G$ coincides with the space of residues of Eisenstein series
associated to the cuspidal representations of $M(A)$ .

3 DECOMPOSITION OF DISCRETE SPECTRUM

Assume the existense of the hypothetical Langlands group $\mathcal{L}_{k}$ of $k$ . The L-group $LG$ of
$G$ is $\hat{G}\cross W_{k}=SO(5, \mathbb{C})\cross W_{k}$ where $W_{k}$ is the Weil group of $k$ . By an A-parameter is
meant a continuous homomorphism $\phi$ : $\mathcal{L}_{k}\cross SL(2,$ $\mathbb{C})arrow LG$ such that

(i) writing $p_{k}$ : $\mathcal{L}_{k}arrow W_{k}$ for the conjectural homomorphism and $p_{2}$ : $LGarrow W_{k}$ the
projection to the second component, $p_{2}\circ\phi=p_{k}$ ,

(ii) its restriction to $\mathcal{L}_{k}$ is a Langlands parameter with bounded image [4], and

(iii) its restriction to $SL(2, \mathbb{C})$ is analytic.

Two A-parameter are equivalent if they are $\hat{G}$-conjugate. The set of equivalence classes
of A-parameters is denoted by $\Psi(G)$ . We write $C_{\psi}$ for the centralizer of the image of $\psi$

in $\hat{G}$ . An A-parameter $\psi$ is said to be elliptic if $C\psi$ is contained in the center $Z(\hat{G})$ of
$\hat{G}$ . The subset of elliptic elements of $\Psi(G)$ is denoted by $\Psi_{0}(G)$ . An A-parameter $\psi$ is of
$DAP$ type (DAP is the abbreviation of “Discrete Associated to Parabolic”) if

(i) $\psi$ is elliptic, and

(ii) $\psi|_{SL(2,\mathbb{C})}$ is not trivial.

$\Psi_{DAP}(G)$ denotes the subset of $\Psi_{0}(G)$ consisting of the elements of DAP type. From
the property (iii) of the definition of A-parameter, elements of $\Psi(G)$ is classified by
the irreducible decomposition of their restriction to $SL(2, \mathbb{C})$ . As for homomorphisms
$SL(2, \mathbb{C})arrow\hat{G}$ we have the following result.

Proposition 3.1 ([5]). 1. (Jacobson-Morozov)
{homomorphism $SL(2,$ $\mathbb{C})arrow SO(5,$ $\mathbb{C})$ } $/\sim\approx$ {nilpotent orbits in so(5, $\mathbb{C})$ } $/\sim$ ’

2. {nilpotent orbits in so (5, $\mathbb{C})$ } $/\sim\approx$ {partition $[n_{1}^{k_{1}},$

$\ldots,$
$n_{l}^{k_{t}}]$ of $5|n_{i}:even\Rightarrow k_{i}$ : even}

$=\{[1^{5}], [2^{2},1], [3,1^{2}], [5]\}$ .
$Here\sim$ means $SO(5, \mathbb{C})$ -conjugacy.

By this proposition we have a decomposition

$\Psi_{0}(G)=\Psi_{0}(G)_{[1^{5}]}u\Psi_{0}(G)_{[2^{2},1]}u\Psi_{0}(G)_{[3,1^{2}]}u\Psi_{0}(G)_{[5]}$ . (3.1)

16



In addition, we have

$\Psi$DAP $(G)=\Psi_{0}(G)_{[2^{2},1]}u\Psi_{0}(G)_{[3,1^{2}]}u\Psi_{0}(G)_{[5]}$ .

Arthur’s conjecture [2] implies a coarse decomposition

$L_{disc}^{2}(G(k) \backslash G(A))=\bigoplus_{\psi\in\Psi_{0}(G)}L^{2}(G)_{\psi}$
. (3.2)

The set of irreducible automorphic representations appearing in $L^{2}(G)_{\psi}$ is denoted by $\Pi_{\psi}^{G}$ .
By (3.1) and (3.2) we have the decomposition,

$L_{disc}^{2}(G(k)\backslash G(A))=L_{[1^{5}]}^{2}(G)\oplus L_{[2^{2},1]}^{2}(G)\oplus L_{[3,1^{2}]}^{2}(G)\oplus L_{[5]}^{2}(G)$ .

Arthur’s conjecture also implies the space spanned by non-tempered cuspidal representa-
tions of $G(A)$ coincides with

$\oplus$ $L^{2}(G)_{\psi}=L_{[2^{2},1]}^{2}(G)\oplus L_{[3,1^{2}]}^{2}(G)\oplus L_{[5]}^{2}(G)$ .
$\psi\in\Psi_{DAP}(G)$

We will consider the multiplicity for irreducible non-tempered automorphic representation.
Since $\Psi_{0}(G)_{[5]}$ consists of one element $\psi_{0}=1\otimes Sym^{4}$ where Sym4 is the 4-th symmetric
power of $SL(2, \mathbb{C})$ , and $L_{[5|}^{2}(G)=L^{2}(G)_{\psi 0}$ should be $\mathbb{C}\cdot 1$ , we will treat mainly the case
of $L_{[2^{2},1]}^{2}(G)$ and $L_{[3,1^{2}]}^{2}(G)$ . We will say that $\psi\in\Psi_{0}(G)_{[2^{2},1]}$ and irreducible components
of $L_{[2^{2},1]}^{2}(G)$ are of Saito-Kurokawa type, and $\psi\in\Psi_{0}(G)_{[3,1^{2}|}$ and irreducible components
of $L_{[3,1^{2}]}^{2}(G)$ are of Soudry type.

4 RESIDUAL SPECTRUM OF $G$

Theorem 4.1 ([10]). Let $k$ be a totally real number field. The irreducible components of
the residual spectrum of $G$ consist of the following representations.

(1) The trivial representation $1_{G}$ ,

(2) The unique irreducible quotient $J_{P}^{G}(\sigma)$ of $Ind_{P(A)}^{G(A)}(\sigma|\nu|_{A}^{1/2})$ . Here $\sigma$ runs over the set
of infinite dimensional irreducible self-dual cuspidal representations of $M(A)$ whose
standard L-functions $L(\sigma, s)$ do not vanish at $s=1/2$ , and

(3) The theta lift $R(V)$ from the trrivial representation of $G(V_{A})$ under the Weil represen-
tation $\omega_{V,\mu}$ . Here $V$ runs over the set of local isometry classes of $(- 1)$-hermitian right
D-spaces of dimension one, and $G(V)$ is the unitary group of $V$ .

In the case (1) and (2), the multiplicity of each representation is one. In the case (3), the
multiplicity of each representation is $2^{|S_{D}|-2}$ .

Remark 4.2. In case of general $k$ , it can be shown that the residual spectrum is exhausted
by these automorphic representations and the multiplicity of representation in the case (3)
is greater than or equal to $2^{|S_{D}|-2}$ .
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All irreducible representations appearing in the residual spectrum are non-tempered by
the Langlands classification. Therefore these representations belongs to some A-packets of
DAP type. From the description of local components of these automorphic representations
these associated A-parameters should be the following.

(1) $1_{G}$ correspond to
$\phi=\psi_{0}=1_{5}\otimes Sym^{4}\cross p_{k}$ .

(2) $J_{P}^{G}(\sigma)$ correspond to

$\phi=((\phi_{\sigma}\otimes St)\oplus(1_{\mathcal{L}_{k}}\otimes 1_{SL(2,\mathbb{C})}))\cross p_{k}$.

Here St is the standard representation of $SL(2, \mathbb{C})$ and $\phi_{\sigma}$ is the Langlands parameter
associated to $\sigma$ , whose image is contained by $SL(2, \mathbb{C})$ .

(3) $R(V)$ correspond to

$\phi=((Ind_{W_{k’}}^{W_{k}}1_{W_{k’}}\otimes 1_{SL(2,\mathbb{C})})\oplus(\omega_{k’/k}\otimes Sym^{2}))op_{k}\cross p_{k}$ .

Here $\omega_{k’/k}$ is the quadratic character of $W_{k}$ associated to $k’/k$ . Remark the image of
$Ind_{W_{k’}}^{W_{k}}1_{W_{k’}}$ is contained by $O(2, \mathbb{C})$ .

As we have already explained $1_{G}$ spans $L_{[5]}^{2}(G)$ . The A-parameters of (2) are of Saito-
Kurokawa type and those of (3) are of Soudry type.

5 CAP REPRESENTATIONS OF SAITO-KUROKAWA TYPE

Let $B$ be a quaternion algebra over $k$ . $\iota B$ denotes the main involution of $B$ and $S_{B}$ is
defined similarly for $S_{D}$ . Take $\eta\in D$ such that $\iota\eta=-\eta$ and $\eta^{2}=p\in k^{\cross}$ . We write
$K=k(\eta)$ , which is a quadratic extension of $k$ . Suppose that $K$ can be embedded in $B$ .
A $K/k$-skew-hermitian form on $B$ is defined by

$h(x, y):=\eta\cdot(\iota_{B}x\cdot y)_{K}$ $(x, y\in B)$ ,

where $()_{K}$ is the projection to K-part of $B$ . A $(D, \iota)$-skew-hermitian right space $(V_{B,\eta}, h_{B,\eta})$

of rank 2 is defined as
$(V_{B,\eta}, h_{B,\eta})=(B\otimes_{K}D, h\otimes 1)$ .

$G(V_{B,\eta})$ denotes the unitary group of $(V_{B,\eta}, h_{B,\eta})$ . This is an inner form of $O(4)$ . We write
$G_{0}(V_{B,\eta})$ for the k-group of elements of $G(V_{B)\eta})\sim$ whose reduced norm is one. Writing $\tilde{B}$

for the quaternion algebra over $k$ such that $B\cdot B=D$ in the Brauer group of $k$ ,

$G_{0}(V_{B,\eta})\simeq\{(b,\tilde{b})\in B^{\cross}\cross\overline{B}^{\cross}|\nu B(b)=\nu_{\tilde{B}}(\tilde{b})^{-1}\}/\{(z, z^{-1})|z\in G_{m}\}$ . (5.1)

Therefore any irreducible cuspidal representation of $G_{0}(V_{B_{\dagger}\eta}, A)$ is written in the form $\sigma B\otimes$

$\sigma_{\tilde{B}}$ where $\sigma B$ and $\sigma_{\tilde{B}}$ are irreducible cuspidal representations of $B_{A}^{\cross}$ and $\tilde{B}_{A}^{\cross}$ , respectively.
Since $(G(V_{B_{I}\eta}), G)$ is a dual reductive pair we can consider the Weil representation $\omega V_{B,\eta},\mu$

of $G(V_{B,\eta}, A)\cross G(A)$ . Let $(\sigma, V_{\sigma})(\simeq\otimes_{v}\sigma_{v})$ be an irreducible cuspidal representation of
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$B_{A}^{x}$ with trivial central character. Any element of $V_{\sigma}$ can be regarded as an automorphic
form on $G_{0}(V_{B,\eta}, A)$ by (5.1). For $\phi\in V_{\sigma}$ and $f\in S(V_{B_{A},\eta})$ , define

$\theta(f, \phi)(g)=\int_{h\in G_{0}(V_{B,\eta},k)\backslash G_{0}(V_{B,\eta},A)}\theta(f, h, g)\phi(h)dh(g\in G(A))$

$\theta(f, h, g)=\sum_{x\in V_{B\eta}},\omega_{V_{B,\eta},\psi}(h, g)f(x)$
$(h\in G(V_{B,\eta}, A))$ .

Put $\Theta(\sigma, B, \eta)=\{\theta(f, \phi)|f\in S(V_{B_{A},\eta}), \phi\in V_{\sigma}\}$. This is $G(A_{f})\cross(\mathfrak{g}_{\infty}, K_{\infty})$ -module by
the right regular action. Here A$f^{A_{\infty}}$ are the finite and infinite parts of $A$ , and $\mathfrak{g}_{\infty}$ is the
complexification of the Lie algebra of $G(A_{\infty})$ , and $K_{\infty}$ is a maximal compact subgroup of
$G(A_{\infty})$ .

Theorem 5.1. 1. Let $\sigma$ be infinite dimensional and

$(a)L(\sigma, 1/2)\neq 0$ , where $L(\sigma, s)$ is the Jacquet-Langlands L-function,
$(b)\epsilon(\sigma_{v}\otimes\omega_{K_{v}/k_{v}}, 1/2)=\delta_{v}\omega_{K_{v}/k_{v}}(-1)\epsilon(\sigma_{v}, 1/2)$ for all places $v$ . Here $\omega_{K./k}$. is the

quadratic character associated to $K_{v}/k_{v}$ and $\epsilon(\sigma_{v}, 1/2)$ is the Jacquet-Langlands
$\epsilon$ -factor which is independent of a choice of non-trivial character of $k_{v}$ , and

$\delta_{v}=\{\begin{array}{l}1ifv\not\in S_{B}-1ifv\in S_{B}\end{array}$

Then $\Theta(\sigma, B, \eta)$ is non-zero, irreducible, non-tempered and cuspidal if $B$ is not iso-
morphic to $D$ .

2. For the local decomposition $\Theta(\sigma, B, \eta)\simeq\otimes_{v}’\Theta(\sigma, B, \eta)_{v},$ $\Theta(\sigma, B, \eta)_{v}$ can be deter-
mined as a representation for any $v$ . (This description of local factors will be seen
as elements of local A-packets later. )

This theorem is proved by using the condition of non-vanishing of Shimura correspon-
dence in [9]. From the description of all $\Theta(\sigma, B, \eta)_{v}$ the A-parameter of $\Theta(\sigma, B, \eta)$ should
be

$\psi_{\sigma}=((\phi_{\sigma}\otimes St)\oplus(1_{\mathcal{L}_{k}}\otimes 1_{SL(2,\mathbb{C})}))\cross p_{k}$

where $\phi_{\sigma}$ is the Langlands parameter of $\sigma$ . This A-parameter is of Saito-Kurokawa type.

6 CAP REPRESENTATIONS OF SOUDRY TYPE

Let $V=V_{\xi}$ be the one-dimensional skew-hermitian space over $(D, \iota)$ defined by $\xi\in D$

with $\tau(\xi)=0$ . Let $\delta=\det V_{\xi}=\nu(\xi)=-\xi^{2}mod (k^{x})^{2}$ and $k’=k(\xi)\simeq k(\sqrt{-\delta})$ . $G(V)$

and $G_{0}(V)$ denote the unitary group and special unitary group of $V$ , respectively. Then
$G_{0}(V)$ is isomorphic to the norm torus for the quadratic extension $k’/k$ . Since $(G(V), G)$
is a dual reductive pair we can consider the Weil representation $\omega V,\mu$ of $G(V_{A})\cross G(A)$ .

Let $\chi=\prod_{v}\chi_{v}$ be a non-trivial character of $G_{0}(V_{k})\backslash G_{0}(V_{A})$ and put $S_{\chi}=\{v|\chi_{v}^{2}=1\}$ .
Since

$Ind_{G_{0}(V_{A})}^{G(V_{A})}\chi\subset L_{disc}^{2}(G(V))=L^{2}(G(V))$
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we want to construct an irreducible automorphic representation of $G(A)$ by the theta lift
from $Ind_{G_{0}(V_{A})}^{G(V_{A})}\chi$ . However $Ind_{G_{0}(V_{A})}^{G(V_{A})}\chi$ is not irreducible. Therefore the description of its
irreducible decomposition is needed. As for its local component we have

$Ind_{G_{0}(V_{v})}^{G(V_{v})}\chi_{v}\simeq\{\begin{array}{l}\tilde{\chi}_{v}^{+}\oplus\tilde{\chi}_{\overline{v}} v\in S_{\chi}\cap S_{D^{c}},\tilde{\chi}_{v} otherwise.\end{array}$

Here $\tilde{\chi}_{v}^{+},\tilde{\chi}_{\overline{v}}$ are characters not isomorphic to each other, and $\tilde{\chi}_{v}$ is $\chi_{v}$ if $v\in S_{D}$ and a two-
dimensional irreducible representation otherwise. Fix a $\gamma_{0}\in O(k’, N_{k’/k})\backslash SO(k’, N_{k’/k})$

and embed $\gamma_{0}$ in $G(V_{v})\simeq O(k_{v}’, N_{k_{v}’/k_{v}})$ for all $v\not\in S_{D}$ . For $v\in S_{\chi}\cap S_{D^{c}}$ we may assume
$\tilde{\chi}_{v}^{+}(\gamma_{0})=1$ , which characterizes $\tilde{\chi}_{v}^{+}$ and $\tilde{\chi}_{\overline{v}}$ . Then an irreducible component of the above
induced representation is of form,

$\tau=(\otimes_{v\in S}\tilde{\chi}_{\overline{v}})\otimes(\otimes_{v\in S_{\chi}\backslash S}^{J}\tilde{\chi}_{v}^{+})\otimes(\otimes_{v\not\in S_{\chi}}’\tilde{\chi}_{v})$

for some finite set $S\subset S_{\chi}\cap S_{D^{c}}$ . In this case write $\tau=\tau_{S}$ . For any $v\in S_{\chi}\cap S_{D^{c}}$ define

$S^{\pm}(V_{v})=\{f\in S(V_{v})|f(\gamma_{0}\cdot)=\pm f\}$

where $S(V_{v})$ is the space of Schwartz-Bruhat functions on $V_{v}$ . For $f\in S(V_{A})$ , define

$\theta(f, h, g)=\sum_{z\in V_{k}}\omega_{V,\psi}(h, g)f(x)$
$(g\in G(A), h\in G(V_{A}))$

The theta lift from $\tau_{S}$ is defined as follows.
(I) $\chi^{2}\neq 1$

The theta integral is defined by

$\theta(f, \chi)(g)=\int_{G_{0}(V_{k})\backslash G_{0}(V_{A})}\theta(f, h, g)\chi(h)dh$ .

The theta lift $\Theta(V, \chi, S)$ from $\tau s$ is defined by $\Theta(V, \chi, S)=\{\theta(f, \chi)|f\in S_{S}(V_{A})\}$ where
$s_{S}(V_{A})=(\otimes_{v\in S}S^{-}(V_{v}))\otimes(\otimes_{v\in s_{\chi}\backslash s^{S^{+}(V_{v}))\otimes(\otimes_{v\not\in S_{\chi}}’S(V_{v}))}}’$ .

(II) $\chi^{2}=1$

In this case $\tau s$ is one-dimensional. The theta integral is defined by

$\theta(f, \chi)(g)=\int_{G(V_{k})\backslash G(V_{A})}\theta(f, h, g)\tau_{S}(h)dh$ ,

The theta lift $\Theta(V, \chi, S)$ from $\tau s$ is defined by $\Theta(V, \chi, S)=\{\theta(f, \chi)|f\in S(V_{A})\}$ .
In any case, $\Theta(V, \chi, S)$ becomes a $G(A_{f})\cross(\mathfrak{g}_{\infty}, K_{\infty})$-module by right regular action.

Theorem 6.1. 1. $\Theta(V, \chi, S)$ is non-zero, irreducible, non-tempered and cuspidal.

2. For the local decomposition $\Theta(V, \chi, S)\simeq\otimes_{v}^{J}\Theta(V, \chi, S)_{v},$ $\Theta(V, \chi, S)_{v}$ can be deter-
mined as a representation for any $v$ . (This description of local factors will be seen
as elements of local A-packets later. )
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$\Theta(V, \chi, S)$ is an inner form analogue of the following representation of $Sp(4, A)$ .

quot. of $Ind_{P_{K}(A)}^{Sp(4,A)}(\theta(k’, \chi)\otimes\omega_{k’/k}|\cdot|_{A})$ ; $Sp(4)$

$\prime^{thetaiift}$

$O(k’)$ : $Ind_{SO(k)(A)}^{O(k’)(A)}\chi$ $\overline{Shalika- Tanaka}\theta(k’, \chi)$ : cuspidal : $SL(2)$ .

Here $O(k’)$ is the orthogonal group of the 2-dimensional quadratic space $(k’, N_{k’/k})$ where
$k’$ is a quadratic extension of $k$ , and $P_{K}$ is the Klingen parabolic subgroup of $Sp(4)$ . This
fact is used to prove the above theorem. As for the multiplicity $m(\Theta(V, \chi, S))$ of $\Theta(V, \chi, S)$

in $L_{disc}^{2}(G)$ we have the following evaluation.

Proposition 6.2.

$m(\Theta(V, \chi, S))\geq\{\begin{array}{ll}2^{|S_{\chi}\cap S_{D}|-1} if \chi^{2}\neq 1, S_{D}\cap S_{\chi}\neq\emptyset,2^{|S_{D}|-2} if \chi^{2}=1, S_{D}\cap S_{\chi}\neq\emptyset,1 if S_{D}\cap S_{\chi}=\emptyset.\end{array}$

This result is caused by the failure of Hasse’s principle for skew-hermitian spaces. This
proposition is shown by using the difference of Fourier coefficients arising from the failure
of Hasse’s principle.

The A-parameter of $\Theta(V, \chi, S)$ must be same to that of the representation of $Sp(4, A)$

constructed above. By Adams conjecture [1], this A-parameter should be given by $\psi_{k’,\chi}$

in the following diagram.

$:Sp(4)$

$O(k’)$ : $:SL(2)$ .

Here the Langlands parameter associated to $\chi$ is also written by $\chi$ . $\psi_{k’,\chi}$ is an A-parameter
of Soudry type.

7 CONJECTURE OF HIRAGA AND SAITO
Let $F$ be a local field of characteristic $0$ and $\Gamma=$ Gal $(\overline{F}/F)$ . Rewrite $G^{*}=Sp(4)$ . We
have the following bijection [8].

{inner forms of $G^{*}$ } $/\sim$
$\approx$ $H^{1}(F,$ $G^{*}$ ad $)$

$(v$ $(v$

$G’$ $rightarrow$ $u_{G’}:\Gamma\ni\gamma\mapsto\eta_{G’}^{arrow 1}0^{\gamma}\eta_{G’}$

Here $\sim$ means isomorphy and $\eta_{G’}$ : $G^{*}(\overline{F})arrow G’(\overline{F})$ is an inner twist. In addition, if $F$ is
non-archimedean then from [6]

$H^{1}(F, G_{ad}^{*})$ $\approx$
$\pi_{0}(Z(\hat{G^{*}}_{sc})^{\Gamma})^{D}$

$(\cup$ $(u$

$u_{G’}$ $rightarrow$ $\chi_{G’}$ .
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Here $\hat{c*}$

sc is the simply connected cover of $\hat{G^{*}}=SO(5, \mathbb{C})$ so that $\hat{c*}$

sc $=Sp(4, \mathbb{C})$ and
$($ $)^{D}$ means Pontrjagin dual. Write isc : $\hat{G^{*}}_{sc}arrow\hat{G^{*}}$ for the covering map. The local
Langlands group $\mathcal{L}_{F}$ is defined by

$\mathcal{L}_{F}=\{$ $W_{F}\cross SU(2, \mathbb{R})W_{F}$

$F$ : non-archimedean,
$F$ : archimedean,

where $W_{F}$ is the Weil group of $F$ . A local A-parameter $\psi$ : $\mathcal{L}_{F}\cross SL(2, \mathbb{C})arrow LG^{*}$ is defined
similarly for the global case. For a local A-parameter $\psi$ and an inner form $G$‘ of $G^{*}$ suppose
the existence of local A-packet $\Pi_{\psi}^{G’}[2]$ , which becomes a finite set of irreducible admissible
representations of $G’(F)$ . For a global or local A-parameter $\psi,$ $S_{\psi}$ denotes $j_{sc}^{-1}(C_{\psi})$ . $S_{\psi}$ is
defined by $\pi_{0}(S_{\psi})=S\psi/S_{\psi}^{0}$ . For an inner form $G’$ of $G^{*}$ the following condition is called
the relevance condition for $(G’, \psi)$ :

$Ker\chi_{G}/\supset Z(\hat{G^{*}}_{sc})^{\Gamma}\cap S_{\psi}^{0}$ .

Since
$Z_{\psi}^{\Gamma}$ $:={\rm Im}(Z(\hat{G^{*}}_{sc})^{\Gamma}arrow S_{\psi})\simeq Z(\hat{G^{*}}_{sc})^{\Gamma}/(Z(\hat{G^{*}}_{sc})^{\Gamma}\cap S_{\psi}^{0})$ ,

if $(G‘, \psi)$ satisfies the relevance condition then $\chi_{G’}$ can be regarded as a character of $Z_{\psi}^{\Gamma}$ .
The conjecture of Hiraga and Saito is described as follows.

Conjecture 7.1 ([3]). Let $F$ be non-archimedean. For a local A-parameter $\psi$ : $\mathcal{L}_{F}\cross$

$SL(2, \mathbb{C})arrow\iota_{G^{*}}$ there exists a pairing

$\langle$ ,
$\rangle_{F}:S\psi\cross(\prod_{G’\in H^{1}(FG_{ad}^{r})},\Pi_{\psi}^{G’})arrow \mathbb{C}$

which satisfies the following condition:
For any inner form $G’$ of $G^{*}$ there exists

$\rho$ : $\Pi_{\psi}^{G’}$ $arrow$ $\Pi(S_{\psi}, \chi_{G}/)=$ {irred. repre. $\sigma$ of $S_{\psi}|\sigma|_{Z_{\psi}^{\Gamma}}=\chi_{G’}$ } $/\sim$

$(v$ $(v$

$\pi$ $\mapsto$
$\rho_{\pi}$

such that $\langle s,$ $\pi\rangle_{F}=$ Tr $\rho_{\pi}(s)$ for all $s\in S_{\psi}$ .

If $F$ is non-archimedean then the set of inner forms of $G^{*}$ consists of $G^{*}$ and non-split
group $G_{F}$ . If $F$ is real it consists of $G^{*},$ $G_{F}=Sp(1,1)$ and compact group $Sp(4)$ , and if $F$

is complex it consists of only $G^{*}$ . In any case put $\Pi_{\psi}^{s}=\Pi_{\psi}^{G}$ “, $\Pi_{\psi}^{ns}=\Pi_{\psi}^{G_{F}}$ , where $\Pi_{\psi}^{ns}=\emptyset$ if
$F$ is complex. Since my results of residual spectrum and CAP representations (Theorem
4.1, 5.1, 6.1 and Proposition 6.2) do not contain the case of compact $Sp(4)$ at real place,
we will forget the case of real $F$ and compact $Sp(4)$ .

We will go back to the global case. For an elliptic A-parameter $\psi$ the associated local A-
parameter $\psi_{v}$ is given for any place $v$ by the hypothetical homomorphism $\mathcal{L}_{k_{v}}arrow \mathcal{L}_{k}$ . Also

$satisfyingtheaboveconjectureisgivenforanyv.Thenthegloba1pairing\langle,\rangle homomorphismS_{\psi}arrow S_{\psi_{v}}isgiven.Assumethatthepairing\langle,\rangle_{v}:S_{\psi_{v}}\cross(\Pi_{\psi_{v}}^{s}u\prod_{=fi_{v}^{v}}ns)\langlearrow \mathbb{C}\rangle_{v}$

:
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$S_{\psi}\cross\Pi_{\psi}^{G}arrow \mathbb{C}$ is defined. Let $\epsilon_{\psi}$ : $S_{\psi}arrow\{\pm 1\}$ be the character defined in [2]. For $\pi\in\Pi_{\psi}^{G}$

set
$m_{\psi}( \pi)=\frac{1}{|S_{\psi}|}\sum_{s\in S_{\psi}}\epsilon\psi(s)\langle s,$

$\pi\rangle$ .

Arthur’s multiplicity conjecture is described as follows.

Conjecture 7.2 ([2]). The multiplicity of $\pi$ in $L_{disc}^{2}(G)$ is equal to $\sum_{\psi\in\Psi_{0}(G)}m_{\psi}(\pi)$ .

8 MULTIPLICITY CONJECTURE
The results of section 4, 5 and 6 give a speculation of the description of the multiplicity
of non-tempered automorphic representations of $G(A)$ . For an irreducible automorphic
representation $\pi$ of $G(A)$ the multiplicity of $\pi$ in $L_{disc}^{2}(G)$ is denoted by $m(\pi)$ .
Expectation 8.1. 1. (Saito-Kurokawa type) Suppose that an irreducible cuspidal rep-

resentation $\sigma$ of $GL(2, \mathbb{C})$ , a quatemion algebra $B$ and $\eta\in D$ satisfy the condition
of Theorem 5.1, 1. Then $m(\Theta(\sigma, B, \eta))=1$ .

2. (Soudry type)

$m(\Theta(V, \chi, S))=\{\begin{array}{ll}2^{|S_{\chi}\cap S_{D}|-1} if \chi^{2}\neq 1, S_{D}\cap S_{\chi}\neq\emptyset,2^{|S_{D}|-2} if \chi^{2}=1, S_{D}\cap S_{\chi}\neq\emptyset,1 if S_{D}\cap S_{\chi}=\emptyset.\end{array}$

These expected multiplicities can be rewritten in terms of Arthur’s conjectural multi-
plicity. In other words, there is a pairing $\langle,$ $\rangle$ such that $m(\pi)=m\psi(\pi)$ for $\pi\in\Pi_{\psi}^{G}$ and all

$\langle$ , $\rangle_{v}$ satisfy the conjecture of Hiraga and Saito. Finally, we will see the dscription.

8.1 SAITO-KUROKAWA TYPE

An A-parameter $\psi$ of Saito-Kurokawa type is written by the form

$\psi=\psi_{\sigma}=((\phi_{\sigma}\otimes St)\oplus(1_{\mathcal{L}_{k}}\otimes 1_{SL(2,\mathbb{C})}))\cross p_{k}$

where $\sigma\simeq\otimes_{v}\sigma_{v}$ is an infinite dimensional irreducible cuspidal representation of $PGL(2, A)$ .
(1) $v\not\in S_{D}$

Write $V_{v}^{hyp}$ for the 4-dimensional hyperbolic quadratic space over $k_{v}$ . $SO(V_{v}^{hyp})$ is iso-
morphic to

$\{(g_{1},g_{2})\in GL(2, k_{v})\cross GL(2, k_{v})|\det(g_{1})=\det(g_{2})^{-1}\}/\{(z, z^{-1})|z\in k_{v}^{\cross}\}$ .

$\theta(\sigma_{v}, V_{v}^{hyp})$ denotes the Howe correspondent of $Ind_{SO(V_{v}^{hyp})}^{O(V_{v}^{hyp})}(\sigma_{v}\otimes 1)$ , which is an irreducible

representation of $G(k_{v})$ . Write $V_{v}^{ani}$ for the 4-dimensional anisotropic quadratic space over
$k_{v}$ if $v$ is non-archimedean, and $V_{v}^{\pm}$ for the 4-dimensional positive and negative definite
quadratic spaces over $k_{v}$ if $v$ is real. Since the special orthogonal groups of these quadratic
spaces are isomorphic to

$\{(g_{1},g_{2})\in D_{k_{v}}^{x}\cross D_{k_{v}}^{\cross}|\nu_{D_{k_{v}}}(g_{1})=\nu_{D_{k_{v}}}(g_{2})^{-1}\}/\{(z, z^{-1})|z\in k_{v}^{x}\}$
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where $D_{k_{v}}$ is the quaternion division algebra over $k_{v},$ $\theta(JL(\sigma_{v}), V_{v}^{ani})$ and $\theta(JL(\sigma_{v}), V_{v}^{\pm})$

are defined similarly for $\theta(\sigma_{v}, V_{v}^{hyp})$ . Here $JL(\sigma_{v})$ is the Jacquet-Langlands correspondent
of $\sigma_{v}$ .

$\{$

$\{\tau_{0}=\theta(\sigma_{v}, V_{v}^{hyp}), \tau_{1}=\theta(JL(\sigma_{v}), V_{v}^{ani})\}$ $v$ : non-arch. and $\phi_{\sigma}$ : irreducible,
$\Pi_{\psi_{v}}^{s}=$ $\{\tau_{0}=\theta(\sigma_{v}, V_{v}^{hyp}), \tau_{1}^{\pm}=\theta(JL(\sigma_{v}), V_{v}^{\pm})\}$ $v$ : real and $\phi_{\sigma}$ : irreducible,

$\{\tau_{0}=\theta(\sigma_{v}, V_{v}^{hyp})\}$ otherwise.

Any $\tau_{0}$ is a quotient of $Ind_{P(k_{v})}^{G(k_{v})}(|\det|_{v}^{1/2}\sigma_{v})$ .
(2) $v\in S_{D}$

Write $V_{v}$ for the 2-dimensional skew-hermitian space over $D_{v}$ of determinant 1. Since
$G(V_{v})=G_{0}(V_{v})$ and $G_{0}(V_{v})$ is isomorphic to

$\{(g_{1}, g_{2})\in D_{v}^{x}\cross GL(2, k_{v})|\nu(g_{1})=\det(g_{2})^{-1}\}/\{(z, z^{-1})|z\in k_{v}^{x}\}$

the Howe correspondents $\theta(\sigma_{v}, V_{v})$ and $\theta(JL(\sigma_{v}), V_{v})$ are defined.

$\Pi_{\psi_{v}}^{ns}=\{\begin{array}{ll}\{\tau_{0}’=\theta(\sigma_{v}, V_{v}), \tau_{1}’=\theta(JL(\sigma_{v}), V_{v})\} \phi_{\sigma} : irreducible,\{\tau_{0}’=\theta(\sigma_{v}, V_{v})\} \phi_{\sigma} : reducible.\end{array}$

$S\psi\simeq \mathbb{Z}/2\mathbb{Z}\cross \mathbb{Z}/2\mathbb{Z}$ and

$S\psi_{v}\simeq\{\begin{array}{ll}\mathbb{Z}/2\mathbb{Z}\cross \mathbb{Z}/2\mathbb{Z} \phi_{\sigma_{v}} : irreducible,\{1\}\cross \mathbb{Z}/2\mathbb{Z} \phi_{\sigma_{v}} : reducible.\end{array}$

Define a pairing $\langle$ , $\rangle_{v}$ as

$\langle\cdot,$
$\tau_{\epsilon}$ (or $\tau_{\epsilon}^{\pm}$ ) $\rangle_{v}=sgn^{\epsilon}\otimes 1$ if $v\not\in S_{D}$ ,

$\langle\cdot,$ $\tau_{\epsilon}’\rangle_{v}=sgn^{\epsilon}\otimes$ sgn if $v\in S_{D}$ .

$\epsilon\psi=\{\begin{array}{ll}1 \epsilon(1/2, \phi_{\sigma})=1,sgn\otimes 1 \epsilon(1/2, \phi_{\sigma})\neq 1,\end{array}$

where $\epsilon(1/2, \phi_{\sigma})$ is the value of Jacquet-Langlands $\epsilon$-function of $\sigma$ at 1/2. Then the
Arthur’s conjectural multiplicity is described by

$m_{\psi}( \pi)=\frac{1}{2}(1+\epsilon(\frac{1}{2}, \phi_{\sigma})\langle(-1,1), \pi\rangle)$ $(\pi\in\Pi_{\psi}^{G})$ .

If $\pi$ is represented by the form $\Theta(\sigma, B, \eta)$ satisfying the condition of Theorem 5.1,1 then
$m_{\psi}(\pi)=1$ .

8.2 SOUDRY TYPE

An A-parameter $\psi$ of Soudry type is written by the form

$\psi=\psi_{k’,\chi}=$ $((Ind_{W_{k’}}^{W_{k}}\chi\otimes 1)\oplus(\omega_{k’/k}\otimes$ Sym$2))\cross p_{k}$ ,
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for some $k’$ and $\chi$ .
(1) $v\not\in S_{D}$

$\Pi_{\psi_{v}}^{s}=\{\begin{array}{l}\{\theta(V_{v}^{\pm},\tilde{\chi}_{v})\}\{\theta(\mathbb{H}_{v},\tilde{\chi}_{v})\}\{\theta(V_{v}^{\pm},\tilde{\chi}_{v}^{\pm})\}\{\theta(\mathbb{H}_{v},\tilde{\chi}_{v}^{\pm})\}\end{array}$

$\chi_{v}^{2}\neq 1$ and $\delta_{v}\neq-1$ ,
$\chi_{v}^{2}\neq 1$ and $\delta_{v}=-1$ ,
$\chi_{v}^{2}=1$ and $\delta_{v}\neq-1$ ,
$\chi_{v}^{2}=1$ and $\delta_{v}=-1$ .

Here $V_{v}^{\pm}$ is the two-dimensional quadratic space over $k_{v}$ with determinant $\delta$ and Hasse
invariant $\pm 1,$ $\mathbb{H}_{v}$ is the two-dimensional hyperbolic space over $k_{v}$ , and $\theta(V_{v}, \lambda_{v})$ denotes
the Howe correspondent of the representation $\lambda_{v}$ of $G(V_{v})$ . The correspondent from $\tilde{\chi}_{\overline{v}}$ is

supercuspidal and the others are of the form of a quotient of $Ind_{P_{K}(k_{t},)}^{Sp(2k_{v})}\rangle(\omega_{k_{v}’/k_{v}}|\cdot|_{v}\otimes\tau_{v})$

for some irreducible representation $\tau_{v}$ of $SL(2, A)$ .
(2) $v\in S_{D}$

$\Pi_{\psi_{v}}^{ns}=\{\begin{array}{ll}\{\theta(V_{v}, \chi_{v}), \theta(V_{v}, \chi_{v}^{-1})\} \chi_{v}^{2}\neq 1,\{\theta(V_{v}, \chi_{v})\} \chi_{v}^{2}=1.\end{array}$

Elements of $\Pi_{\psi_{v}}^{ns}$ are supercuspidal except for $\chi_{v}=1$ .

$S_{\psi}\simeq\{$ $\mathbb{Z}/2\mathbb{Z}_{D_{4}^{\cross}}\mathbb{Z}/2\mathbb{Z}$ $\chi^{2}\neq 1\chi^{2}=1’$

where $D_{4}$ is the dihedral group with 8 elements. If $k_{v}’$ is a quadratic extension of $k_{v}$ then

$S_{\psi_{v}}\simeq\{$ $\mathbb{Z}/2\mathbb{Z}_{D_{4}^{\cross}}\mathbb{Z}/2\mathbb{Z}$ $\chi_{v}^{2}\neq 1\chi_{v}^{2}=1$
’

and if $k_{v}’\simeq k_{v}\oplus k_{v}$ then
$S_{\psi_{v}}\simeq\{\begin{array}{ll}\{1\} \chi_{v}^{2}\neq 1,\mathbb{Z}/2\mathbb{Z} \chi_{v}^{2}=1.\end{array}$

Define a pairing $\langle$ , $\rangle_{v}$ as follows. If $v\in S_{D}$ and $\chi_{v}^{2}=1$ then

$\langle s,$ $\theta(V_{v}, \chi_{v})\rangle_{v}=\{\begin{array}{l}2 s=\pm 10 otherwise,\end{array}$

and otherwise

$\langle\cdot,$ $\theta(V_{v}^{\eta},\tilde{\chi}_{v}^{\epsilon})\rangle_{v}=sgn^{\epsilon}\otimes sgn^{\eta}$ ,

where we regard $\mathbb{H}_{v}=V_{v}^{+}$ and $\overline{\chi}_{v}=\tilde{\chi}_{v}^{+}$ . In case of Soudry type, $\epsilon_{\psi}=1$ . Then the Arthur’s
conjectural multiplicity is described by for an irreducible automorphic representation $\pi\in$

$\Pi_{\psi}^{G}$ ,

$m_{\psi}(\pi)=\{\begin{array}{ll}2^{|S_{\chi}\cap S_{D}|-1} if \chi^{2}\neq 1, S_{D}\cap S_{\chi}\neq\emptyset,2^{|S_{D}|-2} if \chi^{2}=1, S_{D}\cap S_{\chi}\neq\emptyset,1 if S_{D}\cap S_{\chi}=\emptyset.\end{array}$
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