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1 Introduction
The theory of explicit formulas for the Koecher-Maaf3 series is initiated

by B\"ocherer [1] and Ibukiyama and the first named author [5], [6], [7]. So
far, there are some applications of these explicit formulas to the theory of
modular forms. For example, we can refer to [2], [7], [4], [9]. In our talk,
we announced a new result in this direction, that is an explicit formula for
the twisted Koecher-MaaB series associated with the Saito-Kurokawa lift was
given and their applications were presented.

As for “twist” by Dirichlet characters $\chi$ , in view of Saito [10] for example,
one of the most natural one seems to be

$L^{*}(s, F, \chi)=\sum_{T}\frac{\chi(\det(2T))c_{F}(T)}{\epsilon(T)(\det T)^{s}}$ ,

where $T$ runs over a complete set of representatives of $SL_{n}(Z)$ -equivalence
classes of positive definite half-integral symmetric matrices of degree $n,$ $c_{F}(T)$

is the T-th Fourier coefficient of a Siegel modular form $F$ on $\Gamma_{n}=Sp_{n}(Z)$

*The second named author was supported by Grant-in-Aid for JSPS Fellows for this
work.
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and $\epsilon(T)=\neq\{U\in SL_{n}(Z);T[U]=T\}$ . We will sometimes call $L^{*}(s, F, \chi)$

the twisted Koecher-Maat3 series of the second kind.
On the other hand, Choie-Kohnen [3] introduced a different type of

“twist” For a positive integer $N$ , let $SL_{n,N}(Z)=\{U\in SL_{n}(Z);U\equiv$

$1_{n}mod N\}$ and $\epsilon_{N}(T)=\#\{U\in SL_{n,N}(Z);T[U]=T\}$ . For a primitive
Dirichlet character $\chi mod N$ , the Koecher-MaaB series $L(s, F, \chi)$ of $F$ twisted
by $\chi$ is defined to be

$L(s,$ $F,$ $\chi)=\sum_{T}\frac{\chi(tr(T))_{C_{F}}(T)}{\epsilon_{N}(T)(\det T)^{s}}$,

where $T$ runs over a complete set of representatives of $SL_{n,N}$ (Z)-equivalence
classes of positive definite half-integral symmetric matrices of degree $n$ . In
[3], Choie and Kohnen proved a meromorphic continuation of $L(s, F, \chi)$ to
the whole s-plane and a functional equation. Moreover they got a result on
the algebraicity of its special values.

Theorem 1. (Choie-Kohnen) Let $F$ be an element in the space $S_{k}(\Gamma_{n})$

of all Siegel cusp forms of weight $k$ on $\Gamma_{n}$ . Put

$\gamma_{n}(s)=(2\pi)^{-ns}\prod_{i=1}^{n}\pi^{i-1}/2\Gamma(s-(i-1)/2)$ ,

and put
$\Lambda(s, F, \chi)=N^{2s}\tau(\chi)^{-1}L(s, F, \chi)$ $({\rm Re}(s)>>0)$ ,

where $\tau(\chi)$ is the Gauss sum of $\chi$ . Then $\Lambda(s, F, \chi)$ has $a$ analytic continuation
to the whole s-plane and has the following functional equation:

$\Lambda(k-s,$ $F,$ $\chi)=(-1)^{nk/2}\chi(-1)\Lambda(s,$ $F,\overline{\chi})$ .

Theorem 2. (Choie-Kohnen) Let $F\in S_{k}(\Gamma_{n})$ with $k$ even. Then there
exists a Z-module $M_{f}\subset C$ of finite rank such that

$\frac{NL(m,F,\chi)}{\tau(\chi)(2\pi\sqrt{-1})^{nm}}\in M_{f}\otimes_{Z}Z[\chi]$

for any primitive character $\chi$ and any integer $m$ such that $(n+1)/2\leq m\leq$

$k-(n+1)/2$ , where $Z[\chi]$ is the Z-module obtained from by adjoining the
values of $\chi$ .
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We shall call $L(s, F, \chi)$ the twist of the first kind. Our main results in this
report are explicit formulas for the twisted Koecher-Maafi series associated
with the Saito-Kurokawa lift, namely for the twist in the sence of Choie-
Kohnen ($i.e$ . the twist of the first kind). In order to state our results, take a
cusp form $h(z),$ $z\in H_{1}=\{z=x+\sqrt{-1}y;y>0\}$ in the Kohnen plus space
$S_{k-1/2}^{+}(\Gamma_{0}(4))$ with $k$ even. By definition this has a Fourier expansion of the
form

$h(z)= \sum_{mm\geq 1,\equiv 0,3}(mod 4)^{c(m)e(mz)}\in S_{k-1/2}^{+}(\Gamma_{0}(4))$
.

Define a function on $H_{2}=\{Z={}^{t}Z\in M_{2}(C);\Im Z>O\}$ by

$M(h)(Z)= \sum_{T\in \mathcal{L}_{2>0}}(\sum_{d|e(T)}d^{k-1_{C}}(\frac{\det 2T}{d^{2}}))e(tr(TZ))$ ,

where $T$ runs over $\mathcal{L}_{2>0}$ the set of all positive definite half-integral symmetric
matrices of degree 2 and $e(T)=G.C.D(n, r, m)$ for $T=(\begin{array}{ll}n r/2r/2 m\end{array})$ . As is well
known, $M(h)(Z)$ is a Siegel cusp form of degree two and even weight $k$ , called
the Saito-Kurokawa lift of $h(z)$ .

It is quite easy to get an explicit form of the twist of the second kind. In
fact, by using the same argument as in B\"ocherer [1], one easily obtains

$L^{*}(s, M(h), \chi)=2^{2s}L(2s-k+1, \chi^{2})\sum_{d=1}^{\infty}\frac{c(d)\chi(d)H_{1}(d)}{d^{s}}$ , (1)

where for any $D\in Z_{>0}$ , we put

$H_{1}(D)= \sum_{A\in \mathcal{L}_{2>0}(D)/SL_{2}(Z)}\frac{1}{\epsilon(A)}$

with $\mathcal{L}_{2>0}(D)=\{A\in \mathcal{L}_{2>0};4\det A=D\}$ .
On the other hand, it seems non-trivial to get that of the first kind. Our

Theorem 3 and 4 are concerned with it. Moreover, combining with Choie-
Kohnen and Shimura’s results, the resulting explicit formula gives a new kind
of applications to the Rankin-Selberg convolutions of modular forms of half-
integral weight. To be more precise, we need some notation. For a Dirichlet
character $\eta mod N$ , let $E_{3/2}^{(\eta)}(z)(z=x+\sqrt{-1}y\in H_{1})$ be the twist by $\eta$ of
Zagier’s Eisenstein series of weight 3/2. It has the Fourier expansion

$E_{3/2}^{(\eta)}(z)=2 \sum_{m=0}^{\infty}\eta(m)H_{1}(m)e(mz)+y^{-1/2}\sum_{n=-\infty}^{\infty}\beta(4\pi n^{2}y)e(-n^{2}z)\eta(-n^{2})$ ,
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where we put $H_{1}(0)=- \frac{1}{24}$ and

$\beta(x)=\frac{1}{16\pi}\int_{1}^{\infty}u^{-3/2}e^{-xu}du$ .

If $\eta$ is primitive, the Eisenstein series $E_{3/2}^{(\eta)}(z)$ belongs to $M_{3/2}^{\infty}(\Gamma_{0}(4N^{2}), \eta^{2})$ ,
the space of $C^{\infty}$ modular forms of weight 3/2, character $\eta^{2}$ and level $4N^{2}$ .
Note that there exist constants $A,$ $a,$ $b>0$ such that $|E_{3/2}^{(\eta)}(z)|\leq A(y^{a}+y^{-b})$

for any $z=x+\sqrt{-1}y\in H_{1}$ . Let $N=p_{1}^{e_{1}}\cdots p_{r}^{e_{r}}$ be the prime decomposition
of $N$ and put $\tilde{N}=p_{1}\cdots p_{r}$ . We then define $\mathcal{E}_{3/2}^{(\eta)}(z)$ by

$\mathcal{E}_{3/2}^{(\eta)}(z)=\sum_{\Lambda I|\tilde{N}}E_{3/}^{((\frac{*}{2M})\eta)}(z)$
,

where $( \frac{*}{\Lambda i})$ denotes the Jacobi symbol. We note here that if $( \frac{*}{M})\eta$ are primi-
tive of conductor $N$ for all $M|\tilde{N}$ and if $p\equiv-$ lmod4 for some prime factor
$p$ of $N$ , then $\mathcal{E}_{3/2}^{(\eta)}(z)$ is holomorphic on $H_{1}$ and therefore by the above growth
condition, we see that it belongs to $M_{3/2}(\Gamma_{0}(4N^{2}), \eta^{2})$ .

Now for $h_{1}(z)= \sum_{m=0}^{\infty}c_{1}(m)e(mz)\in M_{k-1/2}(\Gamma_{0}(4))$ and an element
$h_{2}(z)$ of $M_{l-1/2}^{\infty}(\Gamma_{0}(4N^{2}), \eta^{2})$ with the Fourier expansion

$h_{2}(z)=2 \sum_{m=0}^{\infty}c_{2}(m)(mz)+y^{-1/2}\sum_{n=-\infty}^{\infty}b(n, y)e(-n^{2}z)$ ,

we define the convolution product $L(s, h_{1}, h_{2})$ by

$L(s, h_{1}, h_{2})=L(2s-k+l+3, \eta^{2})\sum_{m=1}^{\infty}\frac{c_{1}(m)c_{2}(m)}{m^{s}}$ .

This type of Dirichlet series for two half-integral weight homomorphic mod-
ular forms was introduced by Shimura [12]. Let $N$ be a positive integer,
and $N=p^{e_{1}}\cdots p^{e_{r}}$ be the prime decomposition of $N$. Let $\chi$ be a Dirichlet
character $mod N$. Fix a prime factor $p$ of $N$ . Let $\chi^{(p)}$ be the p-factor of $\chi$ so
that

$\chi=\prod_{p|N}\chi^{(p)}$
.

Our first main result is
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Theorem 3. Let $h$ be a Hecke eigenform in $S_{k-1/2}^{+}(\Gamma_{0}(4))$ . Let $N$ be an odd
positive integer, and $N=p_{1}^{e_{1}}\cdots p_{r}^{e_{r}}$ be the prime decomposition of N. Let $\chi$

be a primitive Dirichlet character mod $N$ .
(1) If $\chi^{(p_{i})}(-1)=-1$ for some $i$ . Then we have $L(s, M(h), \chi)=0$ .
(2) Assume that $\chi^{(p_{i})}(-1)=1$ for any $i$ . Fix a chamcter X such that

$\tilde{\chi}^{2}=\chi$ . Then we have

$L(s, M(h), \chi)=2^{2s}\prod_{i=1}^{r}(1-(\frac{-1}{p_{i}})p_{i}^{-1})N^{2}(\frac{-1}{N})L(s, h, \mathcal{E}_{3/2}^{(\tilde{\chi})})$ .

We note here that the expression in (2) of the above theorem does not
depend on the choice of $\tilde{\chi}$ . An application to the Rankin-Selberg convolution
of modular forms of half-integral weight will be given in Section 3.

Our calculations are also applicable to the Siegel-Eisenstein series of de-
gree 2 and even weight $k\geq 4$ defined by

$E_{2,k}(Z)= \sum_{\{C,D\}}\det(CZ+D)^{-k}$
, $Z\in H_{2}$ ,

where the sum is taken over all non-associated coprime symmetric pairs
$\{C, D\}$ of degree 2.

For a non-negative integer $m$ , the Cohen function $H(k-1, m)$ is given
by $H(k-1, m)=L_{-m}(2-k)$ . Here

$L_{D}(s)$

$=$ $\{\begin{array}{ll}\zeta(2s-1), D=0L(s, \chi_{D_{K}})\sum_{a|f}\mu(a)\chi_{D_{K}}(a)a^{-s}\sigma_{1-2s}(f/a), D\neq 0, D\equiv 0,1mod 40, D\equiv 2,3mod 4,\end{array}$

where the natural number $f$ is defined by $D=D_{K}f^{2}$ with the discriminant
$D_{K}$ of $K=Q(\sqrt{D}),$

$\chi_{D_{K}}$ is the Kronecker symbol, $\mu$ is the M\"obius function
and $\sigma_{s}(n)=\sum_{d|n}d^{s}$ . For $k\geq 4$ , the Cohen Eisenstein series $\mathcal{H}_{k-1}(z)$ is

$\mathcal{H}_{k-1}(z)=\sum_{m=0}^{\infty}H(k-1, m)e(mz)$ .
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It is known that $\mathcal{H}_{k-1}(z)$ is a modular form of weight $k-1/2$ belonging to
the Kohnen plus space and that the Saito-Kurokawa lift of $\mathcal{H}_{k-1}(z)$ coincides
with $E_{2,k}(Z)$ up to a scalar multiple, namely the T-th Fourier coefficient of
$E_{2,k}(Z)$ for a positive definite $T$ is ( $B_{k}$ : the k-th Bernoulli number)

$\frac{4k(k-1)}{B_{k}B_{2k-2}}\sum_{d|e(T)}d^{k-1}H(k-1,$
$\frac{\det 2T}{d^{2}})$ .

By the same argument proving Theorem 3, we have

Theorem 4. Let $N$ and $\chi$ be as in Theorem 3. We have

$L^{*}(s, E_{2,k}, \chi)=\frac{4k(k-1)}{B_{k}B_{2k-2}}2^{2s}L(s, \mathcal{H}_{k-1}, E_{3/2}^{(\chi)})$ ,

and moreover
(1) If $\chi^{(p_{i})}(-1)=-1$ for some $i$ . Then we have $L(s, E_{2,k}, \chi)=0$ .
(2) Assume that $\chi^{(p_{i})}(-1)=1$ for any $i$ . Fix a chamcter 2 such that

$\tilde{\chi}^{2}=\chi$ . Then we have

$L(s, E_{2,k}, \chi)$

$=$ $\frac{4k(k-1)}{B_{k}B_{2k-2}}2^{2s}\prod_{i=1}^{r}(1-(\frac{-1}{p_{i}})p_{i}^{-1})N^{2}(\frac{-1}{N})L(s, \mathcal{H}_{k-1}, \mathcal{E}_{3/2}^{(\tilde{\chi})})$ .

In joint works with Ibukiyama ([5], [6]), the first named author got an
explicit formula of $L(s, F, \chi_{0})$ when $\chi_{0}$ is the principal character, and $F$ is
the Klingen Eisenstein lift and the Ikeda lift of an elliptic cuspidal Hecke
eigenform, respectively. It is interesting to generalize these results to the
twisted cases of degree $n$ .

2 Sketch of the proof
Our Theorems 3 and 4 follows from (1) and the following proposition.

Proposition 1. Let $F$ be an element of $M_{k}(\Gamma_{2})$ . Let $N$ be an odd positive
integer, and $N=p_{1}^{e_{1}}\cdots p_{r}^{e_{r}}$ be the prime decomposition of N. Let $\chi$ be a
primitive Dirichlet character mod $N$.
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(1) If $\chi^{(p_{i})}(-1)=-1$ for some $i$ . Then we have $L(s, F, \chi)=0$ .
(2) Assume that $\chi^{(p_{i})}(-1)=1$ for any $i$ . Fix a chamcter $\tilde{\chi}$ such that

$\tilde{\chi}^{2}=\chi$ . Then we have

$L(s, F, \chi)=\prod_{i=1}^{r}(1-(\frac{-1}{p_{i}})p_{i}^{-1})N^{2}(\frac{-1}{N})\sum_{M|\tilde{N}}L^{*}(s, F, (_{\overline{M}})\tilde{\chi})*$ ,

where $\tilde{N}=p_{1}\cdots p_{r}$ .

In order to prove this, we first note that $L(s, F, \chi)$ can be written as

$L(s, F, \chi)=\sum_{A\in \mathcal{L}_{n>0/SL_{n}(Z)}}\frac{c_{F}(A)h(A,\chi)}{\epsilon(A)(\det A)^{s}}$ , (2)

where

$h(A, \chi)=\sum_{\overline{U}\in SL_{n}(Z/NZ)}\chi(tr(A[U]))$
.

From now on, we restrict ourselves to the case of $n=2$ and $A$ is an
element of $\mathcal{L}_{2>0}$ . For each $c\in Z$ , put

$R_{N}(A, c)=\{x=(x_{1}, x_{2}, x_{3}, x_{4})\in(Z/NZ)^{4};(A\perp A)[x]-c\equiv$ Omod $N$

and $x_{1}x_{4}-x_{2}x_{3}-1\equiv 0mod N\}$ .
Then we have

$h(A, \chi)=\sum_{c=1}^{N}\chi(c)\# R_{N}(A, c)$ .

To determine $h(A, \chi^{(p_{t})})$ , we shall compute $\# R_{N}(A, c)$ for $N$ being a power
of a prime.

Lemma 1. Let $p$ be an odd prime number. Let $A$ be a symmetric matrix of
degree 2 with entries in $Z_{p}$ . Assume that $A\not\equiv Omod p$ , and that $( \frac{4\det A}{p})=-1$

or $( \frac{4\det A}{p})=0$ Then for any $c\in F_{p}^{\cross}$ , we have

$\# R_{p^{e}}(A, c)=p^{2(e-1)}(p-(\frac{-1}{p}))(p-(\frac{-4\det A}{p}))$ .
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Lemma 2. Let $A$ be as in the previous lemma. Assume that $( \frac{4\det A}{p})=1$ .
For any $c\in Z$ let $r=ord_{p}(4\det A-c^{2})$ . Then we have

$\# R_{p}(A, c)=p^{2e-2}(p-(\frac{-1}{p}))(p\sum_{i=e-r}^{e}(\frac{-1}{p})^{e-i}-\sum_{i=e-r-1}^{e-1}(\frac{-1}{p})^{e-i})$

if $r\leq e-1$ , and

$\# R_{\tau}(A, c)=p^{2e-2}(p-(\frac{-1}{p}))(p\sum_{i=0}^{e}(\frac{-1}{p})^{e-i}-\sum_{i=0}^{e-1}(\frac{-1}{p})^{e-i})$

if $r=e$ .

Suppose that $N=p^{e_{1}}\cdots p^{e_{r}}$ is the prime decomposition of $N$ . By the
Chinese remainder theorem, $h(A, \chi)$ has the form

$h(A, \chi)=\prod_{i=1}^{r}h(A, \chi^{(p_{i})})$ .

This combined with above two lemmas implies that

Proposition 2. Let $N$ be an odd positive integer and $N=p^{e_{1}}\cdots p^{e_{r}}$ be the
prime decomposition of N. Let $\chi$ be a primitive Dirichlet chamcter mod
N. Let $\chi^{(p_{i})}$ be the primitive Dirichlet character mod $p^{e_{i}}$ such that $\chi=$

$\chi^{(p_{1})}\cdots\chi^{(p_{r})}$ .
(1) Assume that $\chi^{(p_{i})}(-1)=-1$ for some $i$ . Then we have

$h(A, \chi)=0$ .

(2) Assume that $\chi^{(p_{i})}(-1)=1$ for any $i$ . Then we have

$h(A, \chi)=\prod_{i=1}^{r}\{(1+(\frac{4\det A}{p_{i}}))(1-(\frac{-1}{p_{i}})p_{i}^{-1})\}N^{2}(\frac{-1}{N})\tilde{\chi}(4\det A))$ ,

where $\tilde{\chi}$ is a character such that $\tilde{\chi}^{2}=\chi$ .

Proposition 2 combined with (2) implies Proposition 1.
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3Special values of twisted Koecher-Maa!3 se-
ries and convolution products of half-integral
modular forms

For a holomorphic modular form $g$ of integral or half-integral weight, we
denote by $Q(g)$ the field generated over $Q$ by all the Fourier coefficients of
$g$ . First we recall the following results due to Shimura [11], [12].

Proposition 3. (Shimura) (1) Let $f$ be a Hecke eigenform in $S_{2k-2}(\Gamma_{1})$ .
Then there exist complex numbers $u_{\pm}(f)$ uniquely determined up to $Q(f)^{\cross}$

multiple such that $\frac{\Gamma(m)L(m,f,\chi)}{\tau(\chi)(2\pi\sqrt{-1})^{m}u_{j}(f)}\in Q(f)(\chi)$ for any integer $0<m\leq$

$2k-3$ and a Dirichlet character $\chi$ such that $j=(-1)^{m}\chi(-1)$ .
(2). Let $h$ be a Hecke eigenform in $S_{k-1/2}^{+}(\Gamma_{0}(4))$ and $S(h)$ the normalized
Hecke eigenform in $S_{2k-2}^{+}(\Gamma_{1})$ corresponding to $h$ under the Shimura corre-
spondence. Furthermore, for an integer $l$ such that $k>l\geq 2$ , and a prim-
itive character $\xi$ of conductor $M$, let $g$ be an element of $M_{l/2-1}(\Gamma_{0}(4M), \xi)$ .
$Thenrightarrow_{u_{-}(S(h))\pi^{m-1}-1}Lm/2,h,g)$ $\in Q(h)Q(g)$ for any odd integer $m$ such that
$1\leq m\leq 2k-3$ and a Dirichlet charcater $\eta$ .

Proposition 4. (Shimura) Let $h$ be a Hecke eigenform in $S_{k-1/2}^{+}(\Gamma_{0}(4))$

and $S(h)$ be the normalized Hecke eigenform in $S_{2k-2}^{+}(\Gamma_{1})$ corresponding to $h$

under the Shimum correspondence. Assume that all the Fourier coefficients
of $h$ belong to $Q(S(h))$ . Let $\chi$ be a Dirichlet character of conductor N. As-
sume that $\chi^{2}$ is primitive, and that $p\equiv-1mod 4$ for some prime factor
$p$ of N. Then for any odd integer $m$ such that $1\leq m\leq 2k-3$ , the value
$L(m/2, M(h), \chi^{2})$ belongs to the vector space $Q(S(h))(\chi)u_{-}(S(h))\pi^{m-1}\sqrt{-1}$.

Applying these two propositions to our explicit formula, we obtain

Theorem 5. Let $h$ be a Hecke eigenform in $S_{k-1/2}^{+}(\Gamma_{0}(4))$ and $S(h)$ be
the normalized Hecke eigenform in $S_{2k-2}^{+}(\Gamma_{1})$ corresponding to $h$ under the
Shimum correspondence. Assume that all the Fourier coefficients of $h$ belong
to $Q(S(h))$ . Let $\chi$ be a Dirichlet chamcter of conductor N. Assume that $\chi^{2}$
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is primitive, and that $p\equiv-$ lmod4 for some prime factor $p$ of N. Then for
any odd integer $m$ such that $1\leq m\leq 2k-3$ , the value $L(m/2, M(h), \chi^{2})$

belongs to the vector space $Q(S(h))(\chi)u_{-}(S(h))\pi^{m-1}\sqrt{-1}$.

We note that the above theorem is not a special case of Choie and
Kohnen’s result. Actually they treated the values of Koecher-MaaB series
at integers. On the other hand, we treat the values at half-integers. It seems
interesting to know whether this type of algebraicity holds for the twisted
Koecher-MaaB series of any cusp form of even degree.

Theorem 6. There exists a positive integer $r=r_{h}$ such that the values
$L(l, h, \mathcal{E}_{3/2}^{(\chi_{1})}),$

$\ldots,$
$L(l, h, \mathcal{E}_{3/2}^{(\chi_{r+1})})(i=1, \cdots, r+1)\}$ are linearly dependent over

$\overline{Q}$ for any integer $1\leq l\leq k-2$ and Dirichlet chamcters $\chi_{1},$
$\ldots,$

$\chi_{r+1}$ of odd
conductors such that $\chi_{1}^{2},$

$\ldots,$

$\chi_{r}^{2},$ $\chi_{r+1}^{2}$ are primitive. In particular, the values
$L(l, h, \mathcal{E}_{3/2}^{(\chi_{1})}),$

$\ldots,$
$L(l, h, \mathcal{E}_{3/2}^{(\chi_{r+1})})$ are linearly dependent over $\overline{Q}$ for any non-

quadmtic characters $\chi_{1},$
$\ldots,$ $\chi_{r+1}$ of odd prime conductors.

We note that the algebracity of special values of convolution products of
half-integral weight modular froms at half-integers were deeply investigated
by Shimura as stated above. However, as far as we know, there is no result
about the special values of them at integers, and the above result seems
a little bit surprising. We hope the above result shed a new right on this
subject.

Applying Choie-Kohnen’s functional equation to our explicit formula, we
obtain

Theorem 7. Put
$\Lambda(s, h, \mathcal{E}_{3/2}^{(\chi)})=N^{2s}\pi^{-2s}\tau(\chi^{2})^{-1}L(s, h, \mathcal{E}_{3/2}^{(\chi)})$ .

Assume that $\chi^{2}$ is primitive. Then $\Lambda(s, h, \mathcal{E}_{3/2}^{(\chi)})$ has $a$ analytic continuation
to the whole s-plane and has the following functional equation:

$\Lambda(k-s, h, \mathcal{E}_{3/2}^{(\chi)})=\Lambda(s, h, \mathcal{E}_{3/2}^{(\overline{\chi})})$ .

The meromorphy of this type of series was derived in [12] by using so
called the Rankin-Selberg integral expression in more general setting, and
the functional equation may also be derived by using it.
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