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Stark’s units, CM-periods and multiple gamma
functions

FERFZREREBRFENES  ME PR (Tomokazu Kashio)
Department of Mathematics, Kyoto University

Abstract

Yoshida’s class invariant X (c) is defined by special values of Barnes’s multiple
gamma functions for each ideal class ¢ of a totally real field. In this paper, we
will show some “monomial relations” on exp(X(c)). On the other hand, Shintani’s
formula expresses derivative values of partial zeta functions in terms of the invariant
X(c). As a result, our “monomial relations” relates to Stark’s conjecture over
totally real fields. More, Yoshida’s conjecture expresses any CM-period, which is
the transcendental part of a critical value of L-function associated with an algebraic
Hecke character, by the values of X(c). Therefore, we may consider the “relation”
between some monomial relations on CM-periods and algebraicity of Stark’s units.

Introduction

Let F' be a totally real field and M an finite abelian extension of F. For an arbitrary
element 7 € Gal(M/F), we denote by ((s, ) the partial zeta function, which is defined
by

(s, 7) = Z Na~*.

(H)=r

Here (Ma@) is the Artin symbol and a runs over integral ideals of F' which are relatively
prime to the conductor of M/F. Note that the series converges if Re(s) is large enough,
can be meromorphically continued to the whole complex plane, and is analytic at s = 0.
Assume that there exists an embedding

t: M— R.

Then Stark’s conjecture states that there exists u € M* such that

d 1 LoT
(0.1) E;C(S’T)Imo = —-2-logu .
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for all 7 € Gal(M/F). We call the element u Stark’s unit. (Indeed in many cases u € O5;.)
We note that Stark’s conjecture when F' = Q is proved by using Euler’s reflection formula;

(0.2) T(s)I(1 —s) = Sinzrm).

In the proof, we also use Lerch’s formula for the gamma function and algebraicity of
the division values of sine function. For example, let F = Q, M = Q(v2). We have a
canonical isomorphism (Z/82)*/{+1} = Gal(M/F), a7, (a =1,3), i, = id, 73 # id.
Then we get

¢'0,7) = log (PGINESY) - log(an)
= —log (2sin(%’f))
_ {-%log(2 —-V2) ifa=1,

—2log(2+v2) ifa=3.

Shintani expressed the derivative values ¢’(0,7) in terms of Barnes’s multiple gammas
functions, when F is totally real. We may consider his formula as a generalization of
Lerch’s formula. Therefore it is natural to ask whether one can prove Stark’s conjecture
by generalizing Euler’s reflection formula to multiple gamma functions.

In this paper, we treat Yoshida’s class invariants instead of each special value of
a multiple gamma function. Associated with an ideal class ¢ of any totally real field,
Yoshida defined the invariant X (c) as a finite sum of the log of special values of multiple
gamma functions (+ some correction terms). Our main result is a “monomial relation”

exp(X (c)) exp(X(c)) € Q"

for some pair (c,c) of ideal classes (Theorem 2.1.1). This Theorem is valid if F #
Q, and in the case of [F : Q] = 2, it is due to Yoshida. Unfortunately, in order to
apply such a result to algebraicity of Stark’s units, we need one more monomial relation
among exp(X(c)) (conjectural equation (2.2) in §2.2). In §1, we introduce Yoshida’s class
invariant X(c), and in §2, we state our main results. In §3, we also see a “relation”
between Stark’s units and Shimura’s CM-periods. Roughly speaking, assuming Yoshida’s
conjecture on CM-periods, the algebraicity of Stark’s units follows from some monomial
relations of CM-periods. We also see a p-adic analogue of monomial relations among
exp(X (c)), which is Theorem 4.1.1 in §4. It is interesting that we use both archimedean
and p-adic functions to express the Stark unit (Conjecture 4.2.1). We omit the complete
proof because of lack of space and give the sketch of proof in §5.

1 A generalization of gamma values

Our object is to generalize the following classical result
-1 i m—a —-=X _
(1.1) i1 F(m)P( ~ ) €qQ’, (a,m,m — a € Zy).

For that purpose, we introduce Barnes's multiple gamma function and Yoshida’s class
invariant. For detail, see [Yo3].
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1.1 Barnes’s multiple gamma function

First, we introduce the Barnes multiple zeta function, which is a generalization of the
Hurwitz zeta function.

Definition 1.1.1. Let z,vy,vs,...,v, € Ry with a positive integer r. We define
(1.2) G (8, (V1, V2, ..., 0p), 2) i= Y (etmuv+mve+ - +myu,)

m1,ma,...mr€Z&>o

for Re(s) > r. One can continue it meromorphically to the whole s-plane, and it is
analytic at s = 0.

Definition 1.1.2. We define the multiple gamma function T'.(z, (v1,vs,...,v,)) and the

correction term p,((v1,ve, . ..,v,)) for 2,v1,vs,...,v, € Ryo, T € Zsg by
(2, (v1,v2,...,7.)) d
lo et . =———,.s,v,v,...,v,.,z| ,
(1 3) & p,-((vl,'vg, e 1vf)) dsc ( ( e ) ) =0

z—+0

) d
log pr((v1,v2,...,7%,)) = — lim [d—sg(s, (v1,v2,. .. ,v,‘),z)lr_0 + logx] .
In this paper to simplify the notations, we use the symbols ¢(s; Z), LT'(Z) for a “good”
subset Z of R in the following sense.
Definition 1.1.3. We call a subset Z C Ry¢ “good” when we can write
Z = u;;l{z,- + mMyvj1 + MaVja + - - + Me()Vjni) | Mi € L0}
with z;,v;; € Rso, 7j,k € Zso. Then we put

k
C(8:2) =D Gry(8 V31, Vi2s - -+ Vi) 2)s

i1

LF(Z) - i log I‘,_(z, (’Uj,l, Uj,2y -« avj,f(j)))_
= (Wi Y2, Vie(3)

Note that the function ((s;Z) is the meromorphic continuation of the series _,.,2™°
and that we have LT'(Z) = ('(0; Z). With a slight abuse of notations, we also call {(s; Z)
(resp. LT'(Z)) the multiple zeta function (resp. the log multiple gamma function).

Remark 1.1.1. One can consider LI'(Z) as a generalization of the log of the gamma
function since we have, for z,v € Ry,

LT({z+mv | m € Zxo}) = log%f—a—i)g)n = log I‘(%) - —;—log27r - (-;— - -Z) log v,

where 7 18 the circular constant.

Remark 1.1.2. Shintani expressed the derivative values of partial zeta functions in term
of special values of Barnes’s multiple gamma functions. He also gave an explicit formula
which expresses special values of Barnes’s multiple zeta functions by some elementary
terms. In particular we have

Cr(oa (vl’ R ’U,.), z) € Q(v1,-.., v, z)-
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1.2 Yoshida’s class invariant

Yoshida defined the class invariant X (c) for any ideal class ¢ (of an arbitrary conductor)
of any totally real field by special values of log multiple gamma functions. Below, we
briefly sketch the definition. Let F' be a totally real number field of degree n, F'* the set
of all totally positive elements in F', and OF the ring of integers of . We denote by ¢
the narrow ideal class group modulo § with an integral ideal f of F. Namely, we put

Iy ;= the set of all fractional ideals of F relatively prime to f,
Pf = {(a) GIf|a€F+, a =1 mod* f},

Q:f = If / Pf.
Let v1,vs,...,v, € F*. We assume that these are linearly independent in F ® R over
R. Then we define the (r-dimensional open simplicial) cone C(v1,vs,...,v,) with basis
V1, V2y...,Upr by

C’(vl,vg,...,v,) = {$=‘Ul®$1+’02®$2+...'0,-®$,-IZI,'GR>Q (z'=1,2,.,.,r)}.

We denote by Er (resp. Ef) the unit group (resp. totally positive unit group) of F. We
put (F®R)* := {x € (FOR)* | o(z) > 0, Yo € Homp.ax(F ® R,R)}. Then E}.
acts on (F ® R)* through the embeddings Ef — (F ® R)*, z +— 2 ® 1. We consider
fundamental domains of (F ® R)*/E} satisfying the following conditions. The existence
of such a fundamental domain is due to Shintani.

Definition 1.2.1. We say D is a Shintani domain if there exist v;; € F* (j € J, Jisa
finite set of indices, i = 1,2,...,7(j), r(j) € Zso) which satisfy

(F® R)"’ = ueeE;'ED’
D = UjesC(v)1,vj2, - - - vj.r(j))'

Definition 1.2.2. For a Shintani domain D, an ideal class c € &;, and a fractional ideal
. of F with A, = c mod P(y), we define a subset Z(c;D,A.) of F* by
Z(;D,A) ={z€eDNA' | 2. € c}.

We note that for any « € Hom(F, R), the image «(Z(c; D, %)) C R is “good” in the
sense of Definition 1.1.3. Indeed, let v;; be as in Definition 1.2.1 and take L € Zs so0
that Lv;; € f for all 5,7. We put

Cj == C(vj1,.--,Y5r()),
R(c; Cj,Ue, L) := {2 = 21vj1 + Z2vja + - - + Tr(j)¥je) | 2 €AY, A € ¢, 0 < z; < L}

Then R(c; C;,%,, L) is finite and we have

Z(¢; D, AUc) = Ujes User(cc; L) {2 + Mavjt + Mavjz + - - - + My Vs | Mu € Zino}.
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Definition 1.2.3. Let D, ¢, 2., Z(c; D, ;) be as above. For 7,7 € Hom(F,R) we put

v =Y (AP - ()~ ()]

2€Z(c;D,Ac)

8=0

Note that the above series in [ ] converges when Re(3) is large enough, can be meromorphi-
cally continued to the whole complex plane, and is analytic at s = 0. For . € Hom(F,R),
we put

G(e,;;D,2,) := LT'(L(Z(c; D, L)),
W (e, D, %) = —=C(0; (Z(c; D, %)) log N2,

Vie,; D,A,) := % Z v,,;— —1—2 Z Vr,ry

t#r€Hom(F,R) n 7,7’ €Hom(F,R), 7#7’
X(c,;; D,.) :==G(c,; D, A) + W(e,4; D, A:) + Ve, ; D, A,).

The definition of the invariant V' seems to be complicated, but these invariants have
good properties as follows.

Theorem 1.2.1. (Yoshida.) There erist finite elements a; € F, ¢; € E}, depending on
the choice of c,t, D, ., such that

(1.4) Vie,; D, %) = Z (a;) log ¢(€;)-

1

Moreover, the value of exp(X(c,t; D,U.)) does not depend on the choice of D, . up to
algebraic numbers. More precisely for any Shintani domains D, D' and for any fractional

ideal A, A, with A. = A, = cmod P(y), there exist a rational number r and an element
f € F* satisfying
X(c,; D,A:) — X(c,,; D', A.) = rlog o(f).

For the invariant G, we can write
G(c,;; D, %) — Gle,; D', A) = z t(a;) log ¢(5;)
i
with some elements a;, 5; € F.
For simplicity, we fix an embedding id : F' < R and put G(c; D, A.) := G(c,id; D, 2A.),

etc. More we write X(c) := X(¢;D,%,), or X(¢,¢) := X(c,¢;D,A%.) when we consider
them up to algebraic numbers.

1.3 Shintani’s formula

We recall Shintani’s methods to investigate partial zeta functions. Associated with an
arbitrary ideal class ¢ € €;, we define the partial zeta function ((s, c) by

((s,c) := Z Na™*.

aCOp, a€c
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For an abelian extension M of F and for 7 € Gal(M/F), we also define the partial zeta
function {(s, ) by

(1.5) ¢(s,7) = Z Na~°,

aCOF, (afar)=1, (MLE)=r

where we denote the finite part of the conductor of M/F by fu. It is clear that if we
denote the Artin map by Art : &;,, — Gal(M/F) then we have

()= D L(si0).

CGQfM , Art(c) =T

Therefore, the following results concerning partial zeta functions associated with idesl

classes can be translated to properties of partial zeta functions associated with 7 €
Gal(M/F).
Let notations be as in the previous subsection. Since the map

Z(c;D,U:) > {a€clacC O}, 2+ 22,

is bijective, we have

((s,e)=N2A*  H " Nz

2€Z(c;DAU:)

Using this expression, Shintani related the derivative value ¢’ (0,¢) to special values of
Barnes’ multiple gamma functions. By using Yoshida’s class invariants X , We can rewrite
Shintani’s formula as follows.

Theorem 1.3.1. (Shintani’ formula.)

¢'(0,¢) = Z X(c,; D, A,).

teHom(F,R)

Remark 1.3.1. For ezample, let F = Q, D = R.q. Take the ideal class ¢ := a mod m
with (a,m) =1, 0 < a < m, which is an element € Cm) = (Z/mZ)*. Take A, = (1) = Z.
Then we have

((s,0) =) (a+mn)~*,

n>0
¢'(0,¢) = X(c; D, A,) = log(T'(a/m)) — -;—log 2m — (% - —:—1:) logm.
Therefore we have
exp(X(c)) = T(a/m)r~ 2> mod Q™.

Hence we may consider the value exp(X (c)) as a generalization of classical gamma values
I'(a/m) up to some correction terms.
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2 Main results

In order to state our main results, we need some notations. Let F be a totally real field
of degree n and f an integral ideal of F'.

Definition 2.0.1. For each embedding 0 € Hom(F,R), take an element v, € Of so that
v, = 1 mod f, v <0, vZ >0 (¢ # Yo’ € Hom(F,R)). Then we put s, := (v,) mod Ps; e
<.

We note that the class s, € €; does not depend on the choice of such an element v,.
More if M, far, Art are as in (1.5) then Art(s,) € Gal(M/F) is the complex conjugation
associated with a lift : M — Cof ¢ : F — R.

2.1 Monomial relations on exp(Xg(c))

The following Theorem is our main result in this paper. In the case of [F : Q] = 2, this
is due to Yoshida.

Theorem 2.1.1. For i,0 € Hom(F,R) with ¢ # o and for ¢ € & we have

exp(X(c, 1)) exp(X(cs,, ) € Q.
More precisely there exist r € Q, o € F*, depending on ¢, o, D and ., which satisfy
X(c,; D, %.) + X(c35,4;D,A,) = rlogi(a)
for any ¢« # 0.

Remark 2.1.1. In fact, we can write r € Q, o € F in the above Theorem explicitly
by the Bernoulli numbers and the bases of cones in a Shintani domain, but it is rather
complicated.

Remark 2.1.2. For 0,0’ € Hom(F,R), that s, = s,» may happen even if o # o'. For

example, assume that the mazimal ray class field H; modulo foo, ...o0, is a CM-field.

Then s, = s, for any 0,0’. Therefore if F' # Q and if H; is a CM-field, then we have
exp(X(c,t)) exp(X(cs,,t)) € Q.

without assuming that ¢ # 0. Similarly, assume that an abelian extension K of F is a
CM-field. Let f be the conductor of K/F and Art : €& — Gal(K/F) the Artin map. Note
that K has the unique complex conjugation p. For T € Gal(K/F), we put

X(7,¢) = Z X(c,¢).
cegy, Art(c)=T1
Then we can show that

exp(X(7,t)) exp(X(7p,¢)) = 1 mod Q"

for any T € Gal(K/F), « € Hom(F,R). If F = Q, then this formula follows from the
classical result (1.1) and Remark 1.8.1.
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2.2 The relation to Stark’s conjecture

Let F' be a totally real field of degree n, f an integral ideal of F, and H; the narrow ideal
class field modulo f. Then we have the Artin map Art : & = Gal(H;/F) with the narrow
ideal class group € modulo f. We fix an embedding id : F — R and take the ideal class

sig € &; as above. Since the fixed subfield M := Hf("’“‘) under s;4 has a real place lying
above id, Stark’s conjecture states that for all ¢ € <s, we have

(2.1) exp(¢’'(0,¢) + ¢'(0,cs14)) € Q.

Conversely, we can show that the algebraicity of any Stark’s unit over F follows from the
algebraicity (2.1) for all c. Now, by using Shintani’s formula (Theorem 1.3.1), we may
relate the derivative values (’(0, c) to Yoshida’s class invariants X(c). Namely we have

exp(¢'(0,c) +¢'(0,es:)) =[]  exp(X(c,t)) exp(X(csia, ) mod Q~.
tEHom(F,R)

Therefore by Theorem 2.1.1, “the algebraicity of Stark’s units” is equivalent to
(2.2) exp(X (c)) exp(X (csiq)) = 1 mod Q"

for all ¢.

3 The relation to CM-periods

Yoshida formulated a conjecture which expresses any CM-period as a product of (rational
powers of) exp(X(c)). Assuming his conjecture, we can investigate the relation between
“monomial relations on multiple gamma functions”, “monomial relations on CM-periods”,
and “algebraicity of Stark’s units”.

3.1 CM-periods and the relation to multiple gamma functions

First we recall Shimura’s CM-period symbol pg. For detail, see [S]. Let K be a CM-field,
Iy the Q vector space formally generated by the embeddings K < C. Then Shimura
showed that

Theorem 3.1.1. There erists a bilinear map

P Ix x Iy — C*/Q*

which is characterized by the following property; Let x be an arbitrary algebraic Hecke
character of K with the infinite type Eoeﬁom(x,c) l,0, l, € Z. For simplicity we assume
that

1. ly + oo =0 for all o.

2. l, € 2Z — {0} for all 0.
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Here we denote the complex conjugation on C by p. Then 38 = 0 is a critical value of the
associated Hecke L-function L(s,x) to x and we have

L(Os X) = leaeox %pK(TX7 <:DX) mOd —Q_x’

where we put By =3, 30, Ty =3 cp, o0

Remark 3.1.1. Shimura expressed any critical value of any Hecke L-function of K in
terms of a rational power of  and his symbol px up to algebraic numbers. He also showed
some “monomial relations” among px(o,0’), e.g.,

(31) pK(O', po 0',) = pK(p 0, al) = pK(aa al)‘l mod —Q—x
for any 0,0’ € Hom(K, C).

By the following Yoshida’s conjecture, we can express any CM-period in terms of
Yoshida’s invariant X (c). For detail, see [Yo3].

Conjecture 3.1.1. (Yoshida’s conjecture.) Let K be a CM-field and F a totally real
field. We assume that K/F is abelian, and put G := Gal(K/F), G~ := the set of all odd
characters of G. For any x € @“, we denote by K, the fized subfield of K under Ker x,
by fx the conductor of K, /F. Then for any 1 € G we have

X(7) S e, X(OX(0)

200, %) )mod Q.

pk(id, 7) = B exp(l—cl-;—l Z

xeé-

Here we put u(7) = 1,—1,0 if 7 = id, p, otherwise, respectively.

3.2 A slight generalization of Yoshida’s conjecture.

First we generalize Shimura’s period symbol px to any number field K as follows. For a
number field K, we denote by K¢ the maximal CM-subfield. (If K has no CM-subfield,
we put Kcopy = the maximal totally real subfield.) We denote by I% the image of the
linear map Inf : Ik, — Ik defined by 0 — 3" 1 cpomx,c), T — o'. As a corollary of
Theorem 3.1.1 and results of Harder and Schappacher, we get

Corollary 3.2.1. For any number field K, there exists a bilinear map
px g x I — C*/Q*
characterized by the property;
L(0, x) = wXiocex "g'pK(Tx, ®,) mod Q~

for any algebraic Hecke character x of K satisfying that l; + 0, = 0 for all o and for all
complezx conjugations p on K° and that l, € 2Z — {0} for all 0. Here l,, ®,, T, are the
same as in Theorem 3.1.1.
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Remark 3.2.1. By using results of Harder and Schappacher, we can write critical values
of Hecke L-functions of K in terms of those of Koy, up to algebraic numbers. Therefore
no new period appears even if we generalize the pg-symbol as above.

By using Theorem 2.1.1 (in particular, the following Remark 2.1.2), Yoshida’s conjec-
ture can be rewrite as follows; Let F' be a totally real field, K be an abelian extension of
F’, § be the conductor of K/F and G := Gal(K/F). For r € G, we put

r(r):=J] exn(X()),

c€s, Art(c)=t1

which is well-defined up to algebraic numbers. Then Yoshida’s conjecture states that

(3.2) I'(t) = 7¢O pg(r, Z ¢(0,0)0) mod Q*

oG

if K is a CM-field. Now we can generalize his conjecture slightly as follows.
Conjecture 3.2.1. The above formula (8.2) holds even if K is not a CM-field.

Remark 3.2.2. Assuming the above conjecture, “the algebraicity of Stark’s units” (2.2)
follows from monomial relations among CM-periods. Let K = H;. Then I'(Art(c)) =
exp(X(c)). Conjecture 3.2.1 states that

exp(X () exp(X (esia)) = n¢ OO Npy(1 + po 7, 3 ((0,0)0) mod Q.
oeG

- In general, we have ((0,7) + {(0,po 7) = 0. That px(r + por,0) = 1mod Q" follows
Jrom monomial relations (3.1) of CM-periods.

4 p-adic analogues

In this section, we formulate a p-adic analogue of Theorem 2.1.1. More, by using both
archimedean and p-adic multiple gamma functions, we can construct a refined invariant,
which is well-defined (without modulo algebraic numbers). For simplicity, we fix embed-
dings 10 : Q <> C and 1, : Q — C,. We normalize the p-adic absolute value |z|, on
2 € G, by |2|, =1/p.

4.1 The p-adic class invariant X (c)

We recall the definition of the symbol X,(c) which is the p-adic counterpart of Yoshida’s
invariant X (c). For detail, see [KY2].

Definition 4.1.1. We call a subset Z C Q “p-good” (with respect to Lo, 1) when we can
write '
Z = U§=1{Zj + mvjs + mavg + - - - + M (5)V5,r(5) | m; € ZZD}
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with ’I‘_,',k € Z-o, 25,V € 6 satisfying Loo(Zj),Loo(’U,;,j) € R, |Lp(Zj)|p > |Lp(v,-,j)ip. In

this case we define
(8 2) =D (Ita(2)lpteo(2)) ™

2€Z2
for s € C with Re(s) large enough. It can be continued meromorphically to the whole
complezx plane, and is analytic at s = 0. Moreover there erists the p-adic interpolation
function (p(s; Z) which is characterized by
Go(=k; Z) = (i) (—K; 2)
for k € Zp, k = 0 mod N with a suitable integer N. We also put
LT5(2) := (,(0; Z).

Remark 4.1.1. Pierrette Cassou-Nogués constructed the p-adic interpolation function
Cpir (8, (v1,...,0,),2) of Barnes’s multiple zeta function (.(s, (v1,...,vr), 2) under some
condition in [CN1|. As the derivative value ¢, .(0,(v1,...,v,),2), the author defined the
p-adic log multiple gamma function LTy, (2, (v1,...,v,)) and investigated its properties
in [Ka]. We can write the above functions (p(s;Z), LTp(Z) as a finite sum of these
functions (pr(8,(v1,...,vr),2), LTpy(2,(v1,...,vr)), respectively. We call LT,(Z) the
p-adic log multiple gamma function, also.

Let F be a totally real field. For an embedding . € Hom(F, Q), we denote by p, the
prime ideal of F' associated with ¢, 0t : F' < C,. Other notations are as above. Then we
have

Lemma 4.1.1. Ifc € & with p, | f, then the subset «(Z(c; D,?.)) is p-good.

Definition 4.1.2. Assume that p, divides f. For an ideal class c € &;, a Shintani domain
D and a fractional ideal A, with A, = ¢ mod P(y), we put

Gp(c, L D1 mC) = LFP(L(Z(C; D’ mC))),
Wile, D, %) 1= = =605 o Z(c; D, 24))) log, N2,

Vo(e,; D, 2A,) = Z tp © t(a;) log, ¢, 0 1(€;),

13

Xp(c,; D, A,.) == Gple, 1, D, AUc) + Wy(e, ¢; D, A.) + Vi(e, ; D, A,),

where we take elements a; € F, ¢; € Et satisfying (1.4). For simplicity, we use the
notation Gy(c) := Gp(c; D, A.) := Gp(c, ,; D, A,), etc.

The following Theorem is a p-adic analogue of Theorem 2.1.1.

Theorem 4.1.1. Assume that p, divides f. For 0 € Hom(F,R) (without assuming o #
too © L), and for ¢ € & we have

Xp(c) + Xp(cs,) € log, Q™.
More precisely there exist r € Q, a € F*, depending on c, o, D and A, which satisfy
Xp(c,t; D, ;) + Xp(css,t; D, Ac) = rlog, ¢, 0 1)
for any ¢« with p, | §.
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Remark 4.1.2. In the archimedean case, Theorem 2.1.1 holds when o # . Moreover
in the case of 0 = «, it involves Stark’s conjecture. In the p-adic version, Theorem 4.1.1
holds even when o = 1, 0 ¢.

4.2 A refined version of Conjecture (2.2)

By using archimedean and p-adic multiple gamma functions simultaneously, we conjec-
turally write the Stark unit strictly.

Definition 4.2.1. Let M be an abelian eztension of F with the conductor f. Assume that
M has a real place. Take . € Hom(M, Q) so that o o ¢ corresponds to the real place, and
take p,ip so that p, | f. Then by Theorem 4.1.1, for 7 € Gal(M/F) there ezist r € Q,
a € F* such that

Z Xp(c,4; D, Ac) = rlog, iy 0 ta).

c€gy, Art(c)=1

We may assume that |u, 0 o(a)], = 1, to 0 t{@) > 0. For v € Gal(M/F), we put

Poo/p(T) = exP( Z X(C7 ; D, 22lc))/ar'

€€y, Art(c)=71
Theorem 4.2.1. The definition of Teo/p(7) does not depend on the choice of D, ..

Conjecture 4.2.1. The definition of T /p(T) depends only on T and to © . Moreover
Loo/p(T) = teo © Lt o T(u), where u is the Stark unit in (0.1).

5 A Sketch of the proof

We need the following key Lemma to prove our main Theorems. We omit the proof of this
Lemma in this paper. Let F be a totally real field of degree n. Put {01,02,...,0,} :=
Hom(F,R). We embed F — R™ by z — (2%),.

Lemma 5.0.1. Assume that n = [F Q] > 2. Then we can take a Shintani domain D,
an element v € F, finite cones C;, Cy whose basis are in F N (R, x R* x R"'2), and
totally positive units u; € E satisfying the following properties;
1. v <0 ifi=2, v >0 otherwise,
2. we can decompose D = Upepm Dy so that X, = Uie1,,Ci O Dpm,vD,, Y
Uver,Cy = Xm — Dy, — vDpy,
3. there ezists a one to one correspondence ¢ : Umepdm — Umenmll, such that Cyiy =
u'iCi)

where M, I,, I} are finite sets of indices.

We shall give the sketch of the proof of Theorem 2.1.1. For simplicity we see only the
main idea to calculate special values of multiple gamma functions (that is, G(c) terms)
and assume that there exists an ¢, € Er such that ¢, € F*. We can prove Theorem
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4.1.1 in the same manner. We may assume that ¢ = 0, = id, ¢ = 03. Take v, D as in the
above Lemma. Recall

d _
G(c;D,Uc) = = Z P ,
2€Z(c;DAc) =0
Z(c;D,A) = {z€eDNA! | 22 € c}.
Note that €5 'vD is another Shintani domain. We can write
S e Y e Y
2€Z(c;D2Ac) ‘ zEZ(c;eElu‘D,ﬁc) 2€(DUrD)NAZ?, 22A.€c

By assumption, we get (v5;) = (Vo,€0) € P). Therefore for the ideal class cs,,, we can
take A, , 80 that Qlc,,2 = 2. and we get

_5_ 27+ 6" E 27 = E P
2€Z(c859;D,Ac) 2€Z(csaq:65 VD Ac) z&(DLvD)NA; Y, zAc€csa,
Put R:= {z € A1 | 22, € c or ¢s,,}. Then we have
E 2+ ¢” E 270+ E FAME 79 E F
2€Z(c;DAc) z€Z(cieg v D Ae) 2€Z(c804;D,Ac) 2€Z(cssq ;co‘lu‘D,ﬁc)
2

-8

Ord Saz

The derivative value at s = 0 of the left hand side is equal to

2(G(c; D, A.) + G(cso,; D, 2AL))

- (G(¢; D, A.) — G(c; e5'vD, A.))

— (G(c30;3 D, Ae) — G(cs4y; €5 VD, AUe))

— (¢(0; Z(c; 5 'vD, ac)) + ((0; Z(csq; 5 'vD, a,))) log €o.
By the above Lemma, we can write

Z z"=22(1—u{‘) z z7%.
2ERN{DUVD) meM i€ly, z€RNC;

We can show that each set RN C; is good in the sense of Definition 1.1.3. Therefore we
get

G(c; D, ;) + G(csq,; D, A,)
= l(G(C' D,A.) — G(c;e5*vD, ) + —1-(G(cs,,,;’D,£Zlc) — G(cSoy; €5 'vD, AL))

+ (C(O Z(c;&g'vD, ac)) +¢(0, Z(csz; € v D, 6c))) log o
3 Y0 RN Gy) log s

or
d sz mEM i€lm

By Theorem 1.2.1 and Remark 1.1.2, we can write the right hand side in the form of
> ailog Bi, a, B € F explicitly. We can also write other terms V' (c), W(c) explicitly, and
summing up them, we get the assertion of Theorem 2.1.1.
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