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Abstract
Formal degrees of supercuspidal representations of p-adic unrami-

fied $U(3)$ are obtained as a part of the explicit Plancherel formula by
Jabon-Keys-Moy. In this note, we compute those of ramified $U(3)$ in
terms of supercuspidal types. As a corollary, we give a new proof of
stability of very cuspidal representations of $U(3)$ .

1 Introduction
Let $F_{0}$ be a non-archimedean local field. Let $0_{0}$ denote the ring of integers
in $F_{0},$ $\mathfrak{p}_{0}=\varpi_{0}0_{0}$ the maximal ideal in $0_{0}$ , and $k_{0}=0_{0}/\mathfrak{p}_{0}$ the residue field.
Throughout this paper, we will always assume that the characteristic $p$ of $k_{0}$

is not 2. We denote by $q$ the cardinality of $k_{0}$ .
Let $F$ be a quadratic extension over $F_{0}$ . We write $0_{F},$ $\mathfrak{p}_{F}$ and $k_{F}$ for the

analogous objects for $F$ . Let $-\in$ Gal $(F/F_{0})$ . We choose a uniformizer $\varpi_{F}$

of $F$ so that $\overline{\varpi_{F}}=\pm\varpi_{F}$ .
Let $V=F^{3}$ be the space of three dimensional column vectors and let $h$

denote the hermitian form on $V$ defined by

$h(v, w)={}^{t}\overline{v}Hw,$ $v,$ $w\in V$, (1.1)

where

$H=(\begin{array}{lll}0 0 10 -1 01 0 0\end{array})$ . (1.2)
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Put $G=U(3)(F/F_{0})=\{g\in GL_{3}(F)|{}^{t}\overline{g}Hg=H\}$ . Then $G$ is the
$F_{0}$-points of a unitary group in three variables defined over $F_{0}$ .

Jabon, Keys and Moy [8] gave an explicit Plancherel formula of $G$ . In par-
ticular, they computed formal degrees of the discrete series representations
of $G$ . But they assumed that $F$ is unramified over $F_{0}$ , when they calculated
formal degrees of supercuspidal representations of $G$ . The aim of this note is
to determine formal degrees of the supercuspidal representations of $G$ when
$F$ is ramified over $F_{0}$ . This result completes the explicit Plancherel formula
of $G$ by Jabon-Keys-Moy.

The result in [8] is based on Moy’s classification of the irreducible admis-
sible representations of unramified $G$ in [9], and formal degrees of the super-
cuspidal representations of unramified $G$ are given in terms of nondegenerate
representations in $loc$ . $cit$. After Moy’s work [9], Blasco [2] constructed the
supercuspidal representations of $G$ via compact induction from representa-
tions of open compact subgroups of $G$ . Moreover Stevens [12] proved that
all supercuspidal representations of a p-adic classical group come via com-
pact induction from maximal simple types. In this note, we will use Stevens’
construction to describe the supercuspidal representations of ramified $G$ .

Let $\pi$ be an irreducible supercuspidal representation of $G$ . Then it follows
from [2] and [12] that there is an irreducible representation $\lambda$ of an open
compact subgroup $J$ of $G$ such that $\pi$ is isomorphic to ind$c_{\lambda}J$ . By the well-
known fact on formal degrees, the formal degree $d(\pi)$ of $\pi$ is given by

$d( \pi)=\frac{\deg\lambda}{vol(J)}$ . (1.3)

The formal degree $d(\pi)$ depends on the choice of Haar measure on $G$ . In [8],
Jabon, Keys and Moy chose the Haar measure on $G$ normalized so that the
volume of a special maximal compact subgroup $G\cap GL_{3}(0_{F})$ equals to 1. We
however use another normalization.

Let $p$ be an odd prime and let $q$ be a positive power of $p$ . Put $G=$

$U(3)(F_{q^{2}}/F_{q})$ . Let $\tau$ be an irreducible cuspidal representation of G. It is well
known that

$\dim\tau=(q-1)(q+1)^{2},$ $(q-1)(q^{2}-q+1)$ , or $q(q-1)$ . (1.4)

Let $\cup$ be a maximal unipotent subgroup of G. Then we have

$\frac{|\cup|\dim\tau}{|G|}=\frac{1}{q^{3}+1},$ $\frac{1}{(q+1)^{3}}$ , $or$ $\frac{q}{(q^{3}+1)(q+1)^{2}}$ . (1.5)
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This is the usual normalization of dimensions of irreducible representations
in the representation theory of finite groups of Lie type. We can identify

$\frac{|\cup|\deg\tau}{|G|}=vol(\cup)d(\tau)$ .

To obtain an analog for $parrow$ adic $U(3)$ , we normalize Haar measure on $G$ so
that the volume of the first congruence subgroup $B_{1}$ of the standard Iwahori
subgroup of $G$ is 1:

$B_{1}=(1+(\begin{array}{lll}\mathfrak{p}_{F} 0_{F} 0_{F}\mathfrak{p}_{F} \mathfrak{p}_{F} 0_{F}\mathfrak{p}_{F} \mathfrak{p}_{F} \mathfrak{p}_{F}\end{array}))\cap G$. (1.6)

Then the following proposition holds:

Proposition 1.1. Suppose that $F$ is ramified over $F_{0}$ . Let $\pi$ be an irreducible
supercuspidal representation of G. Then we have

$d( \pi)=\frac{q^{a}}{(q+1)^{b}2^{c}}$ ,

for some $a,$ $b,$ $c\geq 0$ .

Remark 1.2. Suppose that $F$ is unramified over $F_{0}$ . Then by [8], for a
supercuspidal representation $\pi$ of $G$ , we have

$d( \pi)=\frac{q^{a}}{(q^{3}+1)^{b}(q+1)^{c}}$ ,

for some $a,$ $b,$ $c\geq 0$ .

This research has an application to the local Langlands correspondence
for $G$ . Recently, by investigating the local theta correspondence, Blasco
[3] proved that a very cuspidal representation $\pi$ of $G$ is stable, that is, $\pi$

forms a singleton L-packet on $G$ . She also described the base change for
very cuspidal representations of $G$ in terms of theory of types. We give a
new proof of stability of very cuspidal representations of $G$ by showing that
very cuspidal representations are characterized by their formal degrees and
they are all generic. Our proof is also valid for depth zero supercuspidal
representations of unramified $G$ .
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2The supercuspidal representations

2.1 Construction
We begin by recalling Stevens’ construction of the supercuspidal representa-
tions of $parrow adic$ classical groups. For more details, one should consult [11] and
[12].

Let $F$ be a non-archimedean local field. Let $0_{F}$ denote the ring of integers
in $F,$ $\mathfrak{p}_{F}$ the maximal ideal in $0_{F}$ and $k_{F}=0_{F}/\mathfrak{p}_{F}$ the residue field. We always
assume the characteristic $p$ of $k_{F}$ is not equal to 2. For any arbitrary non-
archimedean local field $E$ , we write $0_{E},$ $\mathfrak{p}_{E}$ and $k_{E}$ for the analogous objects
for $E$ .

Let $-$ be a galois involution of $F$ . We allow the possibility $-$ is trivial.
Let $F_{0}$ denote the subfield of $F$ consisting of the $-$ -fixed elements. We write
$0_{0},$ $\mathfrak{p}_{0}$ and $k_{0}$ for the analogous objects for $F_{0}$ and put $q=$ Card $(k_{0})$ .

Let $h$ be a nondegenerate hermitian or skew hermitian form on a finite
dimensional F-vector space $V$ . We also denote by $-$ the involution on $A$

induced by $h$ . We write $A=End_{F}(V)$ and $A_{-}=\{X\in A|X+\overline{X}=0\}$ . Let
$G^{+}$ denote the group of isometries of (V, h) and $G$ the connected component
of $G^{+}$ . Then $G$ is the $F_{0}$-points of a unitary, symplectic, or special orthogonal
group, and the Lie algebra of $G$ is isomorphic to $A_{-}$ .

Let $[\Lambda, n, 0, \beta]$ be a skew semisimple stratum in $A$ (see [11] Definition 3.2).
Then $\beta$ is a semisimple element in $A_{-}$ . We write $E=F[\beta],$ $B=$ End$E(V)$ ,
and $G_{E}$ for the G-centralizer of $\beta$ . Note that $G_{E}$ is not contained in any
proper parabolic subgroup of $G$ . The self-dual $0_{E}$-lattice sequence $\Lambda$ in $V$

gives rise to a kind of valuation $\nu_{\Lambda}$ on $A$ , and the non-negative integer $n$ is
equal to $-\nu_{\Lambda}(\beta)$ . The sequence $\Lambda$ defines a decreasing filtration $\{a_{k}(\Lambda)\}_{k\in Z}$

on $A$ by its $-$ -stable open compact $0_{F}$-lattices. We get a filtration $\{P_{k}(\Lambda)\}_{k\geq 0}$

of a parahoric subgroup $P_{0}(\Lambda)=G\cap a_{0}(\Lambda)$ of $G$ by its open normal subgroups,
where $P_{k}(\Lambda)=G\cap(1+a_{k}(\Lambda)),$ $k\geq 1$ . Put $P_{k}(\Lambda_{0_{E}})=G_{E}\cap P_{k}(\Lambda)$ , for $k\geq 0$ .
Then $\{P_{k}(\Lambda_{0_{E}})\}_{k\geq 0}$ is a filtration of a parahoric subgroup $P_{0}(\Lambda_{0_{E}})$ of $G_{E}$ by
its open normal subgroups.

Rom a skew semisimple stratum $[\Lambda, n, 0, \beta]$ , we obtain open compact
subgroups

$H^{1}\subset J^{1}\subset J$ (2.1)

of $G$ (see [11] \S 3.2). The groups $H^{1}$ and $J^{1}$ are both pro-q subgroups of $G$ .
The group $J$ is given by $J=P_{0}(\Lambda_{0_{E}})J^{1}$ and the quotient $J/J^{1}$ is isomorphic
to $P_{0}(\Lambda_{0_{E}})/P_{1}(\Lambda_{0_{E}})$ .
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Let $\theta$ be a semisimple character associated to $[\Lambda, n, 0, \beta]$ (see [11] Defini-
tion 3.13). Then $\theta$ is an abelian character of $H^{1}$ . By [11] Corollary 3.29, there
exists a unique irreducible representation $\eta$ of $J^{1}$ such that $Hom_{H^{1}}(\eta|_{H^{1}}, \theta)\neq$

$\{0\}$ . The degree $\deg(\eta)$ of $\eta$ is given by $\deg(\eta)=[J^{1} : H^{1}]^{1/2}$ .
Suppose that $B\cap a_{0}(\Lambda)$ is a maximal $-$ -stable $0_{E}$-order in $B$ . Then $J/J^{1}$

is isomorphic to a product of classical groups defined over extensions over $k_{0}$ .
Note that the group $J/J^{1}$ is not always connected. Let $\kappa$ be a $\beta$-extension
of $\eta$ (see [12] \S 4.1). Then $\kappa$ is an extension of $\eta$ to $J$ . Let $\tau$ be an irreducible
cuspidal representation of $J/J^{1}$ , that is, an irreducible representation of $J/J^{1}$

whose restriction to the connected component of $J/J^{1}$ is irreducible and
cuspidal. Then $\pi=ind_{J}^{G}\kappa\otimes\tau$ is an irreducible supercuspidal representation
of $G$ . It follows from [12] Theorem 7.14 that every irreducible supercuspidal
representation is obtained in this way.

2.2 Formal degrees
Let $\pi=ind_{J}^{G}\kappa\otimes\tau$ be an irreducible supercuspidal representation of $G$ with
underlying skew semisimple stratum $[\Lambda, n, 0, \beta]$ . It follows from (1.3), the
formal degree $d(\pi)$ of $\pi$ is given by

$d( \pi)=\frac{\deg(\kappa\otimes\tau)}{vo1(J)}$ . (2.2)

By [12] Corollary 2.9 and [6] (2.10), there exists a self-dual $0_{E}$-lattice sequence
$\Lambda^{m}$ in $V$ such that $a_{0}(\Lambda^{m})\cap B$ is a minimal $-$ -stable $0_{E}$-order in $B$ and
$a_{1}(\Lambda^{m})\supset a_{1}(\Lambda)$ .

We normalize Haar measure on $G$ so that the volume of the first congru-
ence subgroup $B_{1}$ of an Iwahori subgroup is 1. Then we obtain the following
proposition:

Proposition 2.1. Let $\pi=ind_{J}^{G}\kappa\otimes\tau$ be an irreducible supercuspidal repre-
sentation of $G$ with underlying skew semisimple stratum $[\Lambda, n, 0, \beta]$ . Then we
have

$d( \pi)=\frac{[B_{1}:J^{1}][J^{1}:H^{1}]^{1/2}}{[P_{1}(\Lambda_{0_{E}}^{m}):P_{1}(\Lambda_{0_{E}})]}\frac{\deg(\tau)}{[P_{0}(\Lambda_{0_{E}}):P_{1}(\Lambda_{0_{E}}^{m})]}$ . (2.3)

Note that $P_{1}(\Lambda_{0_{E}}^{m})$ is the first congruence subgroup of the Iwahori sub-
group $P_{0}(\Lambda_{0_{E}}^{m})$ of $G_{E}$ . Put $G=P_{0}(\Lambda_{0_{E}})/P_{1}(\Lambda_{0_{E}})$ and $\cup=P_{1}(\Lambda_{0_{E}}^{m})/P_{1}(\Lambda_{0_{E}})$ .
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Then $\cup$ is a maximal unipotent subgroup of G. We put

$d( \pi)_{p’}=\frac{\deg(\tau)}{[P_{0}(\Lambda_{0_{E}}):P_{1}(\Lambda_{0_{E}}^{m})]}$ . (2.4)

Then we have

$d( \pi)_{p’}=\frac{|\cup|\deg(\tau)}{|G|}$ . (2.5)

Therefore, we can reduce the computation of $d(\pi)_{p’}$ to the representation
theory of finite groups of Lie type.

Remark 2.2. Although all supercuspidal representations of p-adic classical
groups are constructed, they have not been classified. So the term $d(\pi)_{p’}$

depends on the way of construction of $\pi$ .

Next, the term $d(\pi)/d(\pi)_{p’}=[B_{1} : J^{1}][J^{1} : H^{1}]^{1/2}[P_{1}(\Lambda_{0_{E}}^{m}) : P_{1}(\Lambda_{0}E)]^{-1}$

is a non-negative power of $q=$ Card$(k_{0})$ because all groups in this term are
pro-q subgroups of $G$ or $G_{E}$ .

To compute $d(\pi)/d(\pi)_{p’}$ , we recall the definition of the groups $H^{1}$ and
$J^{1}$ . For a skew semisimple stratum $[\Lambda, n, 0, \beta]$ , we get a sequence of skew
semisimple strata $\{[\Lambda, n, r_{i}, \gamma_{i}]\}_{i=0,\ldots,k}$ such that

(i) $0=r_{0}<r_{1}<\ldots<r_{k}=n$ ;

(ii) $\gamma_{0}=\beta$ and $\gamma_{n}=0$ ;

(iii) $[\Lambda, n, r_{i+1}, \gamma_{i}]$ is equivalent to $[\Lambda, n, r_{i+1}, \gamma_{i+1}]$ , that is, $\nu_{\Lambda}(\gamma_{i}-\gamma_{i+1})\geq$

$-r_{i+1}$ .

Put $G_{i}=C_{G}(\gamma_{i})$ . Then we have

$H^{1}$ $=$ $(G_{0}\cap P_{1})(G_{1}\cap P_{[r1/2]+1})\cdots(G_{k-1}\cap P_{[r_{k-1}/2]+1})P_{[n/2]+1}$ ,
$J^{1}$ $=$ $(G_{0}\cap P_{1})(G_{1}\cap P_{[(r_{1}+1)/2]})\cdots(G_{k-1}\cap P_{[(r_{k-1}+1)/2]})P_{[(n+1)/2]+1}$ .

So we get

$d(\pi)/d(\pi)_{p’}$ $=$ $\frac{[B_{1}:P_{1}]}{[P_{1}(\Lambda_{o_{E}}^{m}):P_{1}(\Lambda_{0_{E}})]}$

$\cross\Pi_{i=1}^{k}x_{i}(1, [\frac{r_{i}+1}{2}])\cdot x_{i}([\frac{r_{i}+1}{2}], [\frac{r_{i}}{2}]+1)^{1/2}$ ,

185



where $x_{i}(s, t)= \frac{[G_{i}\cap P_{s}.G_{i}\cap P_{t}]}{[G_{i-1}\cap P_{s}.G_{i-1}\cap P_{t}]}$ .

Suppose that $F$ is quadratic ramified over $F_{0}$ . Let $G=U(3)(F/F_{0})$ . Let
$e$ denote the $F_{0}$-period of $\Lambda$ . Then we can check that $x_{i}(s, t)$ is e-periodic.

Write $r_{i}=et_{i}-s_{i},$ $0\leq s_{i}<e$ . We obtain

$d(\pi)/d(\pi)_{p’}=q^{m}$ ,

where $m= \sum_{i=1}^{k}t_{i}\frac{\dim_{F_{0}}Lie(G_{i})-\dim_{F_{0}}Lie(G_{i-1})}{2}-j$ for some $j$ .

3 Ramified $U(3)$ case
We shall return to the case of ramified $U(3)$ . We let $G=U(3)(F/F_{0})$ , where
$F$ is ramified over $F_{0}$ . Let $[\Lambda, n, 0, \beta]$ be a skew semisimple stratum for $G$ .
Then the G-centralizer of $\beta$ has one of the following forms. In the table
below, we write $U(1,1)$ for the quasi-split unitary group in two variables,
$U(2)$ for the anisotropic unitary group in two variables, and $U(1)$ for the
norm-l subgroup of the multiplicative group of $F$ .

For each type of $G_{E}$ , the quotient $G=J/J^{1}$ has one of the following
forms:

Fortunately, we know degrees of all irreducible cuspidal representations
of G. We therefore get the term $d(\pi)_{p’}$ for all supercuspidal representations
$\pi$ of $G$ . Recall that $d(\pi)/d(\pi)_{p}/$ is a non-negative power of $q$ . So we obtain
the following proposition:
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Proposition 3.1. Let $\pi$ be an irreducible supercuspidal representation of $G$ .
Then we have

$d( \pi)=\frac{q^{a}}{(q+1)^{b}2^{c}}$ ,

for some $a,$ $b,$ $c\geq 0$ .

In the computation of $d(\pi)/d(\pi)_{p’}$ , we can ignore an element $[\Lambda, n, r_{i}, \gamma_{i}]$ in
a sequence $\{[\Lambda, n, r_{i}, \gamma_{i}]\}_{i=0,\ldots,k}$ such that $G_{i}=G_{i+1}$ . Therefore we need only
sequences of semisimple strata with $k\leq 3$ , that is, $\{[\Lambda, n, 0, \beta], [\Lambda, n, n, 0]\}$

or $\{[\Lambda, n, 0, \beta], [A, n, r, \gamma], [\Lambda, n, n, 0]\}$ . For each type of $\beta$ , there exist at
most two choices of $\Lambda$ because $a_{0}(\Lambda)\cap B$ is a maximal $-$ -stable $0_{E}$-order.

Now we obtain the following table of formal degrees of the supercuspidal
representations of ramified $U(3)$ :

A special representation of $G$ is a discrete series representation of $G$ which
is not supercuspidal. By [8], the formal degree of a special representation $\pi$

of $G$ is given by

$d(\pi)=\{$ $\frac{\frac q+11q^{m}’}{(q+1)2},$

$m\geq 0$ , otherwise.

if $\pi$ is a twist of the Steiberg representation;
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4 An application to the LLC

4.1 Discrete L-packets on $G$

From now on, we further assume that ch$(F_{0})=0$ . Suppose $F$ is ramified
over $F_{0}$ . Let $G=U(3)(F/F_{0})$ . Let $\Pi(G)$ denote the discrete L-packets on
$G$ . By [7] and [10], $\Pi(G)$ has the following properties:

(i) $\Pi(G)$ is a partition of the discrete series representations of $G$ by finite
subsets;

(ii) Let $\Pi\in\Pi(G)$ . Then $d(\pi_{1})=d(\pi_{2})$ , for $\pi_{1},$ $\pi_{2}\in\Pi$ ;

(iii) Every discrete L-packet $\Pi\in\Pi(G)$ contains exactly one generic repre-
sentation;

(iv) A discrete series representation $\pi$ of $G$ is stable if and only if $\{\pi\}\in$

$\Pi(G)$ .

4.2 Stable discrete series
We know the following representations of $G$ are stable:

(i) a twist of the Steinberg representation of $G([10])$ ;

(ii) a very cuspidal representation of $G$ , that is an irreducible supercuspidal
representation $\pi$ of $G$ with underlying skew stratum $[\Lambda, n, 0, \beta]$ such
that $E=F[\beta]$ is a cubic extension over $F([3])$ .

Remark 4.1. Blasco [3] proved stability of very cuspidal representations of
(ramified and unramified) $U(3)$ by investigating the local theta correspon-
dence.

We can characterize these stable discrete series representations by formal
degrees.

Proposition 4.2. Let $\pi$ be a discrete series representation of G. Then
(i) $\pi$ is a twist of the Steinberg representation if and only if $d( \pi)=\frac{1}{q+1}$ ,

(ii) $\pi$ is a very cuspidal representation if and only if $d( \pi)=\frac{q^{m}}{2}$ , for
$m\geq 0$ .
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Now we get a new proof of stability of very cuspidal representations of
$G$ . By basic properties of discrete L-packets on $G$ and Proposition 4.2, it is
enough to prove the following lemma:

Lemma 4.3. A very cuspidal representation of $G$ is generic.

4.3 Genericity of very cuspidal representations
We shall prove Lemma 4.3. This proof is based on results by Blondel-Stevens
[4] for $Sp(4)$ .

Let $[\Lambda, n, 0, \beta]$ be a skew semisimple stratum for $G$ such that $E=F[\beta]$

is a cubic extension over $F_{0}$ . Let $\pi=ind_{J}^{G}\lambda$ be an irreducible supercuspidal
representation of $G$ with underlying skew semisimple stratum $[\Lambda, n, 0, \beta]$ .

It follows from [5] Proposition 1.6 that $\pi$ is generic if and only if there
exists a nondegenerate character $\chi$ of a maximal unipotent subgroup $U$ of $G$

such that

$Hom_{J\cap U}(\lambda|_{J\cap U}, xlJ\cap U)\neq\{0\}$ .

Note that a maximal unipotent subgroup $U$ of $G$ corresponds to a flag $\{0\}\subsetneq$

$V_{1}\subset V_{1}^{\perp}\sim\subsetneq V$ , where $V_{1}^{\perp}$ denotes the orthogonal complement of $V_{1}$ .
Let $\psi_{0}$ be an additive character of $F_{0}$ with conductor $\mathfrak{p}_{0}$ . We define a

map $\psi_{\beta}$ : $M_{3}(F)arrow C$ by

$\psi_{\beta}(x)=\psi_{0}(trF/F_{0}^{O} trM_{3}(F)/F(\beta(x-1))),$ $x\in M_{3}(F)$ . (4.6)

Let $U$ be a maximal unipotent subgroup of $G$ corresponding to a flag $\{0\}\subseteq$

$V_{1}\subsetneq V_{1}^{\perp}\subsetneq V$ . Then it follows from [4] Proposition 3.1 that $\psi_{\beta}|_{U}$ is a
character of $U$ if and only if $\beta V_{1}\subset V_{1}^{\perp}$ .

By the assumption that $E$ is cubic over $F$ , we can find such a flag of $V$ ,
and hence we get a maximal unipotent subgroup $U$ of $G$ such that $\psi_{\beta}|_{U}$ is a
character of $U$ .

By the construction of $J$ and $\lambda$ , the restriction of $\lambda$ to $J\cap U$ contains
$\psi_{\beta}|_{J\cap U}$ . This completes the proof of Lemma 4.3.

4.4 Unramified case
Suppose $F$ is unramified over $F_{0}$ . In this case, we know the following discrete
series representations of $G=U(3)(F/F_{0})$ are stable:
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(i) a twist of the Steinberg representation of $G([10])$ ;

(ii) a twist of a depth $0$ supercuspidal representation, that is, a twist of
$ind_{J}^{G}\tau$ where $J$ is a conjugate of a special maximal compact subgroup
$G\cap GL_{3}(0_{F})$ and $\tau$ is an inflation of a cubic cuspidal representation of
$U(3)(k_{F}/k_{0})$ ([1]);

(iii) a very cuspidal representation of $G([3])$ .

We note that our proof of stability is valid for supercuspidal representa-
tions in cases (ii) and (iii). In fact, we can characterize these representations
by their formal degrees. By [8], for a discrete series representation $\pi$ of $G$ ,
we have

$\pi$ is a twist of the Steinberg representation $\Leftrightarrow d(\pi)=\frac{q^{2}+1}{(q^{3}+1)(q+1)^{2}}$ ,

$\pi$ is a twist of a depth $0$ supercuspidal representation $\Leftrightarrow d(\pi)=\frac{1}{q^{3}+1}$ .

$\pi$ is a very cuspidal representation $\Leftrightarrow d(\pi)=\frac{q^{m-1}}{q+1}$ or $\frac{q^{m}}{q^{3}+1}$ , for $m>0$ .

Moreover, we can prove genericity of representations in cases (ii) and (iii)
along with the lines of [4].
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