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Formal degrees of supercuspidal
representations of ramified U(3)

Michitaka Miyauchi*

Abstract

Formal degrees of supercuspidal representations of p-adic unrami-
fied U(3) are obtained as a part of the explicit Plancherel formula by
Jabon-Keys-Moy. In this note, we compute those of ramified U(3) in
terms of supercuspidal types. As a corollary, we give a new proof of
stability of very cuspidal representations of U(3).

1 Introduction

Let Fy be a non-archimedean local field. Let 0o denote the ring of integers
in Fp, po = weop the maximal ideal in o0p, and ky = 0g/py the residue field.
Throughout this paper, we will always assume that the characteristic p of kg
is not 2. We denote by ¢ the cardinality of k.

Let F' be a quadratic extension over Fy. We write or, pr and kg for the
analogous objects for F. Let = € Gal(F/Fy). We choose a uniformizer wp
of F so that g = +wp.

Let V = F3 be the space of three dimensional column vectors and let h
denote the hermitian form on V' defined by

h(v,w) = DHw, v,w € V, (1.1)
where
0 0 1
H=|0 -1 0 |. (1.2)
1 0 O
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Put G = UQB)(F/Fy) = {9 € GL3(F) | 'gHg = H}. Then G is the
Fy-points of a unitary group in three variables defined over Fj.

Jabon, Keys and Moy [8] gave an explicit Plancherel formula of G. In par-
ticular, they computed formal degrees of the discrete series representations
of G. But they assumed that F is unramified over F,, when they calculated
formal degrees of supercuspidal representations of G. The aim of this note is
to determine formal degrees of the supercuspidal representations of G when
F' is ramified over Fy. This result completes the explicit Plancherel formula
of G by Jabon-Keys-Moy.

The result in [8] is based on Moy’s classification of the irreducible admis-
sible representations of unramified G in [9], and formal degrees of the super-
cuspidal representations of unramified G are given in terms of nondegenerate
representations in loc. cit. After Moy’s work [9], Blasco [2] constructed the
supercuspidal representations of G via compact induction from representa-
tions of open compact subgroups of G. Moreover Stevens [12] proved that
all supercuspidal representations of a p-adic classical group come via com-
pact induction from maximal simple types. In this note, we will use Stevens’
construction to describe the supercuspidal representations of ramified G.

Let w be an irreducible supercuspidal representation of G. Then it follows
from [2] and [12] that there is an irreducible representation A of an open
compact subgroup J of G such that 7 is isomorphic to ind(J;)\. By the well-
known fact on formal degrees, the formal degree d(7) of 7 is given by

deg A
(m) = vol(J)

(1.3)

The formal degree d(7) depends on the choice of Haar measure on G. In (8],
Jabon, Keys and Moy chose the Haar measure on G normalized so that the
volume of a special maximal compact subgroup GNGLs(0or) equals to 1. We
however use another normalization.

Let p be an odd prime and let ¢ be a positive power of p. Put G =
U(3)(F,2/F,). Let 7 be an irreducible cuspidal representation of G. It is well
known that :

dim7T = (¢~ 1)(g+1)% (g—1(¢° —g+1), orglg—1). (1.4)
Let U be a maximal unipotent subgroup of G. Then we have
lUldim7 1 1 q (1.5)

G~ #+1 @+ T @+ D@+1)E
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This is the usual normalization of dimensions of irreducible representations
in the representation theory of finite groups of Lie type. We can identify

d
Widegr _ oyuyan).
Gl

To obtain an analog for p-adic U(3), we normalize Haar measure on G so
that the volume of the first congruence subgroup B; of the standard Iwahori
subgroup of G is 1:

Pr OF OF
Bi=11+ Pr Pr OF NG. (16)
Pr Pr PF

Then the following proposition holds:

Proposition 1.1. Suppose that F is ramified over F,. Let w be an irreducible
supercuspidal representation of G. Then we have
aQ

_ q
d(m) = m,

for some a,b,c > 0.

Remark 1.2. Suppose that F' is unramified over F;. Then by [8], for a
supercuspidal representation 7 of GG, we have

a

q
A = EE e e

for some a,b,c > 0.

This research has an application to the local Langlands correspondence
for G. Recently, by investigating the local theta correspondence, Blasco
[3] proved that a very cuspidal representation m of G is stable, that is, 7
forms a singleton L-packet on G. She also described the base change for
very cuspidal representations of G in terms of theory of types. We give a
new proof of stability of very cuspidal representations of G by showing that
very cuspidal representations are characterized by their formal degrees and
they are all generic. Our proof is also valid for depth zero supercuspidal
representations of unramified G.
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2 The supercuspidal representations

2.1 Construction

We begin by recalling Stevens’ construction of the supercuspidal representa-
tions of p-adic classical groups. For more details, one should consult [11] and
[12].
. Let F' be a non-archimedean local field. Let or denote the ring of integers -
in F', pp the maximal ideal in op and kr = op/pr the residue field. We always
assume the characteristic p of kp is not equal to 2. For any arbitrary non-
archimedean local field E, we write og, pg and kg for the analogous objects
for E.

Let ~ be a galois involution of F. We allow the possibility ~ is trivial.
Let Fpy denote the subfield of F' consisting of the ~-fixed elements. We write
00, Po and ko for the analogous objects for Fy and put ¢ = Card(ky).

Let h be a nondegenerate hermitian or skew hermitian form on a finite
dimensional F-vector space V. We also denote by — the involution on A
induced by h. We write A = Endg(V) and A_ = {X € A| X +X = 0}. Let
Gt denote the group of isometries of (V, h) and G the connected component
of G*. Then G is the Fy-points of a unitary, symplectic, or special orthogonal
group, and the Lie algebra of G is isomorphic to A_.

Let [A,n,0, 3] be a skew semisimple stratum in A (see [11] Definition 3.2).
Then [ is a semisimple element in A_. We write E = F[3], B = Endg(V),
and Gg for the G-centralizer of 3. Note that Gg is not contained in any
proper parabolic subgroup of G. The self-dual og-lattice sequence A in V
gives rise to a kind of valuation v, on A, and the non-negative integer n is
equal to —va(B). The sequence A defines a decreasing filtration {ax(A)}rez
on A by its ~-stable open compact o p-lattices . We get a filtration { Pi(A) } x>0
of a parahoric subgroup Py(A) = GNag(A) of G by its open normal subgroups,
where P,(A) = GN(1+ax(A)), k > 1. Put P(Aoy) = GeNPi(A), for k > 0.
Then {Py(Aog) k>0 is a filtration of a parahoric subgroup Fo(A,,) of Gg by
its open normal subgroups.

From a skew semisimple stratum [A,n,0, 3], we obtain open compact
subgroups | |

H'cJtcJ (2.1)

of G (see [11] §3.2). The groups H'! and J! are both pro-q subgroups of G.
The group J is given by J = Py(A,,)J* and the quotient J/J' is isomorphic
to Po(Aog)/Pi(Aag).
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Let 6 be a semisimple character associated to [A,n,0, 3] (see [11] Defini-
tion 3.13). Then 6 is an abelian character of H!. By [11] Corollary 3.29, there
exists a unique irreducible representation n of J* such that Homp: (n|g1,0) #
{0}. The degree deg(n) of n is given by deg(n) = [J* : H*]/2,

Suppose that BN ag(A) is a maximal ~-stable og-order in B. Then J/J?
is isomorphic to a product of classical groups defined over extensions over k.
Note that the group J/J! is not always connected. Let x be a 3-extension
of n (see [12] §4.1). Then & is an extension of n to J. Let 7 be an irreducible
cuspidal representation of J/J?!, that is, an irreducible representation of J/.J*
whose restriction to the connected component of J/J! is irreducible and
cuspidal. Then 7 = ind?n ® T is an irreducible supercuspidal representation
of G. It follows from [12] Theorem 7.14 that every irreducible supercuspidal
representation is obtained in this way.

2.2 Formal degrees

Let 7 = ind?h: ® T be an irreducible supercuspidal representation of G with
underlying skew semisimple stratum [A,n,0,3]. It follows from (1.3), the
formal degree d(w) of 7 is given by

deg(k ® T)
d = " 2.2
() vol(J) (2.2)
By [12] Corollary 2.9 and [6] (2.10), there exists a self-dual og-lattice sequence
A™ in V such that apg(A™) N B is a minimal ~-stable og-order in B and
Cll(Am) D al(A).

We normalize Haar measure on G so that the volume of the first congru-

ence subgroup B; of an Iwahori subgroup is 1. Then we obtain the following
proposition:

Proposition 2.1. Let m = ind?/e ® 7 be an irreducible supercuspidal repre-
sentation of G with underlying skew semisimple stratum [A,n,0, 8]. Then we
have

By JH[JY : HY)Y? deg(7)
—[PUAR) : Pi(Aog)] [Po(Aog) : PL(AR)]

d(r) (2.3)

Note that Py(AY.) is the first congruence subgroup of the Iwahori sub-
group Po(AL) of Gg. Put G = Po(Aoy)/Pi(Aog) and U = Pi(AF,)/Pi(Aog).
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Then U is a maximal unipotent subgroup of G. We put

deg(T)
Po(Aog) : PI(AR)]

dm)y = ¢ (2.4)

Then we have

d(r)y = V] ?Gelg(’r)'

Therefore, we can reduce the computation of d(7)y to the representation
theory of finite groups of Lie type.

(2.5)

Remark 2.2. Although all supercuspidal representations of p-adic classical
groups are constructed, they have not been classified. So the term d(m),
depends on the way of construction of .

Next, the term d(m)/d()y = [By : JY[J* : HYY2[P(AR) : Pi(Aeg)]™
is a non-negative power of ¢ = Card(ky) because all groups in this term are
pro-q subgroups of G or Gg. '

To compute d(m)/d(n),, we recall the definition of the groups H' and
J!. For a skew semisimple stratum [A,n,0, 3], we get a sequence of skew
semisimple strata {[A,n,r;,¥]}i=o,. & such that

i) 0=rg<m<...<Tp=m;
(i) vo = B and v, = 0;

(iii) [A,7,7i41,7%) is equivalent to [A,m,Tiy1, Vir1], that is, va(y — Yi+1) 2
—Tit1-

Put G; = Cg(v:). Then we have

H' = (Gon P)(GiN P[r1/2]+1) o (Gg—1 N P[rk_1/2]+1)P[n/2]+1a
J' = (GoN P)(G1N Prity2) -+ - (Gre-1 N Py +1)/2) Pty /2141

So we get
[Bl . Pl]
[Pi(AT,) : Pu(Aog)]

N ik S N i+l m 1)1/2
XHi:lw"(]"[ 2 ]) x’b([ 2 ]’[2]+ ) )

d(m)/d(m)y =
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[G’iﬂPs . Gzﬂ])t]
Gi-iNPs: GNP
Suppose that F is quadratic ramified over Fy. Let G = U(3)(F/Fy). Let
e denote the Fy-period of A. Then we can check that z;(s,t) is e-periodic.
Write r; = et; — s;, 0 < s; < e. We obtain

d(m)/d(m)y = q™,

where m — Zle : dimpg, Lie(G;) —2d1mF0 Lie(G;-1)

where z;(s,t) =

— j for some j.

3 Ramified U(3) case

We shall return to the case of ramified U(3). We let G = U(3)(F/Fy), where
F is ramified over Fy. Let [A,n,0, 5] be a skew semisimple stratum for G.
Then the G-centralizer of § has one of the following forms. In the table
below, we write U(1,1) for the quasi-split unitary group in two variables,
U(2) for the anisotropic unitary group in two variables, and U(1) for the
norm-1 subgroup of the multiplicative group of F'.

For each type of Gg, the quotient G = J/J! has one of the following
forms:

Gg G
U(3) 0(2,1)
SL(2) x O(1)
U(1,1) x UQ1) SL(2) x O(1)
U(2) x U(1) 0O(2) x O(1)
U(1)? 0(1)3
U(l)(El/ELO) X U(l) 0(1)2, E]_/ELQ : ramified
E,/F : quadratic U(1)(kg,/kE,,) x O(1), E1/E:, : unramified
U(1)(E/Eo) O(1)
E/F : cubic

Fortunately, we know degrees of all irreducible cuspidal representations
of G. We therefore get the term d(7),s for all supercuspidal representations
m of G. Recall that d(w)/d(m), is a non-negative power of q. So we obtain
the following proposition:
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Proposition 3.1. Let © be an irreducible supercuspidal representation of G.
Then we have

_ q°
d(m) = m,

for some a,b,c > 0.

In the computation of d(w)/d(r),, we can ignore an element [A, n, 7, v;] in
sequences of semisimple strata with £ < 3, that is, {[A,n,0,08], [A,n,n,0]}
or {[A,n,0,8], [A,n,7,v], [A,n,n,0]}. For each type of 3, there exist at
most two choices of A because ag(A) N B is a maximal ~-stable og-order.

Now we obtain the following table of formal degrees of the supercuspidal
representations of ramified U(3):

n/e r/e a b|c
0 0 111

0 112

m 3m 111
m—1/2 3m—2 |01
m—1/2 3m—2 0|2
m—1/2 3Im—2 |03
m—1/2 2m—1 |11
2m — 1 112

k 2m+k—1|11(1
k—1/2|2m+k—2{0]2
k—1/2|2m+k—2]0]3

m—1/6 3m—-1 |0]1
m —5/6 3m—3 (0|1

A special representation of G is a discrete series representation of G which
is not supercuspidal. By [8], the formal degree of a special representation 7
of G is given by

1

+1’
d(ﬂ') = q qm )
————— m >0, otherwise.

(g+1)2

if 7 is a twist of the Steiberg representation;
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4 An application to the LLC

4.1 Discrete L-packets on G

From now on, we further assume that ch(Fp) = 0. Suppose F is ramified
over Fy. Let G = U(3)(F/F). Let II(G) denote the discrete L-packets on
G. By [7] and [10], II(G) has the following properties:

(i) TI(G) is a partition of the discrete series representations of G by finite
subsets;

(ii) Let IT € II(G). Then d(m) = d(m), for m, w5 € II;

(iii) Every discrete L-packet I € II(G) contains exactly one generic repre-
sentation;

(iv) A discrete series representation 7 of G is stable if and only if {r} €
II(G).

4.2 Stable discrete series
We know the following representations of G are stable:
(i) a twist of the Steinberg representation of G([10]);

(ii) a very cuspidal representation of G, that is an irreducible supercuspidal
representation m of G with underlying skew stratum [A,n,0, 3] such
that E = F[(] is a cubic extension over F'([3]).

Remark 4.1. Blasco [3] proved stability of very cuspidal representations of

(ramified and unramified) U(3) by investigating the local theta correspon-
dence.

We can characterize these stable discrete series representations by formal
degrees.

Proposition 4.2. Let m be a discrete series representation of G. Then

1
(i) 7 is a twist of the Steinberg representation if and only if d(m) = q—_—+_——1,
m
(it) ™ is a very cuspidal representation if and only if d(w) = -q—2—, for

m > 0.
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Now we get a new proof of stability of very cuspidal representations of

G. By basic properties of discrete L-packets on G and Proposition 4.2, it is
enough to prove the following lemma:

Lemma 4.3. A very cuspidal representation of G is generic.

4.3 Genericity of very cuspidal representations

We shall prove Lemma 4.3. This proof is based on results by Blondel-Stevens
[4] for Sp(4).

Let [A,n,0, 8] be a skew semisimple stratum for G such that E = F[3]
is a cubic extension over Fy. Let m = indS )\ be an irreducible supercuspidal
representation of G with underlying skew semisimple stratum [A, n,0, 3].

It follows from [5] Proposition 1.6 that 7 is generic if and only if there

exists a nondegenerate character x of a maximal unipotent subgroup U of G
such that

Hom jny (Alsnw, Xlunv) # {0}

Note that a maximal unipotent subgroup U of G corresponds to a flag {0} C
Vi € Vi* €V, where Vit denotes the orthogonal complement of V.

Let ¢ be an additive character of Fy with conductor po. We define a
map 9 : M3(F) — C by

Ys(z) = Yo(trr/p, © trag(ry/F(B(T — 1)), = € M3(F). (4.6)

Let U be a maximal unipotent subgroup of G corresponding to a flag {0} C
Vi € Vi* € V. Then it follows from [4] Proposition 3.1 that Yslu is a
character of U if and only if 3V; C V-

By the assumption that E is cubic over F', we can find such a flag of V,
and hence we get a maximal unipotent subgroup U of G such that ¢gly is a
character of U.

By the construction of J and A, the restriction of A to J N U contains
Yg|snu. This completes the proof of Lemma 4.3.

4.4 Unramified case

Suppose F is unramified over Fp. In this case, we know the following discrete
series representations of G = U(3)(F/Fy) are stable:
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(i) a twist of the Steinberg representation of G([10]);

(ii) a twist of a depth 0 supercuspidal representation, that is, a twist of
ind%- where J is a conjugate of a special maximal compact subgroup
GNGL3(of) and 7 is an inflation of a cubic cuspidal representation of

U(3)(kr/ko)([1]);
(iii) a very cuspidal representation of G([3]).

We note that our proof of stability is valid for supercuspidal representa-
tions in cases (ii) and (iii). In fact, we can characterize these representations

by their formal degrees. By [8], for a discrete series representation 7 of G,
we have

241
7 is a twist of the Steinberg representation <= d(7) = s ,
(¢ +1)(g+1)*
1
m is a twist of a depth O supercuspidal representation <= d(m) = L
qm——l qm
7 is a very cuspidal representation <= d(m) = , for m > 0.

or
g+1 ¢ +1

Moreover, we can prove genericity of representations in cases (ii) and (iii)
along with the lines of [4].
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