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Introduction
The aim of this paper is to give a theory of newforms of weight $k+1/2$ , level $8\cross M$

and a quadratic character $\chi$ with an odd positive squarefree integer $M$ .
The main ingredients of our proof are two things. One is trace identities between

Hecke operators of integral weight and those of half-integral weight. Another one is
representations of the metaplectic covering group $\tilde{SL}_{2}$ over $\mathbb{Z}/N\mathbb{Z}$ .

For the sake of simplicity, we state the results for only the case of trivial character.
See the forthcoming paper for the details for general cases.

We compose this paper as follows: In the section 1, first we recall the previous works
of newform theory of half-integral weight which were obtained by several authors. And
then we state our main result.

In the section 2, we study a certain representation of $\tilde{SL}_{2}(\mathbb{Z}/N\mathbb{Z})$ defined by mod-
ular forms of half-integral weight and level $N$ .

In the section 3, we give the irreducible decomposition of the above representation
and describe a connection between this representation and a non-vanishing of Fourier
coefficients of modular forms. And then we give two applications. One is a character-
ization of plus spaces of level $4M$ and $8M$ . And another one is a theory of newforms
of half-integral weight and level $8M$ .

1. Let $k$ and $N$ be positive integers with 4 $|N$ . We decompose $N=2^{\mu}M$ with an
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odd positive integer $\Lambda I$ and an integer $\mu\geq 2$ . Let $\chi$ be an even quadratic character
modulo $N$ .

We denote by $S(k+1/2, N, \chi)$ the space of cusp forms of weight $k+1/2$ , level
$N$ and character $\chi$ . In particular, if $\chi$ is trivial, we shortly denote it $S(k+1/2, N)$ .
Moreover we define the plus space $S(k+1/2, N, \chi)_{pl}$ for the case of $\mu=2,3$ as follows:

$S(k+1/2, N, \chi)_{pl}:=\{\begin{array}{lllllll}f(z)= \sum_{n=1}^{\infty}a(n)e(nz)\in S(k +l/2 N \chi) a(n)=0if \chi_{2}(-1)(-1)^{k}n \equiv 2,3(mod4) \end{array}\}$ ,

where $\chi_{2}$ is the 2-primary component of $\chi$ and $e(z)=\exp(2\pi\sqrt{-1}z)$ . We write
$S(k+1/2, N)_{pl}$ if $\chi$ is trivial.

Several authors have already given theories of newforms in various cases. We list
them below.

$\bullet$ $S(k+1/2,4M, \chi)_{pl},$ $M$ is squarefree (Kohnen (1982) [K])

$\bullet$ $S(k+1/2,4M, \chi),$ $M$ is squarefree (Manickam, Ramakrishnan, and Vasude-
van (1990) [MRV] $)$

$\bullet$ $S(k+1/2,4M, \chi)_{pl},$ $M$ is general (Ueda (1998) [U2])

$\bullet$ $S(k+1/2,8M, \chi)_{pl},$ $M$ is squarefree (Ueda-Yamana (2009) [UY])

$\bullet$ $S(k+1/2,8M, \chi),$ $M$ is squarefree (Today’s talk)

We need the results of $[$K] and $[$MRV] in order to state our result. Then we will

recall them more precisely.

We prepare some notation.
Let $S^{0}(2k, M)$ be the space of newforms of weight $2k$ (cf. [M]). For any positive

integer $m$ , let $U(m)$ be a shift operator defined as follows:

$\sum_{n\geq 1}a(n)e(nz)|U(m):=\sum_{n\geq 1}a(mn)e(nz)$
, $z\in \mathbb{H}$ .

Here, $\mathbb{H}$ is the complex upper half plane.

Let $T(n)$ be the n-th Hecke operator of integral weight and $\tilde{T}(n^{2})$ the $n^{2}$ -th Hecke
operator of half-integral weight. Please see [U2] for the details of the above definitions.
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Then, we have the following.

Theorem 1 (Kohnen [K]). Assume that $M$ is squarefree. Then we have the following
decomposition of Hecke modules

$S(k+1/2,4M)_{pl}=\oplus S^{new}(k+1/2,4e)_{pl}|U(d^{2})$ ,
$0<e,d$
$ed|M$

Here, $S^{new}(k+1/2,4e)_{pl}$ is the space of newforms $($cf. $[$K$])$ . And moreover we have
an isomorphism as Hecke modules

$S^{new}(k+1/2,4M)_{pl}\cong S^{0}(2k, M)$ .

$\square$

Theorem 2 (Manickam, Ramakrishnan, Vasudevan [MRV]). Assume that $M$ is
squarefree. Then we have the following decomposition of Hecke modules

$S(k+1/2,4M)$

$=\oplus S^{new}(k+1/2,4e)|U(d^{2})$

$0<e,d$
$ed|M$

$\oplus\bigoplus_{0<e,d}\{S^{new}(k+1/2,4e)_{pl}|U(d^{2})\oplus S^{new}(k+1/2,4e)_{pl}|U(4d^{2})\}$ .

$ed|M$

Here, $S^{new}(k+1/2,4e)$ is the space of newforms (cf. [MRV]). And moreover we have
an isomorphism as Hecke modules

$S^{new}(k+1/2,4M)\cong S^{0}(2k, 2M)$ .

$\square$

The proofs of the above decompositions and isomorphisms are based on the following
two facts.

Fact 1. (Trace identity) For any positive integer $n$ with $(n, 4M)=1$ ,

tr $(\tilde{T}(n^{2});S(k+1/2,4M)_{pl})=$ tr$(T(n);S(2k, M))$ (by Kohnen)

tr $(\tilde{T}(n^{2});S(k+1/2,4M))=$ tr$(T(n);S(2k, 2M))$ (by Niwa)
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Fact 2. Linear independence of the spaces of oldforms $S^{new}(k+1/2,4e)|U(d^{2})$ ,
$S^{new}(k+1/2,4e)_{pl}|U(d^{2})$ , and $S^{new}(k+1/2,4e)_{pl}|U(4d^{2})(0<e,$ $d$ with $ed|M$
and $ed<M)$ .

Here, concerning Fact 1, we note that we have also the same trace identity for the

case of level $8M$ ([Ul]) : For any positive integer $n$ with $(n, 8M)=1$

tr $(\tilde{T}(n^{2});S(k+1/2,8M))=$ tr$(T(n);S(2k, 4M))$

Hence we can expect a similar theory of newforms also in this case. In fact, we can
give such a theory as follows:

First, we define the space of newforms $S^{new}(k+1/2,8M)$ to be the orthogonal
complement of

$S(k+1/2,4M)+S(k+1/2,4M)|Y_{8}$

$+ \sum_{p|M}\{S(k+1/2,8M/p)+S(k+1/2,8M/p)|U(p^{2})\}$

with respect to the Petersson inner product. Here, $p$ in the last sum runs over all
prime divisors of $M$ . Moreover, $Y_{2^{n}}=e(-(2k+1)/8)2^{n(-k/2+3/4)}U(2^{n})\overline{W}(2^{n})$ and
$\overline{W}(2^{n})$ is the Atkin-Lehner operator of half-integral weight.

Then we can prove the following Theorem.

Theorem 3. Let $M$ be a squarefree odd positive integer. Then we have the following
decomposition of Hecke modules

$S(k+1/2,8M)$

$= \bigoplus_{0<e,d}S^{new}(k+1/2,8e)|U(d^{2})$

$ed|M$

$\oplus\bigoplus_{0<e,d}\{S^{new}(k+1/2,4e)|U(d^{2})\oplus S^{new}(k+1/2,4e)|Y_{8}U(d^{2})\}$

$\oplus\bigoplus_{0<e,d}\{S^{new}(k+1/2,4e)_{pl}|U(d^{2})$

$\oplus S^{new}(k+1/2,4e)_{pl}|Y_{8}U(d^{2})\oplus S^{new}(k+1/2,4e)_{pl}|U(4d^{2})\}$ .
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And moreover we have an $isomo\varphi hism$ as Hecke modules

$S^{new}(k+1/2,8M)\cong S^{0}(2k, 4M)$ .

Hence, $S^{new}(k+1/2,8M)$ has an orthogonal basis $\{f_{i}\}$ consisting of common eigen-
forms of $\tilde{T}(p^{2})$ if $(p, 8M)=1$ and $U(p^{2})$ if $p|8M$ . Moreover there exists bijection
between $\{f_{i}\}$ and {primitive forms $F_{i}\in S^{0}(2k,$ $4M)$ } such that

$\{\begin{array}{ll}f_{i}|\tilde{T}(p^{2})=\lambda_{i,p}f_{i} if (p, 2M)=1f_{i}|U(p^{2})=\lambda_{i,p}f_{i} if p|2M\end{array}$

$\{$

$F_{i}|T(p)=\lambda_{i,p}F_{i}$ if $(p, 2M)=1$
$\vee*$

$F_{i}|U(p)=\lambda_{i,p}F_{i}$ if $p|2M$

$\square$

Remark 1. We can also establish this theorem for any quadratic character $\chi$ .
Remark 2. It seems that the operator $Y_{8}$ is slightly strange. However, we can see $Y_{8}$

is essentially equal to a certain modification of the shift operator $U(4)$ (cf. [UY]).
And also $Y_{8}$ has an important role in a characterization of the plus spaces. See the
section 3 below.

This theorem can be proved in a similar manner as the previous results. We already
mentioned the trace identity in this case. Hence, in the following, we will discuss linear
independence of the spaces of oldforms. For that purpose, we introduce a certain
representation of metaplectic cover $\overline{SL}_{2}$ over a ring of residue classes modulo $N$ .

2. Let $\overline{SL}_{2}(\mathbb{R})$
$:=\{[\alpha, \zeta]|\alpha\in SL_{2}(\mathbb{R}),$ $\zeta=\pm 1\}$ be a metaplectic covering of

$SL_{2}(\mathbb{R})$ . And we denote its projection $p:\overline{SL}_{2}(\mathbb{R})\ni[\alpha,$ $\zeta]\mapsto\alpha\in SL_{2}(\mathbb{R})$ . Then $p$

splits on the congruent subgroup $\Gamma_{1}(4)$ and the section is given by

$\Gamma_{1}(4)\ni\gamma=(\begin{array}{ll}a bc d\end{array})\mapsto=\gamma:=[\gamma,$ $( \frac{c}{d})]\in\overline{SL}_{2}(\mathbb{R})$ ,

where $( \frac{*}{*})$ is the Kronecker symbol. (cf. [Ge])
For any subgroup $H$ of $SL_{2}(\mathbb{R})$ , put $\tilde{H}$ $:=p^{-1}(H)$ . Moreover if $H\subseteq\Gamma_{1}(4)$ , put

$=H:=\{\gamma=|_{\sim}\gamma\in H\}$ .
Let $j$ : $SL_{2}(\mathbb{R})\cross \mathbb{H}arrow \mathbb{C}$ be the usual automorphic factor of weight 1/2. Then for

any function $f$ : $\mathbb{H}arrow \mathbb{C}$ and $\xi=[\alpha,$ $\zeta]\in\overline{SL}_{2}(\mathbb{R})$ , put

$(f\Vert_{k+1/2}\xi)(z):=j(\xi, z)^{-(2k+1)}f(\alpha z)$ , $z\in \mathbb{H}$ .
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Now, we introduce a representation on the space of cusp forms.
Let $S(k+1/2, \Delta(N))$ be the space of cusp forms of weight $k+1/2$ with respect to

the principal congruence subgroup $\Gamma(N)$ . (See [U2] for the definition of $\Delta(N).$ )

Since $=\Gamma(N)\triangleleft\overline{SL}_{2}(\mathbb{Z})$ , we can consider a quotient group $\tilde{G}$

$;=$ $\tilde{G}(N)$ $=$

$\overline{SL}_{2}(\mathbb{Z})/\Gamma=(N)$ , which we denoted $\overline{SL}_{2}(\mathbb{Z}/N\mathbb{Z})$ and called a metaplectic group over
$\mathbb{Z}/N\mathbb{Z}$ in the above.

Then we can define a representation $\varpi$ of $\tilde{G}$ on $S(k+1/2, \Delta(N))$ by

$\varpi(\xi_{*})(f):=f\Vert_{k+1/2}\xi^{-1}$ , $f\in S(k+1/2, \triangle(N))$ ,

where $\xi_{*}=\xi$ mod $=\Gamma(N)\in\tilde{G}$ .

Let $f$ be a non-zero cusp form in $S(k+1/2, N, \chi)$ , where $\chi$ is a quadratic character.
And we denote $\varpi_{f}$

$:=\mathbb{C}[\tilde{G}]f$ , i.e., the $\mathbb{C}[\tilde{G}]$ -module generated by $f$ .

Put $\tilde{B}:=\tilde{B}(N)=\tilde{\Gamma}_{0}(N)/\Gamma=(N)$ . Using relations $f|(\begin{array}{ll}a bc d\end{array})=\chi(d)f$ for any $(\begin{array}{ll}a bc d\end{array})\in$

$\Gamma_{0}(N)$ , we see that $\mathbb{C}f$ becomes a $\mathbb{C}[\tilde{B}]$-module via $\varpi$ .

Then we have a following natural surjective $\mathbb{C}[\tilde{G}]$ -homomorphism

$\Phi_{f}:Ind_{\tilde{B}}^{\tilde{G}}\mathbb{C}f\cong \mathbb{C}[\tilde{G}]\otimes_{\mathbb{C}[\tilde{B}]}\mathbb{C}farrow \mathbb{C}[\tilde{G}]f=\varpi_{f}$ , $\eta\otimes f\mapsto\varpi(\eta)f$ .

Hence $\varpi f$ can be considered as a subrepresentation of $Ind_{\tilde{B}}^{\tilde{G}}\mathbb{C}f$ . Therefore, it is
enough to study the induced representation $Ind_{\tilde{B}}^{\tilde{G}}\mathbb{C}f$ in order to study $\varpi_{f}$ .

In a usual way, we can decompose $\tilde{G}$ and $\tilde{B}$ into local components as follows:

$\tilde{G}(N)=\tilde{G}(2^{\mu})\cross\prod_{p|M}SL_{2}(\mathbb{Z}/p\mathbb{Z})$
,

$\tilde{B}(N)=\tilde{B}(2^{\mu})\cross\prod_{p|M}B(p)$
.

Here $B(p)$ $:=\{(_{0d}^{ab})\in SL_{2}(\mathbb{Z}/p\mathbb{Z})\}$ .
Hence the $\mathbb{C}[\tilde{B}]$-module $\mathbb{C}f$ can be decomposed into local components and therefore,

we can also decompose $Ind_{\tilde{B}}^{\overline{G}}\mathbb{C}f$ into local components

$Ind_{\tilde{B}}^{\tilde{G}}\mathbb{C}f\cong\rho_{2}\otimes(\bigotimes_{p|M}\rho_{p})$ ,

where $\rho_{2}$ (resp. $\rho_{p}$ ) is a certain representation of $\tilde{G}(2^{\mu})$ $($ resp. $SL_{2}(\mathbb{Z}/p\mathbb{Z}))$ .
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We can give an explicit description of these local components $\rho_{2}$ and $\rho_{p}(p|M)$ , i.e.,
those irreducible decompositions and explicit basis of those irreducible components,
etc.. However, the complete results are too complicated to describe here. Hence we
skip the details. Please see the forthcoming paper for the details.

Instead of that, we will express partial results in the next section for the simplest
two cases: (i) $N=4M$ and $\chi=1$ and (ii) $N=8M$ and $\chi=(\frac{2}{*})$ . And we give two
application of those.

3. In order to establish a theory of newforms, we must obtain linear independence of
spaces of oldforms. And it can be derived by using non-vanishing property of Fourier
coefficients of cusp forms. We can get such properties by studying $\varpi_{f}$ .

Now, it is well-known that Fourier coefficients relate to representations of the unipo-
tent subgroup $U===\Gamma_{1}(2^{\mu})/\Gamma(2^{\mu})\cong \mathbb{Z}/2^{\mu}\mathbb{Z}$ . Hence, for our purpose, we must find the
irreducible decomposition of 2-primary component $\rho_{2}$ and moreover decompose those
irreducible components as $\mathbb{C}[U]$-modules.

We denote by $\hat{U}$ the character group of $U$ . Then $\hat{U}$ is given by the following:

$\hat{U}=\{\psi_{a}|a\in \mathbb{Z}/2^{\mu}\mathbb{Z}\}$ , $\psi_{a}((\begin{array}{ll}l x0 1\end{array}))=e(ax/2^{\mu})$ .

Under the above notation, we have the following results.

$\rho_{2}\cong \mathcal{A}_{0}\oplus \mathcal{A}_{1}$ . (as $\mathbb{C}[\tilde{G}]$ -modules)

${\rm Res}_{U}\mathcal{A}_{0}\cong\psi_{0}\oplus\psi_{-(-1)^{k}}$ ,
${\rm Res}_{U}\mathcal{A}_{1}\cong\psi_{0}\oplus\psi_{1}\oplus\psi_{2}\oplus\psi_{3}$ . (as $\mathbb{C}[U]$ -modules)

The case of $N=8M$ and $\chi=(\frac{2}{*})$

$\rho_{2}\cong \mathcal{B}_{0}\oplus \mathcal{B}_{1}\oplus \mathcal{B}_{2}$ . (as $\mathbb{C}[\tilde{G}]$ -modules)

${\rm Res}_{U}\mathcal{B}_{0}\cong\psi_{0}\oplus\psi_{4}\oplus\psi_{-(-1)^{k}}$ ,
${\rm Res}_{U}\mathcal{B}_{1}\cong\psi_{0}\oplus\psi_{4}\oplus\psi_{-5(-1)^{k}}$ ,
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${\rm Res}_{U}\mathcal{B}_{2}\cong\psi_{0}\oplus\psi_{2}\oplus\psi_{4}\oplus\psi_{6}\oplus\psi_{(-1)^{k}}\oplus\psi_{5(-1)^{k}}$ .
(as $\mathbb{C}[U]$ -modules)

Remark 3. We have the complete results for arbitrary level $N$ and arbitrary quadratic

character $\chi$ .

Here, we give two applications of the above results.

The first application is a characterization of plus spaces via the representation $\varpi$ .
Put $f= \sum_{n\geq 1}a(n)e(nz)$ . Then each component $\psi_{\alpha}$ occurred in ${\rm Res}_{U}\mathcal{A}_{i}$ and

${\rm Res}_{U}\mathcal{B}_{j}$ corresponds to a family of Fourier coefficients $\{a(n)|n\equiv n_{\alpha}mod 4\}$ , where
$n_{\alpha}$ is a constant depending only on $\alpha$ . Hence, the above decompositions suggest the

representations $\mathcal{A}_{0},$ $\mathcal{B}_{0}$ , and $\mathcal{B}_{1}$ correspond to the plus spaces of level $4M$ and $8M$ .
In fact, we can obtain the following characterization of the plus spaces.

Let us prepare one more notation.
As we mentioned above, $\tilde{G}(N)=\tilde{G}(2^{\mu})\cross\prod_{p|M}SL_{2}(\mathbb{Z}/p\mathbb{Z})$ . In particular, $\tilde{G}(2^{\mu})$

can be considered as a subgroup of $\tilde{G}=\tilde{G}(N)$ . Then we put $\varpi_{2}(f)$ $:=\mathbb{C}[\tilde{G}(2^{\mu})]f$ .

Theorem 4 (Skoruppa (the case of $\mu=2$ ), Ueda). Let the notation as above. And
put $\sigma_{k}=1+e((2k-1)/4)$ .

(1) For a non-zero $f\in S(k+1/2,4M)$ , we have the following characterization.

$f\in S(k+1/2,4M)_{pl}$ $\Leftrightarrow$ $f|Y_{4}=2\sigma_{k}f$ $\Leftrightarrow$ $\varpi_{2}(g)\cong \mathcal{A}_{0}$ ,

where $g:=f|\overline{W}(4)^{-1}$ .

(2) For a non-zero $f\in S(k+1/2,8M)$ , we have the following characterization.

$f\in\{\begin{array}{l}S(k+1/2,8M)_{pl,+}S(k+1/2,8M)_{pl,-}\end{array}$ $\Leftrightarrow f|Y_{8}=\{\begin{array}{l}2\sqrt{2}\sigma_{k}f-2\sqrt{2}\sigma_{k}f\end{array}$ $\Leftrightarrow\varpi_{2}(g)\cong\{\begin{array}{l}\mathcal{B}_{0}\mathcal{B}_{1}\end{array}$

where $g:=f|\overline{W}(8)^{-1}$ and moreover

$S(k+1/2,8M)_{pl,+};=\{\begin{array}{llll}f(z)= \sum_{n=1}^{\infty}a(n)e(nz)\in S(k+1/2,8M) a(n)=0if(-1)^{k}n\equiv 2,3,5,6,7(mod8) \end{array}\}$ ,
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$S(k+1/2,8M)_{pl,-:=}\{$ $f(z)= \sum_{n=1}^{\infty}a(n)e(nz)\in S(k+1/2,8M);\}$
$a(n)=0$ if $(-1)^{k}n\equiv 1,2,3,6,7(mod 8)$

口

Next we will consider linear independence of oldforms in $S(k+1/2,8M)$ as the
second application. For the sake of simplicity, we treat only the simplest case $M=1$ .

First, we note the following. If eigenforms have different systems of eigenvalues on
Hecke operators, then they are linearly independent. Hence it is enough to consider
eigenforms which belong the same system of eigenvalues.

Now, let $f= \sum_{n\geq 1}a(n)e(nz)\in S^{new}(k+1/2,4)$ be common eigenform of $\tilde{T}(p^{2})$

for all primes $p$ . Then, we can see $\varpi_{2}(f|\tilde{W}(4)^{-1})\cong \mathcal{A}_{1}$ by using a similar argument
to those of characterizations of plus spaces. Therefore, for any $t\in \mathbb{Z}/4\mathbb{Z}$ , there exists
a positive integer $m_{t}$ such that $m_{t}\equiv t(mod 4)$ and that $a(m_{t})\neq 0$ .

On the other hand, since $Y_{8}$ satisfies the relation $Y_{8}^{3}=Y_{8}$ , we have $f|Y_{8}\in$

$S(k+1/2,8)_{pt}$ by using the characterization of plus space. Hence the $m_{2^{-}}th$ Fourier
coefficient of $f|Y_{8}$ vanishes. Therefore, $f$ and $f|Y_{8}$ are linearly independent.

Next, let $f\in S^{new}(k+1/2,4)_{pl}$ be a non-zero common eigenform of $\tilde{T}(p^{2})$ for all
prime numbers $p$ . Then we have the following two fact ([K])

(1) $f$ and $f|U(4)$ are linearly independent.

(2) $f|U(4)\not\in S(k+1/2,4)_{pl}$ .

Moreover, we can prove that $f$ and $f|Y_{8}$ are linearly independent as follows:

First, we get from direct calculations

$f|Y_{8}=c_{0}f(4z)+c_{1}( \sum_{(-1)^{k}n\equiv 1(mod 8)}a(n)e(nz)-\sum_{(-1)^{k}n\equiv 5(mod 8)}a(n)e(nz))$ ,

where $f= \sum_{n\geq 1}a(n)e(nz)$ and $c_{0},$ $c_{1}$ are non-zero constants.
For simplicity, we denote by $h$ the second term of the right-hand side.
Then, if $f|Y_{8}=\alpha f$ for some $\alpha\in \mathbb{C}$ ,

$\alpha f=c_{0}f(4z)+h$ .
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Apply a shift operator $U(4)$ to the both sides

$\alpha f|U(4)=c_{0}f(4z)|U(4)+h|U(4)=c_{0}f+h|U(4)$ .

Observing the shape of Fourier coefficients of $h$ , we can see $h|U(4)=0$ .
Hence we get

$\alpha f|U(4)=c_{0}f$ .

This is a contradiction to the above statement (1).

Combining this, the statement (2), and the characterization of $S(k+1/2,8)_{pl}$ , we
get linear independence of $f,$ $f|Y_{8}$ , and $f|U(4)$ .

Thus we obtain linear independence of spaces of oldforms and a theory of newforms
for the case of level $8M$ and weight $k+1/2$ .
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