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The moduli space of equilateral hexagons
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Abstract

Here we clarify the topology of the moduli space of equilateral hexagons. The detail
argment is discussed in author’s paper, “The moduli space of equilateral hexagons”.

1 Introduction

By an n-gon, we mean a polygon with n edges in the complex line C. Here we
do not assume that an n-gon is a simple polygon. It could be wild. For instance,
edges may intersect each other, may coincide, or even may be degenerate. We
only assume that not all edges are degenerate simultaneously.

An n-gon can be identified simply with an ordered set of n points. The moduli
space P, of n-gons, where two n-gons are identified if they are orientation
preservingly similar with marking, is naturally homeomorphic to a complex
projective space of complex dimension n — 2 by assigning edge vectors. There
is a natural map of P, to RP™ by assigning the ratio of edge lengths to each
n-gon. The fiber is the moduli space of n-gons with prescribed ratio of edge
lengths, and its real dimension is at most n — 3 =2(n — 2) — (n — 1).

Here is a history of the study on the topology of the moduli space of n-
gons with a fixed ratio of edge lengths. In [2], Havel showed that the moduli
space of equilateral pentagons is homeomorphic to a closed surface of genus 4
using computational techniques with distance geometry methods. Kamiyama
re-discovered this fact by using Morse theory in [4]. More systematically to
these works, Kapovich and Millson developed their study on the topology of
moduli spaces of n-gons when the edge lengths are not necessarily equal to
each other but preserve a ratio of edge lengths, and obtained several generic
conclusions for the case n = 4,5,6 in [6], with an extensive list of related
works. We come back about genericity later, but should like to mention at



this stage that equilateral case is generic when n = 5 in fact, but not when
n = 6.

Assigning the direction of edges to each n-gon after Gauss map, we obtain a
marked n point configuration on the unit circle up to rotations. Since our n-gon
may have edges with the same direction, the configuration assigned could have
collision of points. Thus the assignment defines a map from the moduli space
of n-gon with a fixed ratio of edge lengths to the moduli space of marked
n point configurations on the unit circle up to conformal transformations.
However, some point configuration does not come from any n-gon. Moreover,
the target space is not Hausdorff. Hence it is natural to exclude some of marked
point configurations which cause non-Hausdorff property. For this purpose,
Kapovich and Millson imposed the “semi-stability” condition on the ratio of
edge lengths in Definition 5 of [6] which rejects degenerate n-gons, where an
n-gon is said to be degenerate if it is contained in an euclidean line. Equilateral
pentagons never be degenerate but some equilateral hexagons are so.

The purpose of this paper is to clarify the topology of the moduli space of equi-
lateral hexagons, including degenerate ones. We will denote it by X throughout
this paper. There are ten degenerate hexagons. If we exclude these exceptions,
the moduli space turns out to have bijective correspondence to the moduli
space X’ of semi-stable marked 6 point configurations on the circle, which
was known to be homeomorphic to a hyperbolic 3-manifold with ten cusps
by Kojima, Nishi and Yamashita in [7]. Hence X is known, a priori, to be
homeomorphic to the union of X’ with ten points.

The goal is to show that X is actually equal to the space obtained from X' by
compactifying each end with a point. This identification will be a conclusion
of our completely independent description of X. In fact, using new and ele-
mentary view for X, we prove that it has a very natural cell decomposition by
16 copies of a polyhedron with 10 faces. Our method also provides a new proof
of hyperbolization for X’ via Koebe-Andreev-Thurston’s theorem [5], [1], [9],.

The organization of this paper is as follows. In §2, we define the moduli space
of hexagons and briefly describe the basic idea for the analysis. We divide X
into 16 parts and construct a uniform combinatorial model Hj3 for the parts,
in §3. Then we find the gluing rule of parts in §4, and clarify the topology of
neighborhoods of edges and vertices of X in §5. §6 is to conclude the results
obtained up to §5.
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2 Definitions and the basic idea

Let Y be the space of equilateral hexagons in C and X the moduli space of
marked equilateral hexagons. More concretely, we set

Y ={p=(p1,p2,--* ,ps) € C°| |pi — pis1| =1 for all i mod 6},
X=Y/~

where p ~ ¢ if and only if p is congruent to ¢ orientation preservingly, i.e.
there exist v, w € C with |v| =1 such that p; =vg; +w for all 3.

We use p € Y to indicate also its equivalence class p € X confusingly. For
example, {p € X | |p1 — ps| = 1} means {(p1,--- ,ps) €Y | |[p1 —ps| =1}/ ~.
Note that the condition “|p; — ps| = 1” here is invariant under congruent
transformations and independent of a choice of representatives of p € X.

Definition 1. For each equilateral hexagon p = (p1,p2, -+ ,p6) € Y or X, we
call the triangle spanned by pi, ps, ps the inner triangle of p, and denote it by

A(p).

Denote by z,y,z : X — R the maps which assign to each p € Y the length
of each side of A(p). More precisely, z(p) = |ps — p1l, y(p) = |ps — p3| and
z(p) = |p1 — ps|. Since equivalent hexagons have congruent inner triangles,
z(p), y(p) and z(p) make sense.

Fig. 1. Hexagon p = (p1,p2, - ,Pe) and its inner triangle A(p)

Definition 2. Let
f:X— R3

be a continuous map assigning (z(p), y(p), 2(p)) to each p € X.



Then, the image of X by f is equal to
H={(z,y,2) eR*|0<z,94,2<2, s <y+z,y< z+zx, 2<z+7y}
Denote the interior of H by H° and set @ to be f~!(H°). In other words,
Q={pe X|0<z(p),ylp),z2(p) <2, A(p) has non-zero area}.
It is obvious that @ is open and dense in X.

Fix a hexagon p € Q). There are exactly 8 hexagons in @ whose inner triangles
are marked congruent to A(p) (including p itself). Thus by taking the orien-
tation of inner triangles into account, there are 16 hexagons which share the
congruent class of A(p).

Fig. 2. candidates for pg,ps and ps

In particular, @ is homeomorphic to a disjoint union of 16 copies of H°, and
flo : @ — H° is a 16-fold trivial covering.

The basic idea for attaining our goal is to study the closure of a component of
Q in X carefully, and to find a compact model polyhedron H3 with 10 faces by
skinning the boundary to H°, so that X can be obtained by gluing 16 copies
of H; with the canonical gluing rule. The construction of Hz will be done by
blowing up H along some edges and vertices of in the next section.

3 Construction of a model polyhedra H;

For each p = (p1,p2,- -+ ,Ps) € @ with nondegenerate inner triangle A(p), let
s; be either + or — according to whether the orientation of A(p) coincides
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with that of C or not. s; may be explicitly expressed in terms of the sign of
the imaginary part of (ps — p1)/(ps — p1). We call s; the sign of A(p).

Also, let s; (s3and syqresepectively) be either 4+ or — according to whether
D2 (psand ps) is located on the right hand side or left hand side of the line
from p; (ps and ps) towards p3 (ps and p;). Again s, may be identified with the

sign of the imaginary part of (p2 —p1)/(p3 — p1) and so on. We call s;, s3 and
s4 the sign of p,, p4 and pg respectively.

S1, S2, 83, 84 may be regarded as maps from @Q to {Z}. Notice moreover that
some of s;(p)’s make sense even when p is not a member of Q, and we will use
this terminology also for p not in ) whenever it makes sense.

To each s € {£}4, set H°(s) to be equal to {p € X | (s1(p), 52(p), 53(p), s4(p)) =
s} and H(s) the closure of H°(s) in X. H°(s) isopen in X and H°(s)NH°(s') =
0 if s # s’. Moreover, Q is equal to the union U,e(+3H°(s).

Choose a subspace of R3,

Ho={(z,y,2) eR*|0<z,y,2<2, s <y+2,y<2+1 2< 2 +y}

H° C Hy C H and Hj is obtained from H by removing four vertices and three
edges, see Figure 3.

Fig. 3. Hp (thick edges and vertices are not included)

Now, by looking at Hy, we choose 5 parts of H(s) with overlaps as follows;

Wo(s) = {pe H(s) |0 < z(p) <2,0<y(p) <2,0< z2(p) <2},
Wi(s) ={pe€ H(s) | 0 < z(p) < 2,0 < y(p) <2,0 < z(p) < 2},
Wa(s) = {p€ H(s) | 0 < z(p) < 2,0 < y(p) < 2,0 < z(p) <2},
Ws(s)={pe H(s) |0 <z(p) <2,0<y(p) <2,0< 2(p) <2} and
Wi(s) ={p€ H(s) |0 < z(p) <2,0< y(p) < 2,0 < 2(p) < 2}.

Lemma 1. H(s) = UL W;(s) for each s € {£}*.
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Details can be found in [3]. Note that W;(s)’s are open in H(s) because z,y
and z are continuous maps.

Definition 3. Denote the restriction of f to Wy(s) by f, : Wo(s) — R3.

We also let half open edges Ei, E;, E3 and a vertex E4 in H be {(0,t,t) €
R |O0<t<2} {(t,0,t) e R® |0 <t <2}, {(tt,0) e R¥ |0 < ¢t < 2}
and {(0,0,0)} respectively. It is clear that H = Ho U (U}, E;), Im f, = Ho,
F(Wi(s) — Wy(s)) = E; for i = 1,2,3 and f(Wa(s) — U3 W;(s)) = Exs.

=

Lemma 2. Wy(s) is homeomorphic to Hy by f, for each s € {£}*.

Details can be found in [3].

Recall that f, is the restriction of f, H(s) D Wy(s) and H(s) D Wy(s). f is
injective on Wy in fact, but no longer injective on W1 (s). Thus W;(s)—Wy(s) =
f~1(E;)N H(s) will be the space to analyze for finding an appropriate blowing
up of H along E;. To see this, remember that Hp = {(z,y,2) € R® | 0 <
2,,2 <2,z <y+2zy<z2+z2<z+y} By setting w = (y — 2)/z, we
transform Hy homeomorphically onto

H)={(z,w,2) e R®|0<z,zw+2,2<2,z<wr+22 —1<w< 1}
Partially skinning H{, we define H; explicitly by

Hy={(z,w,2) eR*|0<r<2,0<zw+22<2,z<wr+22 -1<w<1}
= HoU{(0,w,2) eR¥| —1<w<1,0<2<2}

H, is a noncompact polyhedron-like space surrounded by 2 ruled faces and 5
flat faces.

Fig. 4. Hy and H; (thick edges and vertices are not included)

To see H, more precise, let us denote the argument between p; — ps and the
oriented bisector p; — &322 by 6(p).
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P3
P
6(p)
ps P
Fig. 5. 6(p)

We will show by subsequent 3 lemmas that H; is a blowing up of Ho U E;
along E,, where the inverse image of E, is parametrized by 0 x E,.

Definition 4. Let
gs Wo(S) U Wl(S) - Hl
be a map defined by setting g,(p) = (z(p), w(p), 2(p)), where

w(p) = wo(p) = (y(p) — 2(p))/2(p) if p € Wo(s),
wy(p) = sin(6(p)) if p € Wi(s) — Wo(s).

Lemma 3. g, is a homeomorphism between Wy(s) U Wi(s) and H;.

Details can be found in [3].

Moreover, since E, and E; are disjoint from E; and the union U3_, F; has
cyclic symmetry of order 3, blowing up Hp U US_,E; along E), E; and Ej
simultaneously in a similar manner to the above, we obtain a polyhedron-like
space Hj, so that

Corollary 1. H, is homeomorphic to Wo(s) U Wy(s) U Wa(s) U Wa(s).

To see how we blow up H at E4 = {(0,0,0)}, let © be the space of angles,
which is the quotient space of [0, 27] by identifying 0 and 2. ©?2 is thus a torus,
and will be the union of blown up surfaces of the origin in H. It corresponds
to the torus formed by hexagons with completely degenerate inner triangle.

Definition 5. Letting

— ar ps — (p3 +p5)/2 on — ar pe — (ps +p1)/2
¢(p) = arg (Pz —(m +p3)/2) 4 ¥lp)=org ('p4 — (ps + ps)/2> ’

we define a continuous map

hs : Wa(s) — 62
by setting hs(p) = (¢(p), ¥(p))-
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Here, ¢ measures the argument of oriented bisectors of psps and p;ps which
ranges a half in ©. Similarly ¢ measures the argument of oriented bisectors of
psp1 and psps which ranges a half in ©.

Fig. 6. p € Wy(s) where s = (+. — .—, —)

Notice that (¢, ) is invariant under similar changes of A(p), and therefore the
values stay constant along the curve in H(s) corresponding to a ray through
E4 in Ho U E4.

It is easy to see for example that if s = (+,—, —, —), then the image of h, is
a triangular region T = {(¢,¢) € ©2 |0 < ¢, ¢ < 7,7 < ¢ + ¥} on O?, see
Figure 7. Three vertices (0, 7), (m,0), (7r,7) of T correspond to rays on the
face of Hy defined by the triangle equalities. In this case, every rays on each
face are mapped to a point. Three edges of T' correspond to the boundary
of the faces of H, appeared by the blow up along edges F; (i = 1,2,3). An
interior point of T' corresponds to a ray lying in the interior of Hy. Moreover,
the restriction of h, to Wy(s) N f~(E,) is a homeomorphism onto 7.

¢

T 2r =20

Fig. 7. T = hs(W4(s)) when s = (+, -, _,_.)
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Then, by looking at the case when s = (4, —,—,—), we can construct a
compact polyhedron-like space Hz3 = H; U T such that the projection p :
H3 — H is continuous and p~!(F,) = T. In other words, Hj is a blowing up
of H along U}_ E; and is homeomorphic to H(s).

A

Fig. 8. H3

Since a canonical homeomorphism from H(s) to H(s') induced by the change
of signs extends to their closures in X as a canonical homeomorphism, we have

Corollary 2. Hj is homeomorphic to H(s) = Ut W;(s) for each s € {£}*.

4 Gluing rule along faces

Recall that Hs has 10 faces. Let us denote the corresponding faces of H(s) for
each s € {£}* by

(1) Fo(s) = Cl({p € Wo(s) | z(p) = 2})
(2) Fi(s) = Cl({p € Wo(s) | y(p) = 2})
(3) Fa(s) = Cl({p € Wo(s) | 2(p) = 2})
(4) F3(s) = Cl({p € Wo(s) | z(p) + y(p) = z(p)})
(5) Fu(s) = Cl({p € Wo(s) | y(p) + 2(p) = z(p)})
(6) Fs(s) = Cl({p € Wo(s) | 2(p) + z(p) = y(P)})
(7) Fe(s) = Cl({p € Wi(s) | z(p) = 0})
(8) Fr(s) = Ci({p € W2(s) | y(p) = 0})
(9) Fs(s) = Cl({p € Ws(s) | 2(p) = 0})
(10) Fo(s) = Cl({p € Wu(s) | z(p) = y(p) = z(p) = 0})

where CI(Z) is the closure of the interior points of Z in the boundary of H(s).
See Figure 9.
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\-FQ

Fig. 9. Faces

For each s € {£}*, we want to know which components are adjacent to H(s)
and how they are gluing to H(s). As we see in the following, for each i €
{0, -+, 9}, there exists s’ € {£}* such that s # s’ and Fi(s) = Fi(s'). In other
words, gluing is cellular with respect to the polyhedral structure of H(s)’s.

Fix s = (s1, 82, 83, 54). Fo(s1, $2, 53, 54) consists of p € H(s) with z(p) = 2. Such

p is also a member of Fy(s;, —s2, s3,54) and vise versa as in Figure 10, show-

ing typical hexagons in H(+,~,—,—), Fo(+,—,—,—) = Fy(+,+,—,—) and
H(+,+, =, ~). Thus, Fo(s1, S2, 83, 54) = Fo(so, —S2, 83, 84). Similarly, F} (sq, S2,83,84) =
Fl (81, 89, —83, 84), and Fz(Sl, 89, 83, 54) = FQ(Sl, Sa, 83, -34).

P4
De Ds ﬂ P4 D4
v. D3
D2 b3
P1 i
(tr=y=y-) xX(p)=2 (+,+,~,-)
Fig. 10. Fy

Similarly, we can see following rules:

o F3(s1,82,83,84) = F3(—s1, 52, 83, 54)
o Fy(s1,82,53,34) = Fy(—s1, 82, 83, 54)
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F5(81, S92, 83, 84) = F5(—81, S2, 83, 84)
Fy(s1, 82, 83, 84) = Fg(—s51, —$2, S3, 84)
F7(s1,82,83,84) = F7(—s1, 52, —S83, 84)
Fg(s1, 82, $3,84) = Fs(—s1, S2, 3, —54)
F9($1, S92, 83, 84) = F9(31, —S82, —S83, -34)

We thus have understood how X is divided into H(s)'s. In other words, we
can construct the space homeomorphic to X by gluing 16 copies of Hjz by
looking at the above correspondence.

5 Links of edges and vertices

Now, we want to understand a topological structure of X, or equivalently the
union of 16 copies of H; indexed by s € {+}* according to the gluing rule
established in the previous section, around edges and vertices.

By symmetry, we only need to check structures about the edges A, B,C, D, E
and vertices a, b, ¢, d indicated in Figure 11 in H(+4+, —, —, —).

. .

Fig. 11. Edges and Vertices to be Checked

5.1 FEdges

The edge A consists of the interior points of Fo(+, —, —, —) N Fao(+, —, —, —).
If we choose p from A, we can move s; and s4 freely by moving p, and pg a
little as in Figure 12, Thus four H(s)’s share p and the link of A is a circle as
in Figure 13.



Ds
2
m o P4
D1 ) Ps
Fig. 12.pe A

A

/,
=

Fig. 13. A and its neighborhood

Similarly, we can verify that eight H(s)’s share B, four H(s)’s share C, four
H(s)’s share D and four H(s)’s share E. Moreover, each edge has a link
homeomorphic to a circle.

5.2 Vertices

We can easily verify that eight H(s)’s share a, eight H(s)’s share b and sixteen
H(s)’s share c.

To count how many H(s)’s share the last vertex d, we let h: f~1(E;) — ©2
be a map defined by h(p) = (¢(p), ¥(p)), where

_ ps — (p3 +ps)/2 — are (P8~ (ps + p1)/2
¢(p) = arg (Pz — (1 +p3)/2)  Yip) = arg (Pz — (p1 +P3)/2) '

The restriction of h to H(s)Nf~1(E}) is equal to the restriction of h, : Wy(s) —
0?2 to Wy(s) N f~Y(E,). For each s € {£}4, h(H(s) N f~1(E,)) is a triangle on
©? as in Figure 14 and 6 triangles share a vertex. This means 12 H(s)’s share
d.
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4
2r =10
(+I_l—l+) (+r‘r"'r"')
(+:+:+l') (+I+I_I+)
('r‘r"’r"') (_I-I_I-)
(=r+,=,-) (‘l"'l"'l"’)
™
(+r-"’l') (+I"I+l+)
(+'+'+’+) (+'+I-I_)
(’I+r"l+) (-I_I-l+)
(-I-I+I-) (-I+l+l—) _ ¢
m 2r=0
d

Fig. 14. h(f~1(E4))

Now we know how many H(s)’s share an edge and how many H(s)’s share
a vertex. Using these information we can calculate the Euler characteristic of
the link L, of a vertex v, denoted by x(L,), so that x(Ls) = 2 = x(L.) and
x(Ly) = 0 = x(Ly4). It is routine and easy to see that these link are connected

and orientable and hence L,, L. are homeomorphic to a sphere and L;, L a
torus.

Since the link of a point that is not a vertex in X = U,¢(4}¢«H(s) is homeo-
morphic to a sphere, all points whose link is homeomorphic to a torus are the
vertices arising from type b and d. There are 10 such hexagons and each of
them is contained in a straight line. Remember

Definition 6. A polygon is degenerate if it is contained in a straight line,

which is due to Kapovich and Millson in [6]. Since there are exactly 10 degen-
erate hexagons in X, a hexagon in X is degenerate if and only if it is of type
b or d. Thus, we can conclude from the argument above that

Lemma 4. The link of a degenerate equilateral hezagon is homeomorphic to
a torus. The link of a nondegenerate equilateral heragon is homeomorphic to
a sphere.
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6 Results

Here we would like to conclude the results obtained in the previous sections.
Recall that X' is the space of nondegenerate equilateral hexagons.

Theorem 1. The moduli space X of equilateral hexagon is not a manifold
though the moduli space X' of nondegenerate equilateral hexagons is a mani-
fold. The non manifold points consists of 10 degenerate hexagons. The link of
each degenerate hexagon is homeomorphic to a torus.

Let us denote X’ N H(s) by H'(s) for each s € {£}*. H'(s) can be identified
with Hj3 minus vertices which correspond to of type b and d. Assigning to each
edge the number of H’(s)’s which share it, we obtain an orbifold structure
on each H'(s). Then, by applying the theorem of Koebe-Andreev-Thurston
(5], [1], [9], we find a unique hyperbolic structure on H’(s). The gluing rule
provides isometries between faces, and we have

Theorem 2. The moduli space X' of non degenerate equilateral hexagons
admits a hyperbolic structure of finite volume.
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