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ABSTRACT. The purpose of this article is to give a summary of
the seminar lecture with title Variational formulas for principal
functions and for spans of Riemann surfaces by the author in the
conference in RIMS, Kyoto, Japan, December 2008. The main
theorems are in the manuscripts $[$2$]$ and [6]. This note should be
understood as a lectures summary version of these manuscripts.

1. INTRODUCTION

Let $\mathcal{R}=\bigcup_{t\in B}(t, R(t))$ and $\tilde{\mathcal{R}}=\bigcup_{t\in B}(t,\tilde{R}(t))$ be unramified sheeted
domains over $B\cross \mathbb{C}_{z}$ , where $B=\{|t|<\rho\}$ is a disk in $\mathbb{C}_{t}$ and $R(t)\Subset$

$\tilde{R}(t)$ for $t\in B$ . We set $\partial \mathcal{R}=\bigcup_{t\in B}(t, \partial R(t))$ in $\tilde{\mathcal{R}}$ . In this article, we
assume that

$\mathcal{R}:t\in Barrow R(t)$

is a $C^{\omega}$ smooth variation of domains $R(t)$ with $C^{\omega}$ smooth boundaries
in $\tilde{R}(t)$ . Namely, we can choose a real analytic defining function $\varphi(t, z)$

of $\partial \mathcal{R}$ such that $\frac{\partial}{\partial}Rz\neq 0$ on $\partial \mathcal{R}$ . We denote by $C_{j}(t)(j=0,1, \ldots, \nu)$ ,
where $\nu(\geq 0)$ is independent of $t\in B$ , the boundary contours of $R(t)$ in
$\tilde{R}(t)$ with the orientation: $\partial R(t)=\sum_{j=0}^{\nu}C_{j}(t)$ . We usually regard two-
dimensional Riemann domain $\mathcal{R}$ over $B\cross \mathbb{C}_{z}$ as a $C^{\omega}$ smooth variation
of Riemann surface $R(t)$ over $\mathbb{C}_{z}$ with $C^{\omega}$ smooth boundary $\partial R(t)$ with
one complex parameter $t\in B$ .

Assume that the total space $\mathcal{R}$ of complex 2-dimension contains $B\cross$

$\{0\}$ . Precisely, there exists at least one constant section $O$ of $\mathcal{R}$ over
$B\cross\{0\}$ . For each $t\in B$ , we conventionally write $0$ for the point
$O\cap R(t)$ .

Let $t\in B$ be fixed. In the theory of one complex variable, it is known
that there uniquely exists a real-valued function $u(t, z)$ on $R(t)\backslash \{0\}$

with the following four conditions:
(1) $u(t$ , 之 $)$ iS haエmonic on $R(t)\backslash \{0\}$ and iS continuous on $\overline{R(t)}$ ;
(2) $u(t,$ $z)$ 一 $\log\frac{1}{|z|}$ is h鉱monic at 之 $=0$ ;
(3) $u(t$ , 之 $)$ $=0$ on $C_{0}(t)$ ;
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(4) for each $i=1,$ $\ldots,$
$v$ , we have

(i) $u(t, z)=a_{i}(t)$ : constant on $C_{i}(t)$ ;

$( ii)\int_{C_{|(l)}}*du(t,$ 之 $)$ $=0$ .

We note that $u(t, z)$ extends harmonically across $\partial R(t)$ as a harmonic
function on $V(t)$ such that $\partial R(t)\Subset V(t)\Subset\tilde{R}(t)$ . By (2), we find a
neighborhood $U_{0}(t)$ of 之 $=0$ such that

$u(t, z)= \log\frac{1}{|\text{之}|}+\gamma(t)+h(t, z)$ on $U_{0}(t)$ ,

where $\gamma(t)$ is the constant term and $h(t, z)$ is harmonic for $z$ on $U_{0}(t)$

such that

$h(t, 0)=0$ , $t\in B$ .

The function $u(t, z)$ is called the $L_{1}$ -principal function on $R(t)$ with
logarithmic pole at $0$ with respect to $C_{0}(t)$ , and $\gamma(t)$ is called the $L_{1^{-}}$

constant for $(R(t), 0)$ with respect to $C_{0}(t)$ (cf: [7]). In this paper,
we simply call $u(t, z)$ the $L_{1}$-principal function for $(R(t), 0, C_{0}(t))$ , and
$\gamma(t)$ the $L_{1}$-constant for $(R(t), 0, C_{0}(t))$ . We note that $u(t, z)>0$ in
$R(t)\backslash \{0\}$ and $a_{i}(t)>0(i=1, \ldots , \nu)$ .

Then we have the following variation formula for the $L_{1}$-constant
$\gamma(t)$ for $(R(t), 0, C_{0}(t))$ .

Lemma 1. It holds for $t\in B$ that

$\frac{\partial^{2}\gamma(t)}{\partial t\partial\overline{t}}=-\frac{1}{\pi}\int_{\partial R(t)}k_{2}(t, z)|\frac{\partial u(t,z)}{\partial z}|^{2}ds_{z}-\frac{4}{\pi}\int\int_{R(t)}|\frac{\partial^{2}u(t_{t}z)}{\partial\overline{t}\partial z}|^{2}dxdy$.

Here

$k_{2}(t, z)=( \frac{\partial^{2}\varphi}{\partial t\partial\overline{t}}|\frac{\partial\varphi}{\partial z}|^{2}-2{\rm Re}\{\frac{\partial^{2}\varphi}{\partial\overline{t}\partial z}\frac{\partial\varphi}{\partial t}\frac{\partial\varphi}{\partial\overline{z}}\}+|\frac{\partial\varphi}{\partial t}|^{2}\frac{\partial^{2}\varphi}{\partial z\partial\overline{z}})/|\frac{\partial\varphi}{\partial z}|^{3}$

on $\partial \mathcal{R}$ , which does not depend on the choice of defining functions $\varphi(t, z)$

of $\partial \mathcal{R}$ , and $ds_{z}$ is the arc length element of $\partial R(t)$ at $z$ .

The function $k_{2}(t, z)$ on $\partial \mathcal{R}$ is due to Maitani-Yamaguchi in [5] which
is based on [4] for the several complex variables 1. This variation for-
mula is formally the same as that for the Robin constant $\lambda(t)$ (induced
by the Green function $g(t, z)$ on $R(t)$ with logarithmic pole at $z=0$)
in Theorem 3.1 in [5]. The essential difference of the proofs for $\gamma(t)$

and $\lambda(t)$ comes from the fact that $u(t, z)$ is not a defining function of
$\partial \mathcal{R}$ contrary to the case of the Green function $g(t, z)$ .

lThe geometric meaning of $k_{2}(t, z)$ is studied in the language of Cartan’s moving
frame (see [3]).
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Theorem 2. Under the same conditions in Lemma 1, if $\mathcal{R}$ is pseu-
doconvex over $B\cross \mathbb{C}_{z}$ , then $\gamma(t)$ is a $C^{\omega}$ superharmonic function on
$B$ .

Remark 1. For Lemma 1, we assumed that $\mathcal{R}$ is unramified over $B\cross \mathbb{C}_{z}$ .
However, even if each $R(t),$ $t\in B$ has a finite number of branch points
$\zeta_{k}(t)(k=1, \ldots, m)$ for $t\in B$ such that $\zeta_{k}(t)$ is a holomorphic function
on $B$ with $\zeta_{k}(t)\neq\zeta_{l}(t)(k\neq l),$ $t\in B$ , then Lemma 1 and hence
Theorem 2 hold. For, this case can be reduced to Lemma 1 by the
standard method by use of Y. Nishimura’s theorem [8].

In the special case when $R(t)$ is a planar Riemann surface, the $L_{1^{-}}$

principal function $u(t, z)$ induces a circular slit mapping $f(t, z)$ . That
is, if we choose a branch $u^{*}(t, z)$ of harmonic conjugate function of
$u$ $(t$ , 之 $)$ on $R(t),$ $t\in B$ such that

$f(t, z)=e^{\gamma(t)-(u(t,z)+iu^{*}(t,z))}$

is of the form

$w=f(t, z)=z+ \sum_{j=2}^{\infty}b_{j}(t)z^{j}$ on $U_{0}(t)$ ,

then $f(t, z)$ conformally maps $R(t)$ onto a circular slit domain $\{|w|<$

$e^{\gamma(t)} \}\backslash (\bigcup_{i=1}^{\nu}l_{i})$ , where $l_{i}(t)=f(t, C_{i}(t))$ (an arc of the circle $\{|w|=$

$e^{\gamma(t)-a_{i}(t)})$ . Since $e^{\gamma(t)}$ is logarithmic superharmonic on $B$ , the total
space $\bigcup_{t\in B}\{|w|<e^{\gamma(t)}\}$ is a Hartogs domain in $B\cross \mathbb{C}_{w}$ .

Remark 2. We note that the same formula for the radius $r_{0}(t)$ of radial
slit mapping does not hold. We can give counterexamples of pseudo-
convex domains $\mathcal{R}$ in $B\cross \mathbb{C}_{z}$ such that $\log r_{0}(t)$ are not superharmonic
or not subharmonic on $B$ .

In the theory of conformal mappings in one complex variable, the
$L_{1^{-}}$ and $L_{0}$-principal functions and the logarithmic span play the im-
portant role (cf: Ahlfors-Sario [1] and Nakai-Sario [7]). In section 2,
we introduce the variation formula of the second order for $L_{1}$ -principal
function $p_{1}(t, z)$ on Riemann surface $R(t)$ moving smoothly with one
complex parameter $t$ in a disk $B$ in $\mathbb{C}_{t}$ . We apply it to $sh_{oW_{\sim^{t}}}he$ simul-
taneous uniformization theorem for the Schottky covering $R(t)$ of the
(holomorphically) moving compact Riemann surface $R(t)$ . In sections
3, we establish the variation formula of the second order for $L_{0}$-principal
function $p_{0}(t, z)$ on the moving Riemann surface $R(t)$ , and in section
4 we apply it to show the meaning of the logarithmic span $s(t)$ of the
moving planar Riemann surface $R(t)$ , in the theory of several complex
variables.
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2. VARIATION FORMULA FOR $L_{1}$ -PRINCIPAL FUNCTIONS $p(t,$ $z)$ AND
APPLICATION

Under the same conditions for the unramified domain $\mathcal{R}=\bigcup_{t\in B}(t, R(t))$

in $\tilde{\mathcal{R}}$ over $B\cross \mathbb{C}_{z}$ and $\partial R(t)=\sum_{i=0}^{\nu}C_{j}(t)$ , we assume that there exist
two holomorphic sections:

$\Xi_{0}:z=0$ and $\Xi_{1}$ : $z=\xi(t)$

of $\mathcal{R}$ over $B$ such that $\Xi_{0}\cap\Xi_{1}=\emptyset$ . Let $t\in B$ be fixed. Then it is
known (cf: Ahlfors-Sario [1]) that $R(t)$ carries the following harmonic
functions $p(t, z)$ and $q(t, z)$ with logarithmic poles at $0$ and $\xi(t)$ :

Deflnition. $L_{1}$ -principal function $p(t, z)$ for $(R(t), O, \xi(t))$ is a real
valued-function $p(t, z)$ on $R(t)\backslash \{0, \xi(t)\}$ with the following four con-
ditions:

(i) $p(t, z)$ is harmonic on $R(t)\backslash \{0, \xi(t)\}$ and continuous on $\overline{R(t)}$ ;
(ii) $p(t, z)-\log 1/|z|$ is harmonic at $z=0$ and

$\lim_{zarrow 0}(p(t, z)-\log 1/|z|)=0$ ;

(iii) $p(t, z)-\log|z-\xi(t)|$ is harmonic at $z=\xi(t)$ ;
(iv) for each $j=1,$ $\ldots$ , $\nu$ , we have

(1) $p(t, z)=a_{j}(t)$ : constant on $C_{j}(t)$ ;

(2) $\int_{C_{j}(t)}*dp(t, z)=0$ .

We note that $p(t, z)$ extends harmonically across $\partial R(t)$ as a harmonic
function on V$(t)$ such that $\partial R(t)\Subset V(t)\Subset\tilde{R}(t),$ $-\infty<p(t, z)<+\infty$ ,
and $-$ oo $<a_{j}(t)<+\infty$ . Moreover $p(t, z)$ is of class $C^{\omega}$ for $(t, z)$ in
$\mathcal{R}\backslash \{\Xi_{0}\cup\Xi_{1}\}$ . By (ii), we find a neighborhood $U_{0}(t)$ of $z=0$ such that

$p(t, z)= \log\frac{1}{|z|}+h_{0}(t, z)$ on $U_{0}(t)$ ,

where $h_{0}(t, z)$ is harmonic for $z$ on $U_{0}(t)$ and

$h_{0}(t, 0)=0$ , $t\in B$ .

By (iii), we find a neighborhood $U_{\xi}(t)$ of $z=\xi(t)$ such that

$p(t, z)=\log|z-\xi(t)|+\alpha(t)+h_{\xi}(t, z)$ on $U_{\xi}(t)$ ,

where $\alpha(t)$ iS a real constant and $h_{\xi}(t,$ $z)$ iS harmonic for 之 on $U_{\xi}(t)$ and

$h_{\xi}(t, \xi(t))=0$ , $t\in B$ .

We call $\alpha(t)$ the $L_{1}$ -constant for $(R(t), 0, \xi(t))$ .

Under these situations, we showed in [2] the following variation for-
mula of the second order for $\alpha(t)$ :
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Lemma 3 $(H, [2])$ . It holds for $t\in B$ that

$\frac{\partial^{2}\alpha(t)}{\partial t\partial\overline{t}}=\frac{1}{\pi}\int_{\partial R(t)}k_{2}(t, z)|\frac{\partial p(t,z)}{\partial z}|^{2}ds_{z}+\frac{4}{\pi}\int\int_{R(t)}|\frac{\partial^{2}p(t_{l}z)}{\partial\overline{t}\partial \text{之}}|^{2}dxdy$.
$|$

Since $k_{2}(t, z)\geq 0$ on $\partial \mathcal{R}=\bigcup_{t\in B}(t, \partial R(t))$ in case $\mathcal{R}$ is pseudoconvex,
the lemma implies

Theorem 4. Under the same conditions in Lemma 3, if $\mathcal{R}$ is pseu-
doconvex over $B\cross \mathbb{C}_{z}$ , then $\alpha(t)$ is a $C^{\omega}$ subharmonic function on $B$ .
This is also trete under the same condition for $\mathcal{R}$ as in Remark 1

As an application of Theorem 4, we proved that the following fact.
Let $S:t\in Barrow S(t)$ be a holomorphic family without singularity of
a compact Riemann surface $S(t)$ over a simply connected domain $B$

in $\mathbb{C}_{t}$ , so that $S(t)$ varies holomorphically with respect to one complex
$\underline{p}arametert$ in $B$ . For a fixed $t\in B$ , we consider the Schottky covering
$S(t)$ of each $S(t)$ , and denote by $\tilde{S}$ the total space of the variation:
$t\in Barrow\tilde{S}(t)$ , namely, $\overline{S}=\bigcup_{t\in B}(t,\tilde{S}(t))$ . Then we have:

Theorem 5. The total space $\tilde{S}$ consisting of Schottky covering $\overline{S}(t)$ of
a compact Riemann surface $S(t)$ with one complex parameter $t\in B$ is
holomorphically uniformized to a univdent domain in $B\cross \mathbb{P}$ .
Remark 3. In [9], Nishino showed that, if $\mathcal{R}=\bigcup_{t\in B}(t, R(t))$ is an un-
ramified pseudoconvex domain over $B\cross \mathbb{C}_{z}$ such that each $R(t),$ $t\in B$

is conformal equivalent to $\mathbb{C}^{1}$ , then $\mathcal{R}$ is holomorphically equivalent to
$B\cross \mathbb{C}$ . In [5], Maitani and Yamaguchi proved that, if $\mathcal{R}=\bigcup_{t\in B}(t, R(t))$

is an unramified pseudoconvex domain over $B\cross \mathbb{C}_{z}$ such that each $R(t)$ ,
$t\in B$ is planar and parabolic, then $\mathcal{R}$ is holomorphically uniformizable
to a domain in $B\cross \mathbb{P}^{1}$ . Since the Schottky covering $\tilde{S}(t)$ of a compact
Riemann surface $S(t)$ of genus $g\geq 2$ is planar but not parabolic, their
theorem and method cannot be applicable to our case.
Remark 4. In [10], Yamaguchi wrote a resum\’e about Theorem 5 with
a rough sketch of the proof. However his sketch had a serious “gap“.
Then I bridge the gap by the variation formula for $L_{1}$-principal func-
tion, and obtain Theorem 5.

3. VARIATION FORMULA FOR $L_{0}$-PRINCIPAL FUNCTIONS $q(t,$ 之 $)$

Definition. $L_{0}$ -principal function $p(t, z)$ for $(R(t), O,\xi(t))$ is a real
valued-function $q(t, z)$ on $R(t)\backslash \{0, \xi(t)\}$ with the following four con-
ditions:

(i) $q(t, z)$ is harmonic on $R(t)\backslash \{0, \xi(t)\}$ and continuous on $\overline{R(t)}$ ;
(ii) $q(t, z)-\log 1/|z|$ is harmonic at $z=0$ and

$\lim_{zarrow 0}(q(t, z)-\log 1/|z|)=0$ ;

(iii) $q(t, z)-\log|$ 之 $-\xi(t)|$ is harmonic at $z=\xi(t)$ ;
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(iv) $\frac{\partial q(t,z)}{\partial n_{z}}=0$ on $\partial R(t)$ .

We note that $q(t, z)$ extends harmonically across $\partial R(t)$ as a harmonic
function on $V(t)$ such that $\partial R(t)\Subset V(t)\Subset\tilde{R}(t),$ $-$ oo $<q(t, z)<+\infty$ ,
and $q(t, z)$ is of class $C^{\omega}$ for $(t, z)$ in $\mathcal{R}\backslash \{\Xi_{0}\cup\Xi_{1}\}$ .

By (ii), we find a neighborhood $U_{0}(t)$ of $z=0$ such that

$q(t, z)= \log\frac{1}{|\text{之}|}+k_{0}(t, z)$ on $U_{0}(t)$ ,

where $k_{0}(t, z)$ is harmonic for $z$ on $U_{0}(t)$ and
$k_{0}(t, 0)=0$ , $t\in B$ .

By (iii), we find a neighborhood $U_{\xi}(t)$ of 之 $=\xi(t)$ such that
$q(t, z)=\log|z-\xi(t)|+\beta(t)+k_{\xi}(t, z)$ on $U_{\xi}(t)$ ,

where $\beta(t)$ is a real constant and $k_{\xi}(t,$ 之 $)$ is harmonic for $z$ on $U_{\xi}(t)$ and
$k_{\xi}(t, \xi(t))=0$ , $t\in B$ .

We call $\beta(t)$ the $L_{0}$ -constant for $(R(t), 0, \xi(t))$ .

We showed in [6] the variation formula of the second order for $L_{0^{-}}$

constant $\beta(t)$ . In order to prove the formula, we have to add a new
idea to the proof of Lemma 3. To state the variation formula for $L_{0^{-}}$

constant $\beta(t)$ in case when $R(t)$ has positive genus, we need the follow-
ing consideration (which was not necessary for the variation formula
for $L_{1}$-constant $\alpha(t))$ .

In case when $R(t)$ is of positive genus $g\geq 1$ , we take $\{A_{t}(t), B_{l}(t)\}_{1\leq t\leq 9}$

be usual $A,$ $B$ cycles on $R(t)$ with intersection number condition: for
$k,$ $l=1,$ $\ldots,$

$\nu$ ,
$A_{k}(t)\cross B_{l}(t)=\delta_{k_{2}l},$ $A_{k}(t)\cross A_{l}(t)=0,$ $B_{k}(t)\cross B_{l}(t)=0$ .

Here $\delta_{kl)}$ is Kronecker’s delta; $A_{k}(t)\cross B_{l}(t)$ means that $A_{k}(t)$ crosses
$B_{l}(t)$ from the left-side to the right-side of the direction $B_{l}(t)$ ; and
each $A_{k}(t)$ and $B_{k}(t)(k=1, \ldots , g)$ varies continuously with parameter
$t\in B$ such that $A_{k}(t),$ $B_{k}(t)$ do not pass through $\{0, \xi(t)\}$ .

On each $R(t)$ for $t\in B$ we denote by $*dq(t, z)$ the conjugate differen-
tial of $dq(t, z)$ . It follows that $*dq(t, z)$ has the following multi-valued
poles at $z=0$ and $z=\xi(t)$ :

$*dq(t, z)=\{\begin{array}{ll}-d\arg z+dk_{0}^{*}(t, z) in U_{0}(t),d\arg(z-\xi(t))+dk_{\xi}^{*}(t, z) in U_{\xi}(t),\end{array}$

where $k_{0}^{*}(t, z)$ and $k_{\xi}^{*}(t, z)$ are the single-valued harmonic conjugate
functions of $k_{0}(t, z)$ and $k_{\xi}(t, z)$ on $U_{t}(0)$ and $U_{\xi}(t)$ , respectively. We
may assume

$k_{0}^{*}(t, 0)=0$ , $k_{\xi}^{*}(t,\xi(t))=0$ .
Under these notations, we have the following variation formula of

the second order for $\beta(t)$ :
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Lemma 6 (M-Y-H, [6]). It holds for $t\in B$ that

$\frac{\partial^{2}\beta(t)}{\partial t\partial\overline{t}}=-\frac{1}{\pi}\int_{\partial R(t)}k_{2}(t, z)|\frac{\partial q(t,z)}{\partial z}|^{2}ds_{z}+\frac{4}{\pi}\int\int_{R(t)}|\frac{\partial^{2}q(t,z)}{\partial\overline{t}\partial z}|^{2}dxdy$

$- \frac{1}{\pi}{\rm Im}\{\sum_{k=1}^{g}\frac{\partial}{\partial t}(\int_{A_{k}(t)}*dq(t, z))\frac{\partial}{\partial\overline{t}}(\int_{B_{k}(t)}*dq(t, z))\}$

Since $k_{2}(t, z)\geq 0$ on $\partial \mathcal{R}$ in case $\mathcal{R}$ is pseudoconvex, the lemma
immediately implies

Theorem 7 $(M- Y- H,[6])$ . Under the same conditions in Lemma 6, if
$\mathcal{R}$ is pseudoconvex over $B\cross \mathbb{C}_{z}$ and each $R(t),$ $t\in B$ is planar, then
$\beta(t)$ is a $C^{\omega}$ superharmonic function on $B$ .

4. VARIATION FOR SPANS OF RIEMANN SURFACES

What do Theorems 4 and 7 mean in two conmplex variables? To
answer it, we recall the study in one complex variable: Let $R$ be a
planar Riemann surfaces with smooth boundary $\partial R=\sum_{j=1}^{\nu}C_{j}$ . We
denote by $S(R)$ the set of all univalent functions $f(z)$ on $R\cup\overline{R}$ such
that

$f(z)=u(z)+iu^{*}(z)= \frac{1}{Z}+\sum_{n=0}^{\infty}c_{\eta}z^{n}$ near 之 $=0$ ,

$f(z)=C_{1}(z-1)+C_{2}(z-1)^{2}+\ldots$ near $z=1$ .

We draw a simple curve $L$ in $R$ starting at $0$ and terminating at 1.
Let $f\in S$ . Then $f(L)$ is a simple curve in $\mathbb{P}_{w}$ which starts at $0$ and
terminating at $\infty$ , so that each branch $\log f(z)$ on $R\backslash L$ is single-valued
and the Euclidean area of the complemant of $\log f(R\backslash L)$ is uniquely
determind. Set

$s(R):= \max\{E_{\log}(f)|f\in S(R)\}$ ,

which is called the logarithmic span or harmonic span for $(R, 0,1)$ .
Then the following fact is studied by G. Grunsky and M. Schiffer:

Fact. Let $\alpha$ and $\beta$ be $L_{1}$-constant and $L_{0}$-constant for $(R, 0,1)$ , respec-
tively. Then

$s(R)=\alpha-\beta(>0)$

Therefore, by Theorem 7 we have:

Theorem 8 $(M- Y- H,[6])$ . Let $\mathcal{R}=\bigcup_{t\in B}(t, R(t))$ be a 2-dimensiond
pseudoconvex domain over $B\cross \mathbb{C}_{z}$ with smooth boundary, where each
$R(t),t\in B$ is planar and $R(t)\ni 0,$ $\xi(t)$ . Then the logarithmic span
$\alpha(t)-\beta(t)$ for $(R, 0, \xi(t))$ varies subharmonically on $B$ .
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