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Abstract
In this paper I summerize the results and the outline of the proofs in
[T8, T9]. The new feature here is the use of Monge-Amp6re foliation
associated with the curvature current arising from the canonical measures.

1 Introduction
Let $f$ : $Xarrow Y$ be a surjective projective morphism of smooth projective
varieties with connected fibers. In this paper we shall call such a fiber space an
algebraic flber space for simplicity. We set $K_{X/Y}$ $:=K_{X}\otimes f^{*}K_{Y}^{-1}$ and call
it the relative canonical line bundle of $f:Xarrow Y$ .

Let $f$ : $Xarrow Y$ be an algebraic fiber space. It is well known that the direct
image $f_{*}O_{X}(mK_{X/Y})$ is semipositive for every $m\geqq 1$ in certain algebraic senses
(cf. [Kal, Ka3, Vl, V2]). In this paper, we shall discuss the result in [T9] which
proves that $f_{*}O_{X}(mIK_{X/Y})$ is globally generated on the complement of the
discriminant locus of $f$ for every sufficiently large $m$ ([T9]). The proof uses the
results in [T7, T8].

The main difficulty to prove the global generation is the fact that the direct
image $f_{*}O_{X}(mK_{X/Y})$ is only semipositive and not strictly positive ( $=$ ample) in
general. In the former approach due to Y. Kawamata and E. Viehweg their semi-
positity is the weak semipositivity which corresponds to the nefness in the case
of line bundles. Since the weak semipositivity is rather weak, I have strengthen
it to the curvature semipositivity in the sense of current in [T8] including the
case of KLT pairs. This new semipositivity is the crucial tool to prove the global
generation.

The idea to prove the global generation of $f_{*}O_{X}(m!K_{X/Y})$ is to distinguish
the null direction of the positivity of $f_{*}O_{X}(m!K_{X/Y})$ as a Monge-Amp\‘ere fo-
liation and realize the direct image $f_{*}O_{X}(m!K_{X/Y})$ (or its certain symmetric
power) as the pull back of an ample vector bundle on a certain moduli space
via the moduli map.

Here we note that the curvature semipositivity plays an essential role to
define the $Mongerightarrow Amp6re$ foliations.
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This paper is a reserch announcement of my articles ([T8, T9]). For the
detail see [T8, T9].

2 Analytic Zariski decompositions
To state the main result, we introduce the notion of analytic Zariski decompo-
sitions.

Definition 2.1 Let $M$ be a compact complex manifold and let $L$ be a holomor-
phic line bundle on M. A singular hemitian metric $h$ on $L$ is said to be an
analytic Zariski decomposition(AZD in short), if the followings hold.

1. $\Theta_{h}$ is a closed positive current.

2. for every $m\geq 0$ , the natural inclusion:

(2.1) $H^{0}(M, O_{M}(mL)\otimes \mathcal{I}(h^{m}))arrow H^{0}(M, O_{M}(mL))$

is an isomorphim. $\square$

Remark 2.2 If an $AZD$ exists on a line bundle $L$ on a smooth projective variety
$M_{p}L$ is pseudoeffective by the condition 1 above. a

It is known that for every pseudoeffective line bundle on a compact complex
manifold, there exists an AZD on $F$ (cf. [Tl, T2, D-P-S]). The advantage of the
AZD is that we can handle pseudoeffective line bundle $L$ on a compact complex
manifold $X$ as a singular hermitian line bundle with semipositive curvature
current as long as we consider the ring $R(X, L)$ $:=\oplus_{m\geqq 0}H^{0}(X, O_{X}(mL))$ .

3 Statement of the main results
Now we state the main results

Theorem 3.1 Let $f$ : $Xarrow Y$ be an algebraic fiber space and let $Y^{o}$ be the
complement of the discriminat locus of $f$ in Y. Then we have the folloutngs :

(1) Global generation: There estst positive integers $b$ and $m_{0}$ such that for
every integer $m$ satisfying $b|m$ and $m\geqq m_{0},$ $f_{*}O_{X}(mK_{X/Y})$ is globally
generated over $Y^{o}$ .

(2) Weak semistability 1: Let $r$ denote rank $f_{*}O_{X}(mK_{X/Y})$ and let $X$‘ $:=$

$X$ Xy $X$ Xy $\ldots$ Xy $X$ be the r-times fiber product over Y. Let $f^{r}$ : $X^{r}arrow Y$

be the natural morphism.
Let $\Gamma\in|mK_{X^{r}/Y}-f^{r*}\det f_{*}O_{X}(mK_{X/Y})|$ be the effective divisor corre-
sponding to the canonical inclusion:

$(3.1)f^{r*}(\det f_{*}O_{X}(mK_{X/Y}))\mapsto f^{r*}f_{*}^{r}O_{X^{r}}(mK_{X^{f}/Y})\mapsto O_{X^{r}}(mK_{X^{f}/Y})$ .

Then $\Gamma$ does not contain any fiber $X_{y}^{r}(y\in Y^{o})$ such that if we we define
the number $\delta_{0}$ by

(3.2) $\delta_{0}:=\sup\{\delta|(X_{y}^{r},\delta\cdot\Gamma_{y})$ is $KLT$ for all $y\in Y^{o}\}$ ,
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then for every $\epsilon<\delta_{0}$

(3.3) $f_{*} \mathcal{O}_{X}(mK_{X/Y})\succeq\frac{m\epsilon}{(1+m\epsilon)r}\det f_{*}O_{X}(mK_{X/Y})$

holds over $Y^{o},$ $where\succeq$ denotes that the fractional sheaf
$f_{*}\mathcal{O}_{X}(mK_{X/Y})\otimes\det f_{*}O_{X}(mK_{X/Y})^{-\frac{me}{(1+n\cdot)r}}$

is weakly positive $([VlJ)$ .
(3) Weak semistability 2: There exists a singular hermitian metric. $H_{m_{1}\epsilon}$

on $(1+m\epsilon)K_{X^{r}/Y}-\epsilon\cdot f^{r*}\det f_{*}O_{X}(mK_{X/Y})^{**}$ such that
$(a)\sqrt{-1}\Theta_{H_{m}},$ . $\geqq 0$ holds on $X^{r}$ in the sense of current.
$(b)$ For $eve\eta y\in Y^{o},$ $H_{m,\epsilon}|_{X_{y}^{r}}$ is well defined and is an $AZD$ (cf. Defi-nition 2) of

(3.4) $(1+m\epsilon)K_{X^{r}/Y}-\epsilon\cdot f^{r*}\det f_{*}O_{X}(mK_{X/Y})^{**}|X_{y}$ .
$\square$

Remark 3.2 The 3rd assertion implies the 2nd assertion.

The major advantage of Theorem 3.1 is that in Theorem 3.1 $f_{*}O_{X}(mK_{X/Y})$ is
globally generated over the complement of the discriminant locus of $f$ , while the
former results [Kal, Ka3, Vl, V2] imply the weak semipositivity of $f_{*}O_{X}(mK_{X/Y})$ .

We also have the following $\log$ version of Theorem 3.1.

Theorem 3.3 Let $f$ : $Xarrow Y$ be an algebraic fiber space and let $D$ be an
effective $\mathbb{Q}$ divisor on $X$ such that $(X, D)$ is $KLT$. Let $Y^{o}$ denote the complement
of the discriminant locus of $f$ . We set

(3.5) $Y_{0}$ $:=\{y\in Y|y\in Y^{o},$ $(X_{y}$ , $D_{y})$ is a $KLT$ pair$\}$

(1) Global generation: There estst positive integers $b$ and $m_{0}$ such that forevery for every integer $m$ satisfy $ingb|m$ and $m\geqq m_{0},$ $m(K_{X/Y}+D)$ is
Cartier and $f_{*}O_{X}(m(K_{X/Y}+D))$ is globally generated over $Y_{0}$ .

(2) Weak semistability 1: Let $r$ denote rank $f_{*}O_{X}(\lfloor m(K_{X/Y}+D)\rfloor)$ . Let
$X^{r}$ $:=X\cross YX\cross Y\ldots$ xy $X$ be the r-times fiber product over $Y$ and let
$f^{r}$ : $X^{r}arrow Y$ be the natural morphism. And let $D^{r}$ denote the divior
on $X$‘ defined by $D^{r}= \sum_{i=1}^{r}\pi_{1}^{*}D$ , where $\pi_{i}$ : $X^{r}arrow X$ denotes the
projection: $X^{r}\ni(x_{1}, \cdots, x_{n})\mapsto x_{i}\in X$ .
There exists a canonically defined effective divisor $\Gamma$ (depending on $m$) on
$X$“ which does not contain any fiber $X_{y}^{r}(y\in Y^{o})$ such that if we we define
the number $\delta_{0}$ by

(3.6) $\delta_{0}$ $:= \sup\{\delta|(X_{y}^{r},$ $D_{y}^{r}+\delta\Gamma_{y})$ is $KLT$ for all $y\in Y^{o}\}$ ,

then for every $\epsilon<\delta_{0}$

(3.7) $f_{*} \mathcal{O}_{X}(\lfloor m(K_{X/Y}+D)\rfloor)\succeq\frac{m\epsilon}{(1+m\epsilon)r}\det f_{*}O_{X}(\lfloor m(K_{X/Y}+D)\rfloor)$

holds over $Y_{0}$ .
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(3) Weak semistability 2: There exists a singular hermitian metric $H_{m_{r}\epsilon}$

$on$

(3.8) $(1+m\epsilon)(K_{X^{r}/Y}+D^{r})-\epsilon\cdot f^{*}\det f_{*}\mathcal{O}_{X}(\lfloor m(K_{X/Y}+D)\rfloor)^{**}$

such that

$(a)\sqrt{-1}\Theta_{H_{m,*}}\geqq 0$ holds on $X$ in the sense of current.
$(b)$ For every $y\in Y_{0},$ $H_{m,\epsilon}|X_{y}^{r}$ is well defined and is an $AZD$ of

(3.9)
$(1+m\epsilon)(K_{X^{r}/Y}+D^{r})-\epsilon\cdot f^{r*}\det f_{*}O_{X}(\lfloor m(K_{X/Y}+D)\rfloor)^{**}|X_{y}$

The main ingredient of the proof of Theorems 3.1 and 3.3 is the plurisubhar-
monic variation property of canonical measures ([T7]). The new feature of the
proof is the use of the Monge-Amp\‘ere foliations arising from the canonical mea-
sures and the weak semistability of the direct images of relative pluricanonical
systems. One may consider these new tools as substitutes of the local Torelli
theorem for minimal models with semiample canonical divisors in [Ka2].

The scheme of the proof is as follows. For an algebraic fiber space $f$ : $Xarrow$

$Y$ with Kod$(X/Y)\geqq 0$ , we take the relative canonical measure $d\mu_{canX/Y}$
)

.
Then the null distribution of the curvature $\Theta_{d\mu_{can.X/Y}^{-1}}$ of the singular hermitian

metric $d\mu_{X/Y}^{-1}$ on $K_{X/Y}$ defines a singular Monge-Amp\‘ere foliation on $X$ . The
important fact here is that the leaf of the foliation is complex analytic ([B-K])
(although it is not clear that the foliation itself is complex analytic apriori).
By using the weak semistability of $f_{*}O_{X}(m!K_{X/Y})$ , we may prove that this
singular foliation actually descends to a singular foliation $\mathcal{G}$ on Y. Let us define
the (singular) hermitian metric $h_{m}$ on $f_{*}O_{X}(m!K_{X/Y})$ defined by

(3.10) $h_{m}(\sigma, \sigma’)$ $:= \int_{X/Y}\sigma\cdot\overline{\sigma’}\cdot d\mu_{X/Y}^{-(m1-1)}$ .

Then we see that $(f_{*}O_{X}(m!K_{X/Y}), h_{m})$ is flat along the leaves of $\mathcal{G}$ on Y. Taking
$m$ sufficiently large, we see that the relative canonical model of $f$ : $Xarrow Y$ is
locally trivial along the leaves. Then we see that the leaves of $\mathcal{G}$ consists of the
fiber of the moduli map to the moduli space of relative canonical models marked
with the metrized Hodge line bundles. Then the global generation property of
$f_{*}O_{X}(mK_{X/Y})$ follows from the Nakai-Moishezon type argument.

4 Canonical measures on KLT pairs of nonneg-
ative Kodaira dimension

In $[$Kal], Kawamata proved the semipositivity of the direct image $f_{*}O_{X}(mK_{X/Y})$

for an algebraic fiber space $f$ : $Xarrow Y$ over a smooth projective curve $Y$ in the
sense that every quotient of $f_{*}O_{X}(mK_{X/Y})$ has semipositive degree.

Let $f$ : $Xarrow Y$ an algebraic fiber space such that there exists a a nonempty
Zariski open subset $Y_{0}$ such that $f$ is smooth over $Y_{0}$ and $K_{X/Y}$ is $f$-semiample
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over $Y_{0}$ . In [Vl], E. Viehweg proved that $f_{*}O_{X}(mK_{X/Y})$ is weakly positive
for every $m\geqq 1$ over $Y_{0}$ , i.e., for every ample line bundle $A$ and positive
integer $a$ , there exists a positive integer $b$ such that $S^{ab}(f_{*}O_{X}(mK_{X/Y}))\otimes$

$A^{b}$ is globally generated over $Y_{0}$ . And he also proved that $f_{*}O_{X}(mK_{X})$ is
weakly semistable, i.e., there exists a positive rational number $\epsilon$ such that
$f_{*}O_{X}(mK_{X/Y})\otimes(\det f_{*}O_{X}(mK_{X/Y}))^{-\epsilon}$ is weakly positive on $Y_{0}$ . Later Y.
Kawamata generalized his result to the case of family of KLT pairs ([Ka3, p.175,
Theorem 1.2] $)$ .

In [T8], I have refined these semipositivity as a logarithmic plurisubhar-
monicity of relative canonical measures. The advantage of this refinement is
that we may distinguish the null direction of the semipositivity as the Monge-
Amp\‘ere foliation as well as the canonicity of the metric.

Let $(X, D)$ be a KLT pair of nonnegative Kodaira dimension, i.e., $|m!(K_{X}+$
$D)|\neq\emptyset$ for every sufficiently large $m$ .

Let $f$ : $X-\cdotsarrow Y$ be the Iitaka fibration associated with the $\log$ canonical
divisor $K_{X}+D$ . By replacing $X$ and $Y$ by suitable modifications, we may
assume the followings:

(1) $X,Y$ are smooth and $f$ is a morphism with connected fibers.

(2) $SuppD$ is a divisor with normal crossings.

(3) There exists an effective divisor $\Sigma$ on $Y$ such that $f$ is smooth over $Y-\Sigma$ ,
$SuppD^{h}$ is relatively normal crossings over $Y-\Sigma$ and $f(D^{v})\subset\Sigma$ , where
$D^{h},$ $D^{v}$ denote the horizontal and the vertical component of $D$ respectively.

(4) There exists a positive integer $m_{0}$ such that for every $m\geqq m_{0},$ $m!(K_{X}+D)$

is Cartier and $f_{*}O_{X}(m!(K_{X}+D))^{**}$ is a line bundle on $Y$ , where $**$

denotes the double dual.

We note that adding effective exceptional Q-divisors does not change the $\log$

canonical ring. Such a modification exists by [F-M, p.169,Proposition 2.2]. We
define the Q-line bundle $L_{X/Y,D}$ on $Y$ by

(4.1) $L_{X/Y,D}= \frac{1}{m_{0}!}f_{*}O_{X}(m0!(Kx+D))^{**}$ .

$L_{X/Y}$ is independent of the choice of $m_{0}$ . Similarly as before we may define the
singular hermitian metric $h_{L_{X/Y,D}}$ on $L_{X/Y,D}$ by

(4.2) $h_{L_{X/Y,D}}^{m!}( \sigma, \sigma)(y):=(\int_{X_{y}}|\sigma|m\urcorner 2)^{m1}$

where $y\in Y-\Sigma$ and $X_{y};=f^{-1}(y)$ . We call the singular hermitian Q-line
bundle $(L_{X/Y,D}, h_{L_{X/Y,D}})$ the metrized Hodge Q-line bundle of the Iitaka
fibration $f$ : $Xarrow Y$ associated with the KLT pair $(X, D)$ . We note that since
$(X, D)$ is KLT, $h_{L_{X/Y,D}}$ is well defined. By the same strategy as in the proof of
Theorem 3.1 and [T7, Theorem 1.6], we have the following theorem :

Theorem 4.1 ($[T8$, Theorem 1. $7J$) In the above notations, there enists a unique
singular hermitian metric on $h_{K}$ on $K_{Y}+L_{X/Y,D}$ and a nonempty Zariski open
subset $U$ of $Y$ such that
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(1) $h_{K}$ is an $AZD$ of $K_{Y}+L_{X/Y,D}$ .
(2) $f^{*}h_{K}$ is an $AZD$ of $K_{X}+D$ .
(3) $h_{K}$ is $c\infty$ on $U$ .

(4) $\omega_{Y}=\sqrt{-1}\Theta_{h_{K}}$ is a Kahler form on $U$ .

(5) $-Ric_{\omega}Y+\sqrt{-1}\Theta_{L_{X/Y,D}}=\omega_{Y}$ holds on U. a
The following theorem is the fundamental tool to prove Theorems 3.1 and The-
orem 3.3.

Theorem 4.2 $[T8$, Theorem 1. $8J$ Let $f$ : $Xarrow Y$ be an algebraic fiber space
and let $D$ be an effective Q-divisor on X. Suppose that there emsts a nonempty
Zari,ski open subset $Y_{0}$ of $Y$ such that

(1) $f$ is smooth over $Y_{0}$ ,

(2) For every $y\in Y_{0},$ $(X_{y}, D_{y})(X_{8} :=f^{-1}(y), D_{y} :=DnX,)$ is a $KLT$ pair
of nonnegative Kodaira dimension.

Let $d\mu_{can_{2}X/Y}$ be the relative canonical measure defined by

(4.3) $d\mu_{can_{t}X/Y}|X_{y}:=d\mu_{can_{i}y}$ $(y\in Y_{0})$

where $d\mu_{can_{2}y}$ denotes the canonical measure on $(X_{y}, D_{y})(y\in Y_{0})$ constructed
as in Theorem 4.1. Then the singular hermitian metric

(4.4) $h_{K}^{o}|X_{y}$ $:=d\mu_{can,y}^{-1}\cdot h_{\sigma_{D}}|X_{y}$ $(y\in Y_{0})$

on $K_{X/Y}+D|f^{-1}(Y_{0})$ extends to a singular hermitian metric $h_{K}$ on $K_{X/Y}+D$

and has semipositive curvature in the sense of current everywhere on X.

5 Special case of Theorem 3.1
Here to indicate the strategy of the proof of Theorem 3.1, we shall prove the
following special case of Theorem 3.1.

Theorem 5.1 Let $f$ : $Xarrow Y$ be an algebraic fiber space. Let $Y^{o}$ be the
complement of the discriminant locus of $f$ . Suppose that $K_{X/Y}$ is f-ample
over $Y^{o}$ . Then there exists a positive integer $m_{0}$ such that for every $m\geqq m_{0}$ ,
$f_{*}O_{X}(mK_{X/Y})$ is globally generated over $Y^{O}$ . $\square$

Sketch of the proof of Theorem 3.1. First we note that by applying Theorem 4.2
to $K_{X^{r}/Y}+\epsilon\Gamma$ , we see that $f_{*}O_{X}(m!K_{X/Y})$ is weakly semistable in the sense
of Theorem 3.1.

Let $\omega_{X/Y}$ be the canonical relative K\"ahler-Einstein current on $f$ : $Xarrow Y$ .
Then by the implicit function theorem, we see that $\omega_{X/Y}$ is $c\infty$ over $X^{o}$ $:=$

$f^{-1}(Y^{o})$ . Let $n$ denote the relative dimension $\dim X-\dim Y$ of $f;Xarrow Y$.
Then the relative canonical measure

(5.1) $d \mu_{can_{2}X/Y}:=\frac{1}{n!}\omega_{X/Y}^{n}$
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is considered to be a relative volume form on $f$ : $Xarrow Y$ . And by [T7], we see
that

(5.2) $\omega_{X/Y}=-Ricd\mu_{can,X/Y}$

is a closed positive current on $X$ and is $c\infty$ on $X^{o}$ by the implicit function
theorem.

Now we consider the Monge-Amp\‘ere foliation
(5.3) $\mathcal{F}=\{v\in TX|\omega_{X/Y}(v,\overline{v})=0\}$ .
Then by the weak semistability above, we see that the foliation $\mathcal{F}$ decend to a
Monge-Amp\‘ere foliation $df(\mathcal{F})$ . More precisely, for $m\gg 1$ , the $L^{2}$-metric

(5.4) $h_{m}( \sigma, \sigma’):=\int_{X/Y}\sigma\cdot\overline{\sigma}’\cdot d\mu_{can,X/Y}^{-(m1-1)}$

on $f_{*}\mathcal{O}_{X}(m!K_{X/Y})$ induces a metric $\det h_{m}$ on $\det f_{*}\mathcal{O}_{X}(mK_{X/Y})$ and has
semipositive curvature on $Y$ in the sense of current. And $\det h_{m}$ defines a
Monge-Amp\‘ere foliation on Y. We see that the this foliation is nothing but
$df(\mathcal{F})$ . Now we shall consider the leaf $L$ of $df(\mathcal{F})$ . By [B-K], we know that $L$

is a complex submanifold at generic point on $Y$ . Then we see that along the
leaf $L$ , the restricted family $f|f^{-1}(L)$ : $f^{-1}(L)arrow L$ is locally trivial as follows.
First we note that

(5.5) $trace\sqrt{-1}\Theta_{h_{m}}=\sqrt{-1}\Theta_{\det h_{m}}$

holds and the lefthand side is semipositive. Hence $(f_{*}O_{X}(m!K_{X/Y}), h_{m})|L$ is
flat over $L$ . This implies that moving $m$ we see that the relative canonical ring is
locally trivialized on $L$ , hence $f|f^{-1}(L)$ : $f^{-1}(L)arrow L$ is locally holomorphically
trivial.

Let $\mathcal{M}_{can}$ denote the moduli space of canonically polarized varieties with
only canonical singularities. Then we see that the leaf $L$ is nothing but the fiber
of the moduli map:

(5.6) $\mu:Y_{0}arrow \mathcal{M}_{can}$ .
Hence in particular $L$ is closed. And the curvature current $\Theta_{\det h_{m}}$ decends
to a closed semipositive current on the image $\mu(Y_{0})$ . Now we shall take a
compactification $\overline{\mathcal{M}_{can}}$ of $\mathcal{M}_{can}$ . This is certainly possible, since $\mathcal{M}_{can}$ is
quasiprojective. We see that for some positive integer $r$ , the r-times sym-
metric powers $S^{r}(\det f_{*}\mathcal{O}_{X}(m!K_{X/Y}))$ and $S^{r}(f_{*}O_{X}(m!K_{X/Y}))$ to coherent
sheaves $\det \mathcal{F}_{m}$ and $\mathcal{F}_{m}$ on the closure $\overline{\mu(Y_{0})}$ in $\overline{\mathcal{M}_{can}}$ respectively. We note
that on every irreducible (possibly incomplete) curve $C$ in $\mu(Y_{0})$ the restric-
tion: $\mu_{*}(\sqrt{-1}\Theta_{\det h_{m}})|C$ is generically strictly positive by the argument as
above. Hence by the Nakai-Moishezon type argument as in [Sch-T], we see
that $(\det f_{*}O_{X}(mK_{X/Y}))^{\otimes r}$ decends to an ample line bundle on $\mu(Y_{0})$ and
extends to a coherent sheaf $\det \mathcal{F}_{m}$ on the closure $\overline{\mu(Y_{0})}$. Then by the weak
semistability of $f_{*}O_{X}(m!K_{X/Y})$ we see that $\mathcal{F}_{m}$ is an ample vector bundle on
$\mu(Y_{0})$ in the sense that it is globally generated by a global section of $\mathcal{F}_{m}$ on
the closure $\overline{\mu(Y_{0})}$. Hence some symmetric power $f_{*}O_{X}(m!K_{X/Y})$ is globally
generated over $Y_{0}$ for every sufficiently large $m$ . Then by the finite generation
of relative canonical bundles, we see that $f_{*}O_{X}(m!K_{X/Y})$ is globally generated
over $Y_{0}$ for every sufficiently large $m$ . This completes the proof of Theorem 5.1.
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6Scheme of the proof of Theroems 3.1 and 3.3
Here we shall indicate the scheme of the proof for general case. Let $f$ : $Xarrow Y$

be an algebraic fiber spaoe with nonnegative relative Kodaira dimension. Let
$d\mu_{can_{2}X/Y}$ be the relative canonical measure and we define the $L^{2}$-metric $h_{m}$

on $f_{*}\mathcal{O}_{X}(m!K_{X/Y})$ similar to (5.4). Let $h:Zarrow Y$ be the relative canonical
models ([B-C-H-M]). Then we have the commutative diagram:

$X, \frac{g}{\backslash _{\backslash \wedge Y}//\iota}Z$

Taking a suitable modification we may and do assume the followings :

1. $g$ is a morphism,

2. $Z$ is smooth.

3. $g_{*}O_{X}(m!K_{X/Z})^{**}$ is a line bundle on $Z$ for every sufficiently large $m$ .
Let $(L_{X/Y}, h_{L_{X/Y}})arrow Z$ be the Hodge Q-line bundle and let $Y^{o}$ be the com-
plement of the discriminant locus of $h$ : $Zarrow Y$. We consider the moduli
space:

$\mathcal{M}:=\{[(Z_{y}, (L_{X/Y}, h_{L_{X/Y}})|Z_{y})|y\in Y^{o}\}$,

where $[(Z_{y},$ $(L_{X/Y},$ $h_{L_{X/Y}})|Z_{y})]$ denotes the equivalence class with respect to
the equivalence relation:

$(Z_{y}, (L_{X/Y}, h_{L_{X/Y}})|Z_{y})\sim(Z_{y’}, (L_{X/Y}, h_{L_{X/Y}})|Z_{y’})$,

if and only if there exists a biholomorphism $\varphi$ : $Z_{y}arrow Z_{y’}$ and a bundle iso-
morphism 1 : $aL_{X/Y}|Z_{y}arrow aL_{X/Y}|Z_{y’}$ such that the following commutative
diagram :

$aL_{X/Y}|z_{y}arrow\overline{\varphi}aL_{X/Y}|Z_{y’}$

$\downarrow$ $\downarrow$

$Z_{\nu\overline{\varphi}}Z_{y’}$

and

(6.1) $\overline{\varphi}^{*}(h_{L}|Z_{y’})=h_{L}|Z_{y}$

holds, where $a$ denotes the minimal positive integer such that $aL_{X/Y}$ is Cartier.
We call $\mathcal{M}$ the moduli space of metrized canonical models. By the theory of
variation of Hodge structures ([G]), we see that $\mathcal{M}$ has a natural algebraic space
structure. We shall use $\mathcal{M}$ as the substitute of $\sqrt l4_{can}$ in the previous section.

The relative canonical measure $d\mu_{can,X/Y}$ is $C^{\infty}$ on a nonempty Zariski open
subset of $X$ by the dynamical construction of canonical measures ([T7]) and the
parameter dependence of the Bergman projections.
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Then we may define the (singular) Monge-Amp\‘ere foliation $\mathcal{F}$ on $X$ associ-
ated with the closed positive current:

$\sqrt{-1}\partial\overline{\partial}\log d\mu_{can_{i}X/Y}$ .

Again by the weak semistability of $K_{X/Y}$ , we have that $df(\mathcal{F})$ defines a (sin-
gular) foliation on $Y$ associated with the closed positive current $\sqrt{-1}\Theta_{\det h_{m}}$

for every sufficiently large $m$ . Here we have used the weak stability, since the
regularity of $\det h_{m}$ seems to be unclear.

Then as in the previous section, we see that for any leaf $L,$ $f|f^{-1}(L)$ :
$f^{-1}(L)arrow L$ has locally trivial metrized canonical model, i.e., the moduli map

(6.2) $\mu:Y_{0}arrow \mathcal{M}$

is constant on $L$ . It is easy to see that the leaf of the foliation $df(\mathcal{F})$ is nothing
but the fiber of the moduli map $\mu:Y_{0}arrow \mathcal{M}$ .

Now we proceed as in the last section. We see that by using the weak
semistability of $f_{*}O_{X}(m!K_{X/Y})$ , some symmetric power of $f_{*}O_{X}(m!K_{X/Y})$ de-
cends to an ample vector bundle on $\lambda 4$ and is globally generated over on $\mathcal{M}$ by
global sections on some compactificaion M. Hence again by finite generation
of canonical rings ([B-C-H-M]), we conclude that $f_{*}O_{X}(m!K_{X/Y})$ is globally
generated over $Y_{0}$ for every sufficiently large $m$ . This completes the proof of
Theorem 3.1.

The proof of Theorem 3.3 is quite similar.

Remark 6.1 If the general fiber of $f$ : $Xarrow Y$ is of general type, then $\mathcal{M}$ is
nothing but the moduli space of the canonical models of the fibers. Hence in
pariicular we obtain that the moduli space of the canonical models of general
type is quasiprojective. This gives an altermative proof of this result in [VI, $V2J$.
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