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1. INTRODUCTION

This is a survey of [Sl] and [S2]. The theory of exterior differential systems orig-
inates form the geometric theory of partial differential equations studied by Cartan,
Darboux, Goursat Lie, Monge and others. Roughly speaking, the geometry of sub-
bundles of the tangent bundle of smooth manifolds. In this theory, we consider
partial differential equations to be varieties in jet spaces endowed with the canon-
ical contact system. If the varieties induced by partial differential equations are
submanifolds in jet spaces, then we consider that integral manifolds of the submani-
folds are solutions of the original partial differential equations. Hence, the jet spaces
endowed with the canonical contact system play important role in this theory and
the characterization of the jet spaces was an important problem.

By a differential system $(R, D)$ , we mean a distribution $D$ on a manifold $R$ ,
i.e., $D$ is a subbundle of the tangent bundle $T(R)$ . The denved system $\partial D$ of $D$ is
defined, in terms of sections, by

$\partial D=D+[D, D]$ .
where $\mathcal{D}=\Gamma(D)$ denotes the space of sections of $D$ . In general $\partial D$ is obtained as a
subsheaf of the tangent sheaf of $R$ (for the precise argument, see e.g.[Yl], [BCG3]).
Moreover higher derived systems $\partial^{i}D$ are defined successively by

$\partial^{i}D=\partial(\partial^{i-1}D)$ ,

where we put $\partial^{0}D=D$ by convention. A differential system $(R, D)$ is called regular
if $\partial^{i}D$ are subbundles of $T(M)$ for every $i\geq 1$ .

It is known that a Goursat flag of length $k$ is locally isomorphic, at a generic
point, to the canonical system on the k-jet spaces of 1 independent and 1 dependent
variable by Engel, Goursat and Cartan. Here, a Goursat flag is a differential system
$D$ on a manifold $R$ such that the differences of ranks between the i-th derived system
$\partial^{i}D$ of $D$ and the (i $+$ l)-th derived system $\partial^{i+1}D$ of $D$ are 1 for any $i$ , and the k-th
derived system $\partial^{k}D$ is the whole tangent bundle $TR$ .

The characterization of the canonical (contact) systems on jet spaces was given
by R. Bryant in [B] for the first order systems and was given by K. Yamaguchi in
[Yl] and [Y2] for higher order systems for $n$ independent and $m$ dependent variables.

However, it was first explicitly exhibited by A.Giaro, A. Kumpera and C. Ruiz
in [GKR] that a Goursat flag of length 3 has singularities and the research of sin-
gularities of Goursat flags of length $k(k\geq 3)$ began as in [Morm].

To this situation, R. Montgomery and M. Zhitomirskii constructed the “Monster
Goursat manifold” by successive applications of the “Cartan prolongation of rank 2
distributions” to a surface and showed that every germ of a Goursat flag of length
$k$ appears in this “Monster Goursat manifold” in [MZ].
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After [MZ], P.Mormul defined, for the case of 1 independent and $m$ dependent
variables, the “generalized Monster Goursat manifold” which are obtained by suc-
cessive applications of the “generalized Cartan prolongation” to the space of l-jets
of 1 independent and $m$ dependent variables.

We gave a characterization of the “generalized Monster Goursat manifold“ for
the case of 1 independent and $m$ dependent variables using the Cartan rank condi-
tion $(m\geq 3)$ , the Engel rank conditions $(m\geq 4)$ and the existence of completely
integrable subbundle $(m\geq 2)$ in [SY]. This is a generalization of the result of R.
Montgomery and M. Zhitomirskii in [MZ].

Moreover, I considered the construction of the “generalized Monster Goursat
manifold” for the multi independent variables case which should be obtained by
successive applications of the “prolongation“ to the 2-jets of 1 dependent variables
and l-jets of $m$ dependent variables for $m\geq 2$ . These cases are completely different
from the case of 1 independent variables. I showed that we can not define the
“prolongation“ except for the ”prolongation” of 2-jet space of 2 independent and
1 dependent variables in [Sl] and [S2]. In other wards, the ”prolongation” of 2-
jet space of 2 independent and 1 dependent variables is a manifold endowed with a
canonical differential system, the others are not. FUrthermore, in [S2], I classified the
singularities in the “prolongation” of 2-jet space of 2 independent and 1 dependent
variables.

2. REVIEW OF GEOMETRIC CONSTRUCTION OF JET SPACES

Let $M$ be a manifold of dimension $m+n$ . Fixing the number $n$ , we form the
space of n-dimensional contact elements to $M$ , i.e., the Grassmann bundle $J(M, n)=$
Gr$(TM, n)$ over $M$ consisting of n-dimensional subspaces of tangent spaces to $M$ .
Namely, $J(M, n)$ is defined by

$J(M, n)= \bigcup_{x\in M}J_{x}$
, $J_{x}=Gr(T_{x}(M), n)$ ,

where Gr$(T_{x}(M), n)$ denotes the Grassmann manifold of n-dimensional subspaces
in $T_{x}(M)$ . Let $\pi$ : $J(M, n)arrow M$ be the bundle projection. The canonical system
$C$ on $J(M, n)$ is, by definition, the differential system of codimension $m$ on $J(M, n)$

defined by

$C(u)=\pi_{*}^{-1}(u)=\{v\in T_{u}(J(M, n))|\pi_{*}(v)\in u\}\subset T_{u}(J(M, n))arrow^{\pi_{*}}T_{x}(M)$ ,

where $\pi(u)=x$ for $u\in J(M, n)$ .
Let us describe $C$ in terms of a canonical coordinate system in $J(M, n)$ . Let $u_{o}\in$

$J(M, n)$ . Let $(x_{1}, \ldots , x_{n}, z^{1}, \ldots , z^{m})$ be a coordinate system on a neighborhood $U’$ of
$x_{o}=\pi(u_{o})$ such that $dx_{1},$

$\ldots$ , $dx_{n}$ are linearly independent when restricted to $u_{o}\subset$

$T_{x_{0}}(M)$ . We put $U=$ { $u\in\pi^{-1}(U’)|dx_{1}|_{u},$
$\ldots,$

$dx_{n}|_{u}$ are linearly independent}.
Then $U$ is a neighborhood of $u_{o}$ in $J(M, n)$ . Here $dz^{\alpha}|_{u}$ is a linear combination of
$dx_{i}|_{u}’ s,i.e.,$ $dz^{\alpha}|_{u}= \sum_{i=1}^{n}p_{i}^{\alpha}(u)dx_{i}|_{u}$ . Thus, there exist unique functions $p_{i}^{\alpha}$ on $U$
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such that $C$ is defined on $U$ by the following l-forms;

$\varpi^{\alpha}=dz^{\alpha}-\sum_{i=1}^{n}p_{i}^{\alpha}dx_{i}$ $(\alpha=1, \ldots, m)$ ,

where we identify $z^{\alpha}$ and $x_{i}$ on $U’$ with their lifts on $U$ . The system of functions
$(x_{i}, z^{\alpha},p_{i}^{\alpha})(\alpha=1, \ldots, m, i=1, \ldots , n)$ on $U$ is called a canonical coordinate $systc,rn$

of $J(M, n)$ subordinate to $(x_{i}, z^{\alpha})$ .
The space $(J(M, n), C)$ is called the (geometric) l-jet space and especially, in

case $m=1$ , is the so- called contact manifold. Let $M,\hat{M}$ be manifolds of dimension
$m+n$ and $\varphi$ : $Marrow\hat{M}$ be a diffeomorphism. Then $\varphi$ induces the isomorphism
$\varphi_{*}:$ $(J(M, n), C)arrow(J(\hat{M}, n),\hat{C})$ , i.e., the differential map $\varphi_{*}:J(M, n)arrow J(\hat{M}, n)$

is a diffeomorphism sending $C$ onto $\hat{C}$ . The reason why the case $m=1$ is special is
explained by the following theorem of B\"acklund.

Theorem(B\"acklund) Let $M$ and $\hat{M}$ be manifolds of dimension $m+n$ . Assume
$m\geq 2$ . Then, for an isomorphism $\Phi$ : $(J(M, n), C)arrow(J(\hat{M}, n),\hat{C})$ , there exists a
$di\beta\dot{c}^{J}orr\iota orphism\varphi$ : $Marrow\hat{M}$ such that $\Phi=\varphi_{*}$ .

The essential part of this theorem is to show that $F=Ker\pi_{*}$ is the covariant
system of $(J(M, n), C)$ for $m\geq 2$ . Namely an isomorphism $\Phi$ sends $F$ onto $\hat{F}=$

$Ker\hat{\pi}_{*}$ for $m\geq 2$ . (For the proof, see [Y2] Theorem 1.4.)
In case $m=1$ , it is a well known fact that the group of isomorphisms of

$(J(M, n), C)$ , i.e., the group of contact transformations, is larger than the group
of diffeomorphisms of $M$ . Therefore, when we consider the geometric 2-jet spaces,
the situation differs according to whether the number $m$ of dependent variables is 1
or greater.

(1) Case $m=1$ . We should start from a contact manifold $(J, C)$ of dimension
$2n+1$ , which is locally a space of l-jet for one dependent variable by Darboux’s
theorem. Then we can construct the geometric second order jet space $(L(J), E)$ as
follows: We consider the Lagrange-Grassmann bundle $L(J)$ over $J$ consisting of all
n-dimensional integral elements of $(J, C)$ ;

$L(J)= \bigcup_{u\in J}L_{u}\subset J(J, n)$ ,

where $L_{u}$ is the Grassmann manifolds of all Lagrangian (or Legendrian) subspaces
of the symplectic vector space $(C(u), d\varpi)$ . Here $\varpi$ is a local contact form on $J$ .
Namely, $v\in J(J, n)$ is an integral element if and only if $v\subset C(u)$ and $d\varpi|_{v}=0$ ,
where $u=\pi(v)$ . Let $\pi$ : $L(J)arrow J$ be the projection. Then the canonical system $E$

on $L(J)$ is defined by

$E(v)=\pi_{*}^{-1}(v)\subset T_{v}(L(J))arrow^{\pi_{*}}T_{u}(J)$ ,

where $\pi(v)=u$ for $v\in L(J)$ .
We denote by Ch $(C)$ the Cauchy characteristic system of $C$ .
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Then we have $\partial E=\pi_{*}^{-1}(C)$ and Ch $(C)=\{0\}$ (cf.[Yl]). Hence we get
Ch $(\partial E)=Ker\pi_{*}$ , which implies the B\"acklund theorem for $(L(J), E)$ (cf. [Yl]).

Now we put
$(J^{2}(M, n), C^{2})=(L(J(M, n)), E)$ ,

where $M$ is a manifold of dimension $n+1$ .
Here recall that the Cauchy characteristic system of a differential system $(R, D)$

are generally defined as follows;
The Cauchy characteristic system Ch $(D)$ of a differential system $(R, D)$ is de-

fined by

Ch $(D)(x)=\{X\in D(x)|X\rfloor d\omega_{i}\equiv 0$ $(mod \omega_{1},$
$\ldots$ , to,) for $i=1,$ $\ldots,$

$s\}$ ,
where $D=\{\omega_{1}=\cdots=\omega_{s}=0\}$ is defined locally by defining l-forms $\{\omega_{1}, \ldots,\omega_{s}\}$ .

(2) Case $m\geq 2$ . Since $F=Ker\pi_{*}$ is a covariant system of $(J(M, n), C)$ , we
define $J^{2}(M, n)\subset J(J(M, n), n)$ by

$J^{2}(M, n)=$ {n-dim. integral elements of $(J(M,$ $n),$ $C)$ , transversal to $F$},
$C^{2}$ is defined as the restriction to $J^{2}(M, n)$ of the canonical system on $J(J(M, n), n)$ .

Now the higher order (geometric) jet spaces $(J^{k+1}(M, n), C^{k+1})$ for $k\geq 2$ are
defined (simultaneously for all $m$) by induction on $k$ . Namely, for $k\geq 2$ , we define
$J^{k+1}(M, n)\subset J(J^{k}(M, n), n)$ and $C^{k+1}$ inductively as follows:
$J^{k+1}(M, n)=$ {n-dim. integral elements of $(J^{k}(M,$ $n),$ $C^{k})$ , transversal to $Ker(\pi_{k-1}^{k})_{*}$ },

where $\pi_{k-1}^{k}$ : $J^{k}(M, n)arrow J^{k-1}(M, n)$ is the projection. Here we have
$Ker(\pi_{k-1}^{k})_{*}=$ Ch $(\partial C^{k})$ ,

and $C^{k+1}$ is defined as the restriction to $J^{k+1}(M, n)$ of the canonical system on
$J(J^{k}(M, n), n)$ .

Here we observe that, if we drop the transversality condition in our definition of
$J^{k}(M, n)$ and collect all n-dimensional integral elements, we may have some singu-
larities in $J^{k}(M, n)$ in general. Namely, a set of all n-dimensional integral elements
of $(J^{k}(M, n), C^{k})$ may be a variety.

Remark 2.1. In this paper, the notation $J^{2}(M, n)$ is used for the geometric 2-jet
spaces, not for the ordinary 2-jet spaces $J^{2}(\mathbb{R}^{n}, \mathbb{R}^{m})$ . But $J^{2}(M, n)$ is locally iso-
morphic to $J^{2}(\mathbb{R}^{n}, \mathbb{R}^{m})$ , that is, local isomorphisms act on $J^{2}(M, n)$ transitively.
Therefore the results are independent of the difference.

3. MAIN THEOREM

Let $m,$ $n$ be positive integers and $M$ a manifold of dimension $m+n$ . We de-
note $J^{k}(M, n)$ the k-jet space over $M$ with n-independent variables and by $C^{k}$ the
canonical system on it (see \S 2).

We define, for $x\in J^{k}(M, n)$ , the set $\Sigma_{x}$ of n-dimensional integral elements of $C^{k}$

through $x$ ;
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$\Sigma_{x}=$ {n-dim. integral elements of $(J^{k}(M,$ $n),$ $C^{k})$ },
and the subset

$\Sigma(J^{k}(M, n)):=\bigcup_{x\in J^{k}(M,n)}\Sigma_{x}$

of the Grassmannian $J(C^{k}, n)=$ Gr$(C^{k}, n)$ of n-dimensional linear subspaces of the
distribution $C^{k}$ ;

$J(C^{k}, n)= \bigcup_{x\in J^{k}}C_{x}$
, $C_{x}=Gr(C^{k}(x), n)$ .

Here the integral elements of a differential system on a manifold are generally
defined as follows;

Let $(R, D)$ be a differential system, i.e. $R$ is a manifold and $D$ is a subbundle
of $TR$ . We take a system of local defining l-forms $\{\varpi_{1}, \cdots, \varpi_{8}\}$ of $D$ . An n-
dimensional integral element of $D$ at $x\in R$ is an n-dimensional subspace $v$ of $T_{x}R$

such that
$\varpi_{i}|_{v}=d\varpi_{i}|_{v}=0$ $(i=1, \cdots, s)$ .

That is, n-dimensional integral elements are candidates for the tangent spaces at $x$

of n-dimensional integral manifolds of $D$ .
By definition,

$J^{k+1}(M, n)\subset\Sigma(J^{k}(M, n))\subset J(C^{k}, n)$ .
The set $\Sigma(J^{k}(M, n))$ of integral elements is the candidate for the extension of

the notion “Monster Goursat manifolds” introduced in [MZ] to the case of several
independent variables. However the subset $\Sigma(J^{k}(M, n))$ of $J(C^{k}, n)=$ Gr$(C^{k}, n)$

may not be a submanifold of $J(C^{k}, n)$ . This situation is quite different from the
case of 1 independent variable. One of main results of [Sl] and [S2] is to check when
the set $\Sigma(J^{k}(M, n))$ of integral elements of $C^{k}$ becomes a submanifold of $J(C^{k}, n)$ or
not in the case $n\geq 2$ . If $\Sigma(J^{k}(M, n))$ is a submanifold of $J(C^{k}, n)$ , then we define the
canonical differential system $D$ on $\Sigma(J^{k}(M, n))$ . In this case, we regard $\Sigma(J^{k}(M, n))$

endowed with the canonical differential system as an extension of procedure to
construct “Monster Goursat manifolds” or the procedure of “prolongation” of the
jet space.

Theorem 3.1 ([S2]) The set $\Sigma(J^{k}(M^{m+n}, n))$ of integral elements of the canonical
system $C^{k}$ on the jet space $J^{k}(M^{m+n}, n)$ over the $m+n$-dimensional manifold $M$ with
n-independent variables is a submanifold of the Grassmannian $J(C^{k}, n)=Gr(C^{k}, n)$

if and only if $(k, n, m)=(2,2,1),$ $(k, 1, m),$ $(1, n, 1)$ .

4. REVIEW OF TANAKA THEORY

Next we will consider the local equivalence problem of $(\Sigma(J^{2}(M^{1+2},2)), D)$ ,
where $D$ is a canonical system on $\Sigma(J^{2}(M^{1+2},2))$ (see \S 5). To this purpose, we
first recall Tanaka theory of weakly regular differential systems in this section(see
[T],[Yl] $)$ .
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4.1. Weak derived system. Let $D$ be a differential system on a manifold $R$ . We
denote by $D$ the sheaf of sections to $D$ . Then we define k-th weak higher derived
system $\partial^{(k)}\mathcal{D}$ by ;

$\partial^{(1)}\mathcal{D}=\partial D,$ $\partial^{(k)}\mathcal{D}=\partial^{(k-1)}\mathcal{D}+[\mathcal{D}, \partial^{(k-1)}\mathcal{D}]$

where $\mathcal{D}=\Gamma(D)$ . A differential system $D$ is called weakly regular, if $\partial^{(i)}\mathcal{D}$ is a sheaf
of sections for a subbundle $\partial^{(i)}D$ , for any $i$ . If $D$ is not weakly regular around $x\in R$ ,
then $x$ is called singular point in the sense of Tanaka theory.

We set $D^{-1}$ $:=D,$ $D^{-k}$ $:=\partial^{(k-1)}D(k\geq 2)$ , for a weakly regular differential
system $D$ . Then we have;

$(S1)$ There exists a positive integer $\mu$ such that
$D^{-1}\subset D^{-2}\subset\cdots\subset D^{-k}\subset\cdots\subset D^{-(\mu-1)}\subset D^{-\mu}=D^{-(\mu+1)}=\cdots$

(S2) $[D^{p}, \mathcal{D}^{q}]\subset D^{p+q}$ , for any negative integers $p,$ $q$ ,
i.e. $[X, Y]\in D^{p+q}$ , $X\in D^{p},$ $Y\in D^{q}$ .

4.2. Symbol algebra. Let $(R, D)$ be a weakly regular differential system such that
$T(R)=D^{-\mu}\supset D^{-(\mu-1)}\supset\cdots\supset D^{-1}=D$ .

For all $x\in R$ , we put $\mathfrak{g}_{-1}(x)$ $:=D^{-1}(x)=D(x),$ $\mathfrak{g}_{p}(x)$ $:=D^{P}(x)/D^{p+1}(x)$ , and put

$\mathfrak{m}(x):=\bigoplus_{p=-1}^{-\mu}\mathfrak{g}_{p}(x)$ .

Then $\dim \mathfrak{m}(x)=\dim R$ . For $X\in \mathfrak{g}_{p}(x)$ , $Y\in \mathfrak{g}_{q}(x)$ , we take extensions
$\tilde{X}\in \mathcal{D}^{p},\tilde{Y}\in \mathcal{D}^{q}$ of representatives for $X,$ $Y(\tilde{X}_{x},\tilde{Y}_{x}$ give $X,$ $Y$ in $g_{p}(x),$ $g_{q}(x))$

respectively. Then $[X, \tilde{Y}]\in \mathcal{D}^{p+q}$ and $[X, \tilde{Y}]_{x}$ does not depend on the choice of
extensions up to $D_{x}^{p+q+1}$ because of the equation

$[f\tilde{X}, g\tilde{Y}]=fg[\tilde{X},\tilde{Y}]+f(\tilde{X}g)\tilde{Y}-g(\tilde{Y}f)\tilde{X}$ $(f, g\in C^{\infty}(R))$ .
Therefore we define $[X, Y]$ $:=[\tilde{X},\tilde{Y}]_{x}\in \mathfrak{g}_{p+q}(x)$ , which makes $\mathfrak{m}(x)$ a graded Lie
algebra. We call $(\mathfrak{m}(x), [])$ the symbol algebra of $(R, D)$ at $x$ .

Note that the Symbol Algebra $(\mathfrak{m}(x), [])$ satisfies the generating conditions
$[\mathfrak{g}^{p}, \mathfrak{g}^{-1}]=\mathfrak{g}^{p-1}$ $(p<0)$ .

Later, T. Morimoto introduced the notion of a filtered manifold as generalization
of the weakly regular differential system in [Mori].

We define a filtered manifold $(R, F)$ by a pair of a manifold $R$ and a tangential
filtration $F$ . Here, a tangential filtration $F$ on $R$ is a sequence $\{F^{p}\}_{p<0}$ of subbundles
of the tangent bundle $TR$ such that the following conditions are satisfied;

( $i$ ) $TR=F^{k}=\cdots=F^{-\mu}\supset\cdots\supset F^{P}\supset F^{p+1}\supset\cdots\supset F^{0}=0$

(ii) $[\mathcal{J}^{\eta}, \mathcal{F}^{q}]\subset \mathcal{F}^{p+q}$ $\forall p,$ $q<0$

where $\mathcal{F}^{p}=\Gamma(F^{P})$ is the set of sections of $F^{p}$ .
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Let $(R, F)$ be a filtered manifold, for $x\in R$ , we put
$f^{p}(x):=F^{p}(x)/F^{p+1}(x)$

and
$f(x):=\bigoplus_{p<0}\int_{p}(x)$

.

For $X\in f_{p}(x),$ $Y\in f_{q}(x)$ , Lie bracket $[X, Y] \in\int_{p+q}(x)$ is defined by;

Let $\tilde{X}\in \mathcal{F}^{\varphi},\tilde{Y}\in \mathcal{F}^{q}$ be extensions $(\tilde{X}_{x}=X, Y=Y)$ , then $[X, \tilde{Y}]\in \mathcal{F}^{\gamma+q}$

$[X, Y]$ $:=[\tilde{X},\tilde{Y}]_{x}\in f_{p+q}(x)$ does not depend on the extensions.
Then we call $(f(x), [])$ the (associated nilpotent) graded Lie algebra of $(R, F)$ at

$x\in R$ .
In general $( \int(x), [])$ does not satisfy the generating conditions.

Remark 4.1. Let $D=\{\varpi_{1}=\cdots=\varpi_{s}=0\}$ be a differential system on a manifold
$R$ . We denote by $D^{\perp}$ the annihilator subbundle of $D$ in $T^{*}R$ , namely,

$D^{\perp}(x)$ $=$ $\{\omega\in T_{x}^{*}R|\omega(X)=0$ for any $X\in D(x)\}$

$=$ $<\varpi_{1},$ $\cdots,$ $\varpi_{\theta}>$ .
Then the annihilator $(\partial D)^{\perp}$ of the first derived system of $D$ is given by

$(\partial D)^{\perp}=\{\varpi\in D^{\perp}|d\varpi\equiv 0(mod D^{\perp})\}$ .
Moreover the annihilator $(\partial^{(k+1)}D)^{\perp}$ of the $(k+1)-$th weak derived system of $D$

is given by
$(\partial^{(k+1)}D)^{\perp}$ $=$ $\{\varpi\in(\partial^{(k)}D)^{\perp}|d\varpi\equiv 0(mod (\partial^{(k)}D)^{\perp}$ ,

$(\partial^{(p)}D)^{\perp}\wedge(\partial^{(q)}D)^{\perp},$ $2\leq p,$ $q\leq k-1)\}$ .

5. EQUIVALENCE PROBLEM OF $( \sum(J^{2}(M^{1+2},2)),$ $D)$

Since $\Sigma(J^{2})$ is a manifold from theorem 3.1, we can define the canonical system
$D$ on $\Sigma(J^{2})$ as follows;

For any $u\in\Sigma(j^{2})$ with $p(u)=x\in J^{2}$ , we put
$D(u)=p_{*}^{-1}(u)\subset T_{u}(\Sigma(J^{2}))arrow^{p_{\vee}}T_{x}(J^{2})$

where $p:\Sigma(J^{2})arrow J^{2}(M^{1+2},2)$ is the projection.
In this section, we will consider the equivalence problem of $(\Sigma(J^{2}), D)$ . Namely

we will give the orbit decomposition under the action of the Aut $(\Sigma(J^{2}), D)$ , where
Aut $(\Sigma(J^{2}), D)=\{\varphi$ : $\Sigma(J^{2})arrow\Sigma(j^{2})|\varphi$ : local diffeomorpfhism such that

$\varphi_{*}(D)=D\}$ .
First, the set $\Sigma(J^{2})$ has a geometric decomposition;

$\Sigma(J^{2})=\Sigma_{0}\cup\Sigma_{1}\cup\Sigma_{2}$ (disjoint union),
where $\Sigma_{i}=\{w\in\Sigma(J^{2})|\dim(w\cap$ fiber) $=i\}(i=0,1,2)$ , and the fiber means that
of $T(J^{2})\supset C^{2}arrow T(J^{1})$ .
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5.1. Classification of $\Sigma_{2}$ .
Proposition 5.1. The differential system $D$ on $\Sigma(J^{2})=\Sigma(J^{2}(M^{1+2},2))$ is regular,
but is not $u$)$eakly$ regular. $Prec\iota sely$ we obtain that

$D\subset\partial D\subset\partial^{2}D\subset\partial^{3}D=T\Sigma(J^{2})$ .

Moreover $\partial^{2}D=\partial^{(2)}D$ and

$\{\begin{array}{ll}\partial^{(3)}D =T\Sigma(J^{2}) on \Sigma_{0}\cup\Sigma_{1}\partial^{(3)}D =\partial^{(2)}D on \Sigma_{2}\end{array}$

From this proposition, $(\Sigma(J^{2}), D)$ is locally weak regular around $w\in\Sigma_{1}$ . So we
can define symbol algebra at $w\in\Sigma_{1}$ and the following holds;

Proposition 5.2. For $w\in\Sigma_{1}$ , the symbol algebm $\mathfrak{m}(w)$ is isomorphic to $\mathfrak{m}_{f}\mathfrak{m}=$

$9-1\oplus \mathfrak{g}_{-2}\oplus \mathfrak{g}_{-3}\oplus \mathfrak{g}_{-4}$ and $[$ , $]$ is given by;
$X_{y}=[X_{a}, X_{x}]=[X_{B}, X_{t}],$ $X_{r}=[X_{c}, X_{x}],$ $X_{s}=[X_{e}, X_{x}]=-[X_{a}, X_{t}]$

$X_{p}=[X_{r}, X_{x}],$ $X_{q}=[X_{s}, X_{x}]=-[X_{y}, X_{t}]$

$X_{z}=[X_{p}, X_{x}]$ , the other is trevial,

where $\{X_{z}, X_{p\}}X_{q}, X_{y}, X_{r}, X_{s}, X_{x}, X_{t}, X_{a}, X_{B}, X_{c}, X_{e}\}$ are basis, and

9-1 $=$ $\langle\{X_{x}, X_{t}, X_{a}, X_{B}, X_{c}, X_{e}\}\}$

9-2 $=$ $\langle\{X_{y}, X_{r}, X_{s}\}\}$

$9-s$ $=$ $\{\{X_{p}, X_{q}\}\rangle$

9-4 $=$ $\langle\{X_{z}\}\rangle$

Especially, for $w\in\Sigma_{1}$ , the symbol algebm $(m(w), [, ])$ is not isomorphic to the
jet type symbol algebra $\mathfrak{m}_{jet}$ .

Here, $m_{jet}$ is given as follows; for any $x\in J^{3}$ ,
$\mathfrak{g}_{-1}(x):=C^{3}=\{X_{111}, X_{112}, X_{122}, X_{222}, X_{x_{1}}, X_{x2}\},$ $\mathfrak{g}_{-2}(x):=\langle X_{11},$ $X_{12},$ $X_{22}\}$ ,
$\mathfrak{g}_{-3}(x):=\{X_{1}, X_{2}\},$ $\mathfrak{g}_{-4}(x):=\langle X_{y}\}$ ,

$\mathfrak{m}_{jet}(x)=\bigoplus_{p=-1}^{-4}\mathfrak{g}_{p}(x)=\mathfrak{g}_{-1}\oplus \mathfrak{g}_{-2}\oplus \mathfrak{g}_{-3}\oplus \mathfrak{g}_{-4}$ .

The bracket relations are;
$[X_{jkl}, X_{x_{i}}]=\delta_{i1}X_{jk}$ , $[X_{jk}, X_{x_{i}}]=\delta_{ik}X_{j}$ , $[X_{j}, X_{x_{i}}]=\delta_{ij}X_{y}$ , the other relations
are given by $0$ .
Theorem 5.3. (normal form)
For any $w\in\Sigma_{1}$ , the differential system $(\Sigma(J^{2}(M^{1+2},2), D)$ around $w$ is locally
$isomo7phic$ to the germ at the origin of $(\mathbb{R}^{12},\hat{D})$ given as follows;

We define the differential system $\hat{D}$ on $\mathbb{R}^{12}$ with coordinate $(x, y, z,p, q, r, s, t, a, B, c, e)$
$by$

$\hat{D}=\{\varpi_{0}=\varpi_{1}=\varpi_{2}=\varpi_{y}=\varpi_{r}=\varpi_{\theta}=0\}$
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where

$\{\begin{array}{ll}\varpi_{0}=dz-pdx-qdy \varpi_{y}=dy-adx-Bdt\varpi_{1}=dp-rdx-sdy \varpi_{r}=dr-cdx-(a^{2}+eB)dt\varpi_{2}=dq-sdx-tdy \varpi_{8}=ds-edx+adt.\end{array}$

5.2. Classification of $\Sigma_{2}$ . Finally, we will classify points in $\Sigma_{2}$ . From the proposi-
tion 5.1, $w\in\Sigma_{2}$ , we can not define the symbol algebra at $w$ . But $\partial^{(1)}D$ and $\partial^{(2)}D$

are subbundle, so we can define graded Lie algebra at $w$ as follows;
For $w$ $\in$ $\Sigma_{2}$ , we put $g_{-1}(w)$ $:=$ $D^{-1}(w)$ $=$ $D(w),$ $\mathfrak{g}_{-2}(w)$ $;=$

$D^{-2}(w)/D^{-1}(w),$ $\mathfrak{g}_{-3}(w):=D^{-3}(w)/D^{-2}(w),$ $\mathfrak{g}_{-4}(w):=T_{w}(\Sigma(J^{2}))/D^{-3}(w)$ .
$\mathfrak{m}(w)=g_{-1}(w)\oplus g_{-2}(w)\oplus 9-3(w)\oplus \mathfrak{g}_{-4}(w)$ .

We define Lie bracket by the same way of the usual symbol algebra except for
$[\mathfrak{g}_{-1}, \mathfrak{g}_{-3}]$ . For $[\mathfrak{g}_{-1}, \mathfrak{g}_{-3}]$ , we define $[\mathfrak{g}_{-1}, \mathfrak{g}_{-3}]=0$ .

Note that this graded Lie algebra does not satisfy the generating condition
$[\mathfrak{g}_{-1}, \mathfrak{g}_{-3}]=g_{-4}$ .

Remark 5.4. Note that the above graded Lie algebra at $w\in\Sigma_{2}$ is an example of the
associated Lie algebra of filtered manifold $(\Sigma(J^{2}), F)$ by setting ;

$F^{-4}(w)=T_{w}(J^{2}),$ $F^{-3}(w)=\partial^{(2)}D(w),$ $F^{-2}(w)=\partial^{(1)}D(w),$ $F^{-1}(w)=D(w)$ .
Proposition 5.5. For $w\in\Sigma_{2}$ , graded Lie algebra $\mathfrak{m}(w)$ is isomorphic to $\mathfrak{m}(E, F)$ ,
$m(E, F)=9-1\oplus g_{-2}\oplus$ g-3 $\oplus \mathfrak{g}_{-4}$ and $[$ , $]$ is given by;

$[X_{B}, X_{r}]=X_{y}-FX_{x},$ $[X_{D}, X_{8}]=X_{y},$ $[X_{B}, X_{\partial}]=X_{x},$ $[X_{D}, X_{r}]=EX_{x}$

$[X_{E}, X_{r}]=X_{t},$ $[X_{F}, X_{\theta}]=X_{t}$

$[X_{r}, X_{x}]=X_{p},$ $[X_{8}, X_{y}]=X_{p}+FX_{q},$ $[X_{8}, X_{x}]=X_{q},$ $[X_{r}, X_{y}]=EX_{q}$

the other is $trn\uparrow\prime ial$ ,
where $\{X_{z},$ $X_{p},$ $X_{q},$ $X_{x},$ $X_{y},$ $X_{t},$ $X_{r},$ $X_{\epsilon},$ $X_{B},$ $X_{D},$ $X_{E},$ $X_{F}\}$ are basis $wf\iota icl\iota$ satisfy

$9-\iota$ $=$ $\langle\{X_{r}, X_{\epsilon}, X_{B}, X_{D}, X_{E}, X_{F}\}\rangle$

9-2 $=$ $\langle\{X_{x}, X_{y}, X_{t}\}\rangle$

$9-s$ $=$ $\langle\{X_{p}, X_{q}\}\}$

9-4 $=$ $(\{X_{z}\}\rangle$ ,

and $E,$ $F\in \mathbb{R}$ are parameters.

For the graded Lie algebra $\mathfrak{m}(E, F)$ , the followings are intrinsic;

$g_{-1}^{V}$ $=$ $\{X\in 9-l|ad(X)|_{9-2}=0\}=<X_{B},$ $X_{D},$ $X_{E},$ $X_{F}>$

$\mathfrak{g}_{-2}^{V}$ $=$ $\{X\in \mathfrak{g}_{-2}|ad(X)|_{9-1}=0\}=<X_{t}>$

$\tilde{9}-1$ $=$ $\{X\in 9-1|{\rm Im} ad(X)|_{9-1}\in \mathfrak{g}_{-2}^{V}\}=<X_{E},$ $X_{F}>$ ,
i.e. the above subalgebras are preserved by Lie algebra isomorphisms induced

by isomorphisms of differential systems.
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Lemma 5.6. For the gmded Lie algebra $m(E, F)$ , let $Ch(m(E, F))$ be a set of the
characteristic directions, that is,

$Ch(\mathfrak{m}(E, F))=$ { $V\subset 9-1$ : 1-dimensional subspace $|X\in V,$ $X\neq 0$ , rank $ad(X)|_{9-2}=1$ }.

Then

$\#Ch(m(E, F))=\{\begin{array}{l}2 (F^{2}+4E>0)1 (F^{2}+4E=0)0 (F^{2}+4E<0).\end{array}$

Remark 5.7. For $w\in\Sigma_{2},$ $w$ is said to be hyperbolic, elliptic or pambolic according
to whether $F^{2}+4E$ is positive, negative or zero, respectively.

From above lemma, $\Sigma_{2}$ has at least 3 components. We put

$\Sigma_{h}$ $=$ { $w\in\Sigma_{2}|w$ is a hyperbolic point}
$\Sigma_{e}$ $=$ { $w\in\Sigma_{2}|w$ is $a$ elliptic point}
$\Sigma_{p}$ $=$ { $w\in\Sigma_{2}|w$ is a parabolic point}.

Then this classification is sufficient by the following theorem.

Theorem 5.8. There exists a decomposition of $\Sigma_{2}$

$\Sigma_{2}=\Sigma_{h}\cup\Sigma_{e}\cup\Sigma_{p}$

into disjoint three subsets such $tt\iota at$ , if $w\in\Sigma_{h}$ , theri $(\Sigma(J^{2}(M^{1+2},2), D)$ around
$w$ is locally isomorphic to the germ of $(\mathbb{R}^{12},\overline{D})$ at $(0, \cdots, 0,1,0)$ , if $w\in\Sigma_{e}$ , then,
$(0, \cdots, 0, -1,0)$ , and if $w\in\Sigma_{p}$ , then, $(0, \cdots, 0,0,0)$ . Here $(\mathbb{R}^{12},\overline{D})$ is given as
follows;

We define the differential system $\overline{D}$ on $\mathbb{R}^{12}$ with coordinate $(x, y, z,p, q, r, s, t, B, D, E, F)$
$by$

$\overline{D}=\{\varpi_{0}=\varpi_{1}=\varpi_{2}=\varpi_{x}=\varpi_{y}=\varpi_{t}=0\}$

where

$\{\begin{array}{ll}\varpi_{0}=dz-pdx-qdy \varpi_{x}=dx-(DE-BF)dr-Bds\varpi_{1}=dp-rdx-sdy \varpi_{y}=dy-Bdr-Dds\varpi_{2}=dq-sdx-tdy \varpi_{t}=dt-Edr-Fds.\end{array}$

We summarize

Corollary 5.9.

$\Sigma(j^{2})=\Sigma_{0}\cup\Sigma_{1}\cup(\Sigma_{h}\cup\Sigma_{e}\cup\Sigma_{p})$
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where

$\Sigma_{0}$ $=$ $\{w\in\Sigma(J^{2})|\dim(w\cap fiber)=0\}=J^{3}$

$\Sigma_{1}$ $=$ $\{w\in\Sigma(J^{2})|\dim(w\cap fiber)=1\}$

$\Sigma_{2}$ $=$ $\{w\in\Sigma(J^{2})|\dim(w\cap fiber)=2\}$

$\Sigma_{2}$ $=$ $\Sigma_{h}\cup\Sigma_{p}\cup\Sigma_{e}$

$\Sigma_{h}$ $=$ $\Sigma_{2}\cap$ { $w$ : hyperbolic point}
$\Sigma_{e}$ $=$ $\Sigma_{2}\cap$ { $w$ : elliptic point}
$\Sigma_{p}$ $=$ $\Sigma_{2}\cap$ { $w$ : parabolic point}

$\Sigma_{0}$ is an open set in $\Sigma(J^{2})$ . $\Sigma_{1}$ is an codimemsion 1 submanifold in $\Sigma(J^{2})\Sigma_{2}$

is an codimemsion 2 submanifold in $\Sigma(J^{2})$ and $P^{2}$ -bundle over $J^{2}$ . $\Sigma_{h},$ $\Sigma_{e}$ are
also codimemsion 2 submanifolds in $\Sigma(J^{2})$ . $\Sigma_{p}$ is an codimemsion 3 submanifold in
$\Sigma(J^{2})$ .

Moreover, the each component have the following normal forms;
(0) $\Sigma_{0}$ has jet type no$7mal$ form.

(1) $w\in\Sigma_{1}$ is locally qsomorphic to a $gc77n$ at $thc$ origin in $(\mathbb{R}^{12},\hat{D})’|vf\iota ere$

$(\mathbb{R}^{12};x, y, z,p, q, r, s, t, a, B, c, e)$ is coordinate and $\hat{D}$ is expressed by $\hat{D}=\{\varpi_{0}=$

$\varpi_{1}=\varpi_{2}=\varpi_{y}=\varpi_{r}=\varpi_{s}=0\}$ , where

$\{\begin{array}{ll}\varpi_{0}=dz-pdx-qdy \varpi_{y}=dy-adx-Bdt\varpi_{1}=dp-rdx-sdy \varpi_{r}=dr-cdx-(a^{2}+eB)dt\varpi_{2}=dq-sdx-tdy \varpi_{s}=ds-edx+adt.\end{array}$

(2)
$w\in\Sigma_{h}$ is locally isomo$\varphi hic$ to a germ at $(0, \cdots, 0,1,0)$ in $(\mathbb{R}^{12},\overline{D})$ .
$w\in\Sigma_{e}$ is locally isomorphic to a germ at $(0, \cdots, 0, -1,0)$ in $(\mathbb{R}^{12},\overline{D})$ ,
$w\in\Sigma_{p}$ is locally isomorphic to a germ at $(0, \cdots, 0,0,0)$ in $(\mathbb{R}^{12},\overline{D})$ .
where $(\mathbb{R}^{12};x, y, z,p, q, r, s, t, B, D, E, F)$ is coordinate and $\overline{D}$ is expressed by $\overline{D}=$

$\{\varpi^{0}=\varpi^{1}=\varpi^{2}=\varpi_{x}=\varpi_{y}=\varpi_{t}=0\}$ where

$\{\begin{array}{ll}\varpi_{0}=dz-pdx-qdy \varpi_{x}=dx-(DE-BF)dr-Bds\varpi_{1}=dp-rdx-sdy \varpi_{y}=dy-Bdr-Dds\varpi_{2}=dq-sdx-tdy \varpi_{t}=dt-Edr-Fds.\end{array}$
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