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1. INTRODUCTION

The purpose of the note is to announce my recent result. The detail will be given
in the forthcoming paper [N].

We will study an equivalence problem of second order PDE for one unknown function
of two variables. The equivalence problem for differential equations is simply explained
as follows. We fix classes of differential equations and a group of coordinate transforma-
tions. Then, we consider a problem how differential equations change under coordinate
transformations. We can also express this problem in terms of group actions. Let $\mathcal{G}$ be a
coordinate transformation group and $X$ be a set of certain differential equations. Then
the equivalence problem for differential equations in $X$ is interpreted as the problem of
determining the orbit decomposition with respect to the action of $\mathcal{G}$ on $X$ .

The equivalence problem is studied deeply by Sophus Lie and \’Elie Cartan, and many
other authors. (See [M] for a detailed history of the equivalence problem.)

We consider an equivalence problem of second order PDE for one unknown function
of two variables $y=y(x_{1}, x_{2})$ :

(1) $\frac{\partial^{2}y}{\partial x_{i}\partial x_{j}}=f_{ij}(x_{1}, x_{2}, y, z_{1}, z_{2})$ ,

where, $f_{ij}(1\leq i, j\leq 2)$ satisfying $f_{ij}=f_{ji}$ are $C^{\infty}$ functions on $J^{1}(\mathbb{R}^{2}, \mathbb{R})$ $:=$

$\{(x_{1}, x_{2}, y, z_{1}, z_{2})\}$ , and $z_{1}=y_{x}1’ z_{2}=y_{x}2^{\cdot}$ If $f_{ij}$ all vanish, (1) is called the flat equation.
For this PDE, we take the group ScaleDiff$(\mathbb{R}^{3})^{cont}$ of lifts of scale transformations on $\mathbb{R}^{3}$

as a transformation group $\mathcal{G}$ , where scale transformations are defined by:
$\phi(x_{1}, x_{2}, y)=(X_{1}(x_{1}), X_{2}(x_{2}), Y(x_{1}, x_{2}, y))$ .

Since $\phi$ is the transformation on $J^{0}(\mathbb{R}^{2},\mathbb{R})$ , we can characterize this one geometrically
as follows. Scale transformations preserve not only fibers on $J^{0}(R^{2}, R)$ , but also the
web-structure on the base space $\mathbb{R}^{2}$ constructed by parallel translation of $x_{1}$ -axis and
$x_{2}$-axis. For the equivalence problem, we can not apply the Tanaka theory, because
symmetry group is not semi-simple group. Thus, it is necessary to use the Cartan’s
classical method. We will calculate explicitly the curvatures for this equivalence problem
by using Cartan’s equivalence method. We obtain the necessary and sufficient condition
when the second order PDE satisfying integrability condition is equivalent to the flat
equation via a vanishing condition of these curvatures (Theorem 2.3).

We also discuss a duality associated with differential equations via double fibrations.
In particular, we consider a duality between the coordinate space and the solution space
of the flat equation. Double fibrations play an important role for a study of this du-
ality. Moreover, these fibrations are usually described via some transformation groups
appeared in equivalence problems. For the group ScaleDi$ff(\mathbb{R}^{3})^{cont}$ , we can not obtain
a fibration of compact type, because the group ScaleDi$ff(\mathbb{R}^{3})^{cont}$ is too small. Hence,
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it is natural to consider an existence problem of groups from which double fibration of
compact-type is obtained as a flat model space. For this problem, we find a non-trivial
group which gives a fibration of compact-type (Theorem 3.4).

Acknowledgement. The author is supported by Research Fellowships of the Japan
Society for the Promotion of Science for Young Scientists.

2. EQUIVALENCE PROBLEM AND LOCAL INVARIANT

In this section, we introduce an equivalence problem and explain the G-structure
associated with this problem. For this purpose, we prepare some terminology and nota-
tion.

For functions of two variables $y=y(x_{1}, x_{2})$ , we consider the second order PDE (1)
and diffeomorphisms $\phi$ on $\mathbb{R}^{3}$ of the form

$\phi(x_{1}, x_{2}, y)=(X_{1}(x_{1}), X_{2}(x_{2}), Y(x_{1}, x_{2}, y))$ .
The map $\phi$ of this form is called a scale transformation. A scale transformation $\phi$ lifts
naturally to a contact diffeomorphism $\hat{\phi}$ of $J^{1}(\mathbb{R}^{2}, \mathbb{R})$ defined by:

$\hat{\phi}(x_{1}, x_{2}, y, z_{1}, z_{2})=(X_{1}(x_{1}), X_{2}(x_{2}), Y(x_{1}, x_{2}, y), Z_{1}, Z_{2})$ ,

where, $Z_{1}= \frac{Y_{x_{1}}+Y_{v}z1}{(X_{1})_{x_{1}}},$ $Z_{2}= \frac{Y_{x}2+Y_{v^{z}2}}{(X_{2})_{x_{2}}}$ . We introduce the following terminology:

ScaleDi$ff(\mathbb{R}^{3})$ $:=$ $\{$ Scale transformation on $\mathbb{R}^{3}\}$ ,

Di$ff(\mathbb{R}^{3})^{cont}$ $:=$ $\{$ The lift of Di$ff(\mathbb{R}^{3})$ to $J^{1}(\mathbb{R}^{2}, \mathbb{R})\}$ ,

ScaleDi$ff(\mathbb{R}^{3})^{cont}$ $:=$ $\{$ The lift of $ScaleDiff(\mathbb{R}^{3})$ to $J^{1}(\mathbb{R}^{2},\mathbb{R})\}$ ,
$X:=$ {second order PDE (1)}.

The main problem in the present note is the following.

Problem 2.1. Examine the orbit decomposition under the action of $ScaleDiff(\mathbb{R}^{3})^{cont}$

on $X$ .

In order to resolve the above problem, we use a G-structure associated with the
equation (1). First, we replace from data of second order PDE (1) to data of differential
system ([G], [Ol]). We choose the following coframe of $J^{1}(\mathbb{R}^{2},\mathbb{R})$ corresponding to the
equation (1),

$\underline{\theta}_{0}:=dy-z_{1}dx_{1}-z_{2}dx_{2}$ ,
$\underline{\theta}_{1}:=dz_{1}-f_{11}dx_{1}-fi_{2}dx_{2}$ ,

(2) $\underline{\theta}_{2}:=dz_{2}-f_{21}dx_{1}-f_{22}dx_{2}$ ,

望 1 $;=dx_{1}$ ,
望 2 $:=dx_{2}$ .

We consider the IFlrobenius system

(3) $\mathcal{I}:=\{\underline{\theta}_{0},\underline{\theta}_{1},\underline{\theta}_{2}\}$

diff with Se$1\wedge\underline{\omega}_{2}\neq 0$

constructed by this coframe. The correspondence between second order PDE (1) and
the Frobenius system $\mathcal{I}$ is described as follows. Consider vector fields on $J^{1}(R^{2}, R)$ which
are annihilated by $\underline{\theta}_{i}$ , while are not annihilated by $\underline{\omega}_{i}$ . At any point on $J^{1}(\mathbb{R}^{2}, \mathbb{R})$ , such

47



vector fields are generated by two vector fields $v_{1},$ $v_{2}$ . The integral surfaces which are
tangent to the 2-plane $span\{v_{1},$ $v_{2}\}$ at any point are the graphs of solutions of the
second order PDE (1). Then, the parameters $(x_{1}, x_{2})$ are regarded as a local coordinate
system of this integral surface.

The Frobenius condition (integrability condition) of the Frobenius system $\mathcal{I}$ is:
$d\underline{\theta}_{i}\equiv 0$ (mod

$\lrcorner$)
$\theta,\underline{\theta}_{1},$ $\underline{\theta}_{2})$ $(i=0,1,2)$ .

Then, the above integrability condition is equivalent to $A=B=0$ , where $A$ and $B$ are
given by

$A=(f_{11})_{x_{2}}-(f_{12})_{x_{1}}+(f_{11})_{y}z_{2}+(f_{11})_{z1}fi_{2}+(fi_{1})_{z_{2}}f_{22}$

$-(f_{12})_{y}z_{1}-(f_{12})_{z_{1}}fi_{1}-(f1_{2})_{z}2f_{12}$ ,

$B=(f_{12})_{x}2-(f_{22})_{x_{1}}+(f_{12})_{y}z_{2}+(f_{12})_{z1}f_{12}+(f_{12})_{z2}f_{22}$

$-(f_{22})_{y}z_{1}-(f_{22})_{z1}f_{11}-(f_{22})_{z_{2}}f_{12}$ .
Remark 2.2. Hereafter, we discuss only the second order PDE (1) with respect to $f_{ij}$

satisfying $A=B=0$.

A family of integral surfaces of $\mathcal{I}$ gives a 2-dimensional foliation on $J^{1}(\mathbb{R}^{2}, \mathbb{R})$ . We
describe an infinitesimal automorphism group of the foliation, and consider a principal
bundle over $J^{1}(\mathbb{R}^{2}, \mathbb{R})$ with this group as a structure group.

The contact lift $\phi$ of the scale transformation $\phi$ preserving $\mathcal{I}$ satisfies the following
equations:

$\hat{\phi}^{*}\underline{\theta}_{0}=a\underline{\theta}_{0}$ $(a\neq 0)$ ,
$\hat{\phi}^{*}\underline{\theta}_{1}=b\underline{\theta}_{0}+c\underline{\theta}_{1}$ $(c\neq 0)$ ,

(4) $\hat{\phi}^{*}\underline{\theta}_{2}=e\underline{\theta}_{0}+g\underline{\theta}_{2}$ $(g\neq 0)$ ,
バ

$*\underline{\omega}_{1}=h\underline{\omega}_{1}$ $(h\neq 0)$ ,
$\hat{\phi}^{*}\underline{\omega}_{2}=k\underline{\omega}_{2}$ $(k\neq 0)$ .

The equation (4) can be written in the following form:

(5) $\{\begin{array}{l}\theta_{0}\theta_{1}\theta_{2}\omega_{l}\omega_{2}\end{array}\}=\{\begin{array}{lllll}a 0 0 0 0b c 0 0 0e 0 g 0 00 0 0 h 00 0 0 0 k\end{array}\}\{\begin{array}{l}\underline{\theta}_{0}\underline{\theta}_{1}\underline{\theta}_{2}\underline{\omega}_{1}\underline{\omega}_{2}\end{array}\}$

where, $a,$ $b,$ $c,$ $e_{\wedge}g,$
$h,$ $k$ are functions. Thus we have linear transformations of coframes

determined by $\phi$ . Moreover, the lift $\hat{\phi}$ of the scale transformation satisfies:
$d\theta_{0}\equiv-\theta_{1}\wedge\omega_{1}-\theta_{2}\wedge\omega_{2}$

(6) $d\theta_{1}\equiv 0$

$(mod \theta_{0})$ ,
$(mod \theta_{0}, \theta_{1}, \theta_{2})$ ,

$d\theta_{2}\equiv 0$ $(mod \theta_{0}, \theta_{1}, \theta_{2})$ .
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These relations give conditions $a=ch=gk$ . From these conditions, we get the linear
transformations of coframes of the following form:

(7) $\{\begin{array}{l}\theta_{0}\theta_{1}\theta_{2}\omega_{l}\omega_{2}\end{array}\}=\{\begin{array}{lllll}ch 0 0 0 0b c 0 0 0e 0 g 0 00 0 0 h 00 0 0 0 k\end{array}\}\{\begin{array}{l}\underline{\theta}_{0}\underline{\theta}_{1}\underline{\theta}_{2}\underline{\omega}_{1}\underline{\omega}_{2}\end{array}\}$.

Therefore, we obtain the following 5-dimensional Lie group as infinitesimal automor-
phism group:

(8) $G:=\{\{\begin{array}{lllll}ch 0 0 0 0b c 0 0 0e 0 g 0 00 0 0 h 00 0 0 0 k\end{array}\}\in GL(5, \mathbb{R})|ch=gk\}$ .

Then, we choose the reduced G-bundle $\mathcal{F}_{G}$ of the coframe bundle $\mathcal{F}_{GL}(\mathbb{R}^{5})$ over
$J^{1}(\mathbb{R}^{2}, \mathbb{R})$ . This bundle $\mathcal{F}_{G}$ is called G-structure associated with the second order PDE
(1). On the principal bundle $\mathcal{F}_{G}$ , we compute curvatures (local invariant functions) for
the equivalence problem using the Cartan’s equivalence method. ([G], [O2], [St]).

Consequently, we obtain the following curvatures.

$K_{1}=- \frac{c}{gh}(f_{11})_{\underline{\theta}_{2}}$ , $K_{2}=- \frac{1}{gh}(f_{12})_{\underline{\theta}_{2}\underline{\theta}_{2}}$ ,

$K_{3}= \frac{1}{hk}\{(f_{12})$島 $+(f_{12})_{\underline{\theta}_{2}}(f_{12})_{\underline{\theta}_{1}}-(f_{12})_{\underline{\theta}_{22_{2}}}\}$ ,

$K_{4}=- \frac{g}{ck}(f_{22})_{\underline{\theta}_{1}}$ , $K_{5}=- \frac{1}{ck}(fi_{2})_{\underline{\theta}_{1}\underline{\theta}_{1}}$ ,

$K_{6}= \frac{1}{hk}\{(f_{i2})_{\text{島}}+(f_{12})_{\underline{\theta}_{1}}(f_{12})_{\underline{\theta}_{2}}-(f_{12})_{\underline{\theta}_{1}\underline{\omega}_{1}}\}$ ,

$K_{7}= \frac{1}{ch^{2}}\{(f_{11})_{\underline{\theta}_{2}\underline{\theta}_{1}\underline{\omega}_{2}}+(fi_{1})_{\underline{\theta}_{2}\theta_{2}}(f_{22})_{\underline{\theta}_{1}}+(f_{i1})_{\underline{\theta}_{2}\underline{\theta}_{1}}(f_{22})_{\underline{\theta}_{2}}$

$-(f_{12})_{\underline{\theta}_{2}\underline{\theta}_{1}}(fi\iota)_{\underline{\theta}_{2}}-(f_{12})_{\underline{\theta}_{2}\underline{\theta}_{2}}(f_{12})_{\underline{\theta}_{2}}-(f_{12})_{\underline{\theta}_{2}\underline{\theta}_{1}}(fi_{1})_{\underline{\theta}_{1}}$

$+2(f_{12})_{\underline{\theta}_{2}\underline{\theta}_{1}}(f_{12})_{\underline{\theta}_{2}}\}$ ,

$K_{8}= \frac{1}{chk}\{(f_{12})_{\underline{\theta}_{2}\underline{\theta}_{1}\underline{\omega}_{2}}-(f_{12})_{\underline{\theta}_{1}\underline{\theta}_{0}}-(f_{12})_{\underline{\theta}_{1}\underline{\theta}_{1}}(f_{12})_{\underline{\theta}_{2}}\}$ ,

$K_{9}= \frac{2(f_{12})_{\underline{\theta}_{2}}\rho_{1}-(fi_{1})_{\underline{\theta}_{1}\underline{\theta}_{1}}}{ch}$ ,
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$K_{10}= \frac{1}{hk}\{-(f_{12})_{\theta}\lrcorner)$ 一 $(f_{12})_{\underline{\theta}_{1}}(f_{12})_{\underline{\theta}_{2}}+(f_{11})_{\underline{\theta}_{2}}(f_{22})_{\underline{\theta}_{1}}+(f_{12})_{\underline{\theta}_{2^{Q}2}}\}$ ,

$K_{11}= \frac{1}{hk}\{(f_{11})_{\underline{\theta}_{14!_{2}}}-2(f_{12})_{\underline{\theta}_{2}}$

里 2
$\}$ ,

$K_{12}= \frac{1}{ch^{2}}\{(f_{11})_{\underline{\theta}_{1}\underline{\theta}_{0}}-2(f_{12})_{\underline{\theta}_{2}}$

島 $+(f_{11})_{\underline{\theta}_{1}\underline{\theta}_{1}}(f_{12})_{\underline{\theta}_{2}}$

$+(fi_{1})_{\theta_{1}\theta_{2}}(f_{12})_{\rho_{1}}-2(f_{12})_{\underline{\theta}_{1}\underline{\theta}_{2}}(fi_{2})_{\underline{\theta}_{2}}-2(f1_{2})_{\underline{\theta}_{2}Q_{2}}(f_{12})_{\underline{\theta}_{1}}\}$ ,

$K_{13}= \frac{1}{hk}\{2(f_{12})_{\underline{\theta}_{14_{1}}}-(f_{22})_{\underline{\theta}_{2^{\underline{td}}1}}\}$ ,

$K_{14}= \frac{1}{chk}\{-2(f_{12})_{\underline{\theta}_{1}\underline{\theta}_{0}}-2(f_{12})_{\underline{\theta}_{1}\underline{\theta}_{1}}(f_{12})_{\underline{\theta}_{2}}-2(f_{12})_{\underline{\theta}_{1}\underline{\theta}_{2}}(f_{12})_{\underline{\theta}_{1}}$

$+(f_{22})_{\underline{\theta}_{2}\underline{\theta}_{0}}+(f_{22})_{\underline{\theta}_{1}\underline{\theta}_{2}}(f_{12})_{\underline{\theta}_{2}}+(f_{22})_{\underline{\theta}_{2}\underline{\theta}_{2}}(f_{12})_{\underline{\theta}_{1}}\}$ ,

$K_{15}= \frac{2(f_{12})_{\underline{\theta}_{1}\underline{\theta}_{2}}-(f_{22})_{\underline{\theta}_{2}\underline{\theta}_{2}}}{gk}$ .

where, curvature functions are expressed by the dual hame:

$\partial_{A}\theta:=\frac{\partial}{\partial y’}$ $\partial_{\underline{\theta}_{1}}:=\frac{\partial}{\partial z_{1}}$ , $\partial_{\underline{\theta}_{2}}:=\frac{\partial}{\partial z_{2}}$ ,

$\partial_{\underline{\omega}_{1}}:=\frac{\partial}{\partial x_{1}}+z_{1}\frac{\partial}{\partial y}+f_{11}\frac{\partial}{\partial z_{1}}+f_{12}\frac{\partial}{\partial z_{2}}$ ,

$\partial_{\underline{\omega}_{2}}:=\frac{\partial}{\partial x_{2}}+z_{2}\frac{\partial}{\partial y}+f_{21}\frac{\partial}{\partial z_{1}}+f_{22}\frac{\partial}{\partial z_{2}}$ .

From the general theory of G-structure, a vanishing condition of curvatures gives the
following theorem:

Theorem 2.3 ([N]). Suppose that the second order $PDE$ satisfies the integrability con-
dition $A=B=0$ . Then. the equation (1) is (locally) equivalent to the flat equation
under lifts of scale transformations if and only if the curvatures $K_{i}$ vanish.

We have some results from the theorem:
First, the functions $f_{ij}$ satisfying $A=B=K_{i}=0$ are written as quadratic polyno-

mials in $z_{1},$ $z_{2}$ . Hence, if there is a polynomial of degree grater than 2 as a polynomial of
$z_{1},$ $z_{2}$ among $f_{ij}$ , then corresponding equation (1) is not equivalent to the flat equation
under lifts of scale transformations.

Next, we give some examples of equation which is equivalent to the flat equation.

Corollary 2.4. Suppose that the functions $f_{ij}$ in (1) are given in the following form:
$f_{11}=P(x_{1}, x_{2}, y),$ $f_{12}=Q(x_{1}, x_{2}, y),$ $f_{22}=R(x_{1}, x_{2}, y)$ . Then the equation (1) is
(locally) equivalent to the flat equation under the lifts of scale transformations if and
only if $P_{y}=Q_{y}=R_{y}=0,$ $P_{x}2=Q_{x_{1}}$ , $Q_{x_{2}}=R_{x1}$ .

Remark 2.5. The conditions $P_{y}=Q_{y}=R_{y}=0,$ $P_{x2}=Q_{x_{1}},$ $Q_{x_{2}}=R_{x_{1}}$ in Corollary
2.4 are obtained by the integrability condition $A=B=0$. Therefore, the second order
PDE (1) for the functions $f_{ij}$ given by the above form is equivalent to the flat equation
if and only if it is integrable.
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3. DUALITY ASSOCIATED WITH DIFFERENTIAL EQUATIONS

In this section, we discuss a duality between the coordinate space and the solution
space associated with the following flat equation;

(9) $\frac{\partial^{2}y}{\partial x_{i}\partial x_{j}}=0$ $(1\leq i,j\leq 2)$ .

For the purpose, we consider the following double fibration.

(10)

where, projections $\pi_{1},$ $\pi_{2}$ are defined by
$\pi_{1}(x_{1}, x_{2}, y, z_{1}, z_{2})=(x_{1}, x_{2}, y)$ ,
$\pi_{2}(x_{1}, x_{2}, y, z_{1}, z_{2})=(z_{1}, z_{2}, y-z_{1}x_{1}-z_{2}x_{2})$.

We call the double fibration (10) the model space of the flat equation or flat model space.
In this fibration, we regard the left base space as a coordinate space $\mathbb{R}^{3}$ $:=\{(x_{1}, x_{2}, y)\}$ ,
and a right base space as a solution space $\mathbb{R}^{3}$ $:=\{(a, b, c)\}$ . Solutions of (9) are written
as $y=ax_{1}+bx_{2}+c$ for real parameters $a,$ $b,$ $c$ . Graphs of solutions are planes on $\mathbb{R}^{3}$

or $J^{1}(\mathbb{R}^{2}, \mathbb{R}))$ and the 3-parameter family of solutions yields a 2-dimensional foliation
on $J^{1}(\mathbb{R}^{2}, \mathbb{R})$ . Then the leaf space of this foliation is interpreted as a solution space of
(9). We discuss the compactification of the flat model space. The fibration (10) can be
embedded naturally into the following (global) double fibration:

(11)
where, $V=\mathbb{R}^{4}$ , and $Gr(3,4)$ is a Grassmannian manifold and $F_{V}(1,3)$ is a flag variety:

$Gr(3,4)=\{E|E$ is a hyperplane of $V$ $:=\mathbb{R}^{4}\}$ ,
$F_{V}(1,3)=\{(l, E)|l\in \mathbb{R}P^{3},$ $E\in Gr(3,4)\cong \mathbb{R}P^{3},$ $l\subset E\}$ .

The, projections $\pi_{1},$ $\pi_{2}$ are defined by
$\pi_{1}([u], H):=[u]$ , $\pi_{2}([u], H):=[f_{H}]$ ,

where, $f_{H}$ is a linear functional satisfying $ker(f_{H})=H$ of $V^{*}\backslash \{0\}$ . (Since $f_{H}$ is uniquely
defined up to scalar multiplication, $\pi_{2}$ is well-defined.) The double fibration (10) do not
depend on coordinate transformation group $\mathcal{G}$ . So, we introduce the flat model space
depending on $\mathcal{G}$ .
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We fix a coordinate transformation group $\mathcal{G}\subset$ Di$ff(\mathbb{R}^{3})$ . First, we define the following
symmetry group ([Ol], [O2]).

Definition 3.1. Let $G$ be an isotropy subgroup of the flat equation (9) in $\mathcal{G}$ . This group
$G$ is called symmetry group of the flat equation for $\mathcal{G}$ .

In the case of $\mathcal{G}=Diff(\mathbb{R}^{3})$ , the symmetry group is $SL(4, \mathbb{R})$ and the action on the
coordinate space $\mathbb{R}^{3}$ is given by:

For $(\begin{array}{llll}a_{1} a_{2} a_{3} a_{4}b_{1} b_{2} b_{3} b_{4}c_{1} c_{2} c_{3} c_{4}d_{1} d_{2} d_{3} d_{4}\end{array})\in SL(4, \mathbb{R})$,

(12)

$(x_{1}, x_{2}, y) \mapsto(\frac{a_{1}x_{1}+a_{2}x_{2}+a_{3}y+a_{4}}{d_{1}x_{1}+d_{2}x_{2}+d_{3}y+d_{4}},$ $\frac{b_{1}x_{1}+b_{2}x_{2}+b_{3}y+b_{4}}{d_{1}x_{1}+d_{2}x_{2}+d_{3}y+d_{4}},$ $\frac{c_{1}x_{1}+c_{2}x_{2}+c_{3}y+c_{4}}{d_{1}x_{1}+d_{2}x_{2}+d_{3}y+d_{4}})$ .

Next, we introduce subgroups of $SL(4, \mathbb{R})$ as follows:

$H_{i}:=\{g\in SL(4, \mathbb{R})|g[e_{i}]=[e_{i}]\}$ ,
$\overline{H}_{i}:=\{g\in SL(4, \mathbb{R})|^{t}g^{-1}[e_{i}]=[e_{i}]\}$ ,

where, $e_{i}(i=1,\cdots\cdot,4)$ are standard basis of $\mathbb{R}^{4}$ , and $[e_{i}]$ are corresponding elements
in $RP^{3}$ . The subgroups $H_{i}$ are isotropy subgroups which preserve lines $[e_{i}]$ , and the
subgroups $\overline{H}_{i}$ are isotropy subgroups which preserve hyperplanes spanned by $e_{j}(j\neq i)$

respectively. We used Cartan involution $\tilde{\theta}(g)={}^{t}g^{-1}$ in the definition of $\overline{H}_{i}$ . We consider
the following double fibration.

(13)

where, $H=H_{4}\cap\overline{H}_{1}$ . We call this fibration as a model space of the flat equation (9)
with respect to $\mathcal{G}$ .

In the case of $\mathcal{G}=$ Di$ff(\mathbb{R}^{3})$ , we obtain the following well-known fibration using
corresponding symmetry group $G=SL(4, \mathbb{R})$ .

(14)
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This fibration equals the fibration (11). Also, this fibration corresponds to the following
picture by Dynkin diagrams:

From the picture, we have the fibration (14) by the following process ([Ya]). Let
$\triangle=\{\alpha_{1}, \alpha_{2}, \alpha_{3}\}$ be the simple root system and $\Phi^{+}$ be the set of positive roots. If we
choose a non-empty subset $\triangle_{1}$ of $\triangle$ , then we have the decomposition $\Phi^{+}=\bigcup_{k\geq 0}\Phi_{k}^{+}$ ,
where $\Phi_{k}^{+}$ for $k\geq 0$ are subset defined by

$\Phi_{k}^{+}:=\{\alpha=\sum_{i=1}^{3}n_{i}(\alpha)\alpha_{i}\in\Phi^{+}|\sum_{\alpha_{i}\in\triangle_{1}}n_{i}(\alpha)=k\}$

Corresponding to the decomposition, we can choose a parabolic subalgebra as follows:

$\mathfrak{p}=\mathfrak{g}_{0}\oplus\sum_{\alpha\in\Phi_{0}^{+}}(\mathfrak{g}_{\alpha}\oplus g_{-\alpha})\oplus\sum_{\alpha\in\Phi_{k}^{+},k>0}g_{\alpha}$

.

Let $P\subset G=SL(4, \mathbb{R})$ be the parabolic Lie subgroup whose Lie algebra is equal to
$\mathfrak{p}$ , and put $M$ $:=G/P$ . This space is called the model space of parabolic geometry
associated with subset $\triangle_{1}$ of simple root system $\triangle$ . Now, we determine the topology
of the above fibration by Dynkin diagrams using this construction. We choose subsets
$\triangle_{1}=\{\alpha_{1}\},$ $\triangle_{2}=\{\alpha_{3}\},$ $\triangle_{12}=\{\alpha_{1}, \alpha_{3}\}$ of simple root system. Corresponding to the
choice, we have the following parabolic subalgebras:

$\mathfrak{p}_{1}=\{(000*$ $****$ $****$ $****1\in \mathcal{B}l(4, \mathbb{R})\}$ ,

$\mathfrak{p}_{12}=\{(000*0***0***$ $****1\in\epsilon l(4, \mathbb{R})\}$ .

$\mathfrak{p}_{2}=\{(**0*0***$ $0***$ $****1\in\epsilon l(4, \mathbb{R})\}$ ,

We have corresponding parabolic subgroups $P_{1},$ $P_{2},$ $P_{12}\subset G$ and model spaces $G/P_{1}\cong$

$\mathbb{R}P^{3},$ $G/P_{2}\cong \mathbb{R}P^{3},$ $G/P_{12}\cong F_{V}(1,3)$ , where $V=\mathbb{R}^{4}$ . Thus, we can identify the above
picture constructed by Dynkin diagrams with the fibration (14). We can use Tanaka
theory for the equivalence problem associated with this case ([Ya]).

In the case of $\mathcal{G}=$ScaleDi$ff(\mathbb{R}^{3})$ , we calculate the corresponding flat model space.
From the action (12) of $SL(4, \mathbb{R})$ on $\mathbb{R}^{3}$ , we have the following symmetry group from
restriction of variables associated with the scale transformation.
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$G=\{(0*O*00**000*$

Then, we have the following.

$****1\in SL(4, \mathbb{R})\}$ .

Proposition 3.2. We obtain the following double fibration as the flat model space as-
sociated with $\mathcal{G}=ScaleDiff(\mathbb{R}^{3})$ :

(15)

This fibration is degenerate. Sinoe $\mathcal{G}=$ ScaleDi$ff(R^{3})$ is very strongly restricted from
Di$ff(\mathbb{R}^{3})$ , this degeneration arises. Hence, we consider the following problem.
Problem 3.3. Find a symmetry group for proper subgroup $\mathcal{G}$ of $Diff(\mathbb{R}^{3})$ , from which
has double fibmtion of compact-type as a flat model space.

For the problem, we consider the following subgroup $G\subset SL(4, \mathbb{R})$ :
(16) $G=\{g\in SL(4, \mathbb{R})|g[e_{3}]=[e_{3}],g[e_{3}]=[e_{3}]\}$ ,

(17) $=\{(\begin{array}{ll}* *0** *0*0 0*0* *0*\end{array})\in SL(4, \mathbb{R})\}$ .

Note that $G$ is a subgroup invariant under Cartan involution $\tilde{\theta}$ . We have the following
fibration of compact-type with respect to the group:
Theorem 3.4 ([N]). A double fibration constructed by the group (16) is the following
fibration of compact-type.

(18)

We note that the coordinate transformation group $\mathcal{G}$ corresponding to this symmetry
group (16) is constructed by the transformations of the form:

$X_{1}=X_{1}(x_{1}, x_{2}),$ $X_{2}=X_{2}(x_{1}, x_{2}),$ $Y= \frac{y}{A(x_{1},x_{2})}$ .

54



REFERENCES
[BG] R. Bryant, P. Griffiths: Toward a geometry of differential equation, Geometry, Topology, and

physics, International Press (1995), 1-76.
[B] R. Bryant: \’Elie Cartan and geometric duality, Journees \’Elie Cartan 1998 et 1999, Intitut \’Elie

Cartan 16 (2000), 5-20.
[G] R. B. Gardner: The method of equivalence and its applications, CBMS-NSF Regional Conf. Ser.

in Appl. math, 58, SIAM. Philadelphia (1989).
[GTW] C. Grissom, G. Thompson, G. Wilkens: Linearization of second order ordinary differential

equations via Cartan’s equivalenoe method, J. Differential Equations, 77, (1989), 1-15.
[HK] Hurtubise, J. C. ,Kamran, $N$ : Projective connections, double fibrations, and formal neighborhood

of lines, Math. Ann. 292, (1992) no.3383-409.
[IL] Thomas, A. Ivey, J. M. Landsberg: Cartan for Beginners:Differential Geometry via Moving

Flrames and Exterior Differential Systems, American Mathematical Society 2003.
[M] T. Morimoto: Two great books by \’Elie Cartan, Pleasure of mathematics, no.29, 98-104, Nippon-

Hyouronsha, (2002) ($J$apanese).
[N] T. Noda: Equivalenoe problem for second order PDE and double fibration as a flat model space,

preprint.
[01] P. Olver: Applications of Lie Groups to Differential Equations (Second Edition), Graduate Texts

in Mathematics, Springer 2000.
[O2] P. Olver: Equivalence, Invariants, and Symmetry, Cambridge University Press, 1995.
[OSS] T. Ozawa, H. Sato, H. Suzuki: Differential Equations and Schwarzian Derivatives, noncommuta-

tive geometry and physics 2005, Proceedings of the Intemational Sendai-Beijing Joint Workshop,
(2007) 129-149.

[Sa] H. Sato, Orbit decomposition of space of differential equations, mathematics of 21 century $\sim$

untrodden peak of geometry$\sim Nippon$-Hyouronsha, (2004) 267-280 (Japanese).
[St] Stemberg, Lectures on differential geometry, Chelsea (1983).
[Ta] N. Tanaka: On the equivalence problems associated with simple graded Lie algebras, Hokkaido

Math. J. 8 (1979), no. 1, 23-84.
[Ya] K. Yamaguchi: Differential systems associated with simple graded Lie algebras, Advanced Stud-

ies in Pure Math., 22 (1993), 413-494.
[YY] Yoshikawa, Atsuko Yamada: Equivalence problem of third-order ordinary differential equations,

Internat. J. Math. 17 (2006), no. 9, 1103-1125.
E-mail address: $m04031$xOmath. nagoya-u. ac. jp

55


