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1 Introduction

Each geometric structure has each own geometry. In this article, geom-
etry with Engel structure is discussed. Construction of manifolds with
certain geometric structures, and classification of such structures on a
manifold are interesting problems. In order to tackle such problems,
some tools should be needed. However, there are not enough such tools
on Engel structure and 4-dimensional topology, so far. Therefore, as a
tool on Engel geometry, a new surgery of manifolds is introduced in this
article.

Engel structures are interesting object for differential topology. An
Engel stmcture is a distribution of rank 2 on a 4-dimensional manifold
which is maximally non-integrable (see Section 2.1 for precise defini-
tion). A distribution is a subbundle of the underlying manifold. Engel
structures have an important property like contact structures. All Engel
structures are locally equivalent. Therefore, global study is important
for Engel structures ([M], [Adl],. . . , etc). Recently, sufficient condition
for the existence of an Engel structure is obtained by Vogel [V]: There
exists an Engel structure on a 4-dimensional manifold if and only if the
manifold is parallelizable. Then Engel manifolds must be going to be
studied as a object for global differential topology.

A contact structure on a 3-dimensional manifold is a distribution of
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rank 2 which is completely non-integrable. Engel structures and contact
structures on 3-dimensional manifolds are so closely related that mutual
contributions between Engel topology and 3-dimensional contact topol-
ogy are expected. Although locally an Engel structure is considered as
a prolongation of contact structure (see Sect 2.2), globally some Engel
manifolds can not be constructed as prolongations of contact manifolds.
Therefore, not only applications of contact topology but its own geometry
is important. Contact topology have been developing remarkably these
$15years$ . One of the reason is the relation between contact structures and
open book structures (see Sect. 3). An motivation for this article is to
look for such kind of structure for Engel structures.

In this article a new notion of handle, torus round handle, is intro-
duced (see Sect. 5). It is affected by the notion “round handle“ due
to Asimov [As] (see Sect. 4). Roughly speaking, $T^{2}$-round handle is an
ordinary handle times 2-dimensional torus. An application of a result,
Theorem $B$ , of this article to 4-dimensional manifold is the following
([Ad2]):

Theorem A. Any closed orientable parallelizable 4-manifold is obtained
from $S^{3}\cross S^{1}$ by $T^{2}$ -round surgeries.

In Sect. 6, an example of construction of closed Engel manifolds is
given.

2 Engel structures
and prolongations of contact structures

2.1 Basic definitions

An Engel structure is a maximally non-integrable distribution of rank
two on a 4-dimensional manifold. Generally, it is defined as follows. Let
$\Lambda l$ be a 4-dimensional manifold, and $D$ a distribution, or a subbundle of
the tangent bundle $TM$ , of rank 2. We can regard $D$ as a locally free
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sheaf of vcctor ficlds on $M$ . Let $[X, Y]$ dcnotc a shcaf of vcctor ficlds
generated by all Lie brackets $[X, Y]$ of vector fields $X,$ $Y$ which are cross-
sections of $D$ . Set $D^{2}$ $:=D+[D, D]$ , and $D^{3}$ $:=D^{2}+[D^{2}, D^{2}]$ . Then,
an Engel structure on $M$ is defined as a distribution $D\subset TM$ of rank 2
which satisfies the following conditions:

rank $D_{p}^{2}=3$ , rank $D_{p}^{3}=4$ (2.1)

at any point $p\in M$ .
An Engel structure has a characteristic direction. Let $D$ be an Engel

structure on a 4-dimensional manifold $\Lambda I$ . From this Engel structure $D$ ,
a line field is defined as follows: $L(D)$ $:=\{X\in D|[X, D^{2}]\subset D^{2}\}$ . The
line field $L(D)$ is called the Engel line field. It is known that a contact
structure is induced from an even-contact structure $D^{2}$ on an embedded
manifold $N\subset M$ which is transverse to the Engel line field $L(D)$ . The
contact structure is obtained as $D^{2}\cap TN$ . Such a procedure is called a
deprolongation (see [M], [BCG3]).

In this paper, we work just in the standard Engel space $(\mathbb{R}^{4},$ $E)$ , that
is, an ordinary 4-dimensional space $\mathbb{R}^{4}$ endowed with the standard Engel
structure. The standard Engel structure on $\mathbb{R}^{4}$ is defined as a kernel of
the following pair $\omega_{1},$ $\omega_{2}$ of l-forms:

$\omega_{1}=dy-zdx$ , $\omega_{2}=dz-wdx$ , (2.2)

where $(x, y, z, w)\in \mathbb{R}^{4}$ are coordinates. Let $E$ denotes the standard
Engel structure on $\mathbb{R}^{4}$ :

$E$ $:=\{\omega_{1}=0, \omega_{2}=0\}=$ Span $\{\frac{\partial}{\partial x}+z\frac{\partial}{\partial y}+w\frac{\partial}{\partial z},$ $\frac{\partial}{\partial w}\}$ .

We call the 4-dimensional space $(\mathbb{R}^{4},$ $E)$ endowed with the standard En-
gel structure the standard Engel space. It is clear that the standard
Engel structure $E$ actually satisfies the condition (2.1) of the definition.
In this case, the Engel line fields is $L(E)=$ Span $\{\partial/\partial w\}$ . With respect
to the standard Engel structure on $\mathbb{R}^{4}$ , the induced contact structure
on $\mathbb{R}^{3}\subset \mathbb{R}^{4}$ , the $(x, y, z)$-space, is $C=\{\omega_{1}=dy-zdx=0\}$ . It is also
called the standard contact structure on $\mathbb{R}^{3}$ .
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2.2 Prolongations

A certain Engel manifold is constructed from a 3-dimensional contact
manifold. A contact structure is a completely non-integrable distribu-
tion of corank one on an odd-dimensional manifold. Let $E$ be a contact
structure on a 3-dimensional manifold $N$ . By taking fibrewise porjec-
tivization of the contact structure $E$ , we obtain a new 4-dimensional
manifold $\mathbb{P}E=\bigcup_{x\in N}\mathbb{P}(E_{x})$ . On the 4-dimensional manifold $\mathbb{P}E$ , an En-
gel structure $D(E)$ is defined $uD(E)_{q}$ $:=(d\pi)^{-1}l$ , where $\pi:\mathbb{P}Earrow M$ is
a canonical projection, $q=(p, l)\in \mathbb{P}E$ is a point, and $l\in T_{p}M$ is a line
(see [M]). Such a procedure is called a Cartan prolongation (see [BCG3],
[M], [Adl] $)$ .

3 Open book structure and Contact structure

Let us begin with ordinary open book structure. Let $M$ be a manifold.
An open book structure on $M$ is a pair $(\Sigma, h)$ of a submanifold $\Sigma\subset$

$M$ of codimension oiie with non-empty boundary aiid a diffeomorpbism
$h:\Sigmaarrow\Sigma$ which is identity on $\partial\Sigma$ that satisfies the following property:
Setting $\Sigma(h)$ $:=(\Sigma\cross[0,1])/\sim$

’ where $(x, 0)\sim(h(x), 1)$ for any $x\in\Sigma,$ $fi./[$

is $dift\cdot eoliioi_{I)}1iic$ to $\Sigma(h)U_{id}(\partial\Sigma\cross D^{2})$ . Tlie submaiiifold $\Sigma$ is called a
page, the diffeomorphism $h:\Sigmaarrow\Sigma$ is called the monodoromy mapping,
and the submanifold $B\subset M$ corresponding to $\partial\Sigma\cross\{0\}\subset\partial\Sigma\cross D^{2}$ is
called the binding. The decomposition of $M$ into bindings and pages is
called an open book decomposition of $M$ . The existence of an open book
structure on any closed orientable 3-dimensional manifold was proved
by Alexander [Al]. Furthermore, number of connected components of
binding was studied by Myers [M]:

Theorem 3.1 (Myers). On any closed orientable 3-manifold, there is an
open book structure with one connected binding.

We should remark that open book structure has important relation
with contact structure. It largely contributes to recent developments in
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contact topology (see [G], [H]).

4 Round handle

Let us begin with the definition of ordinary handle. Let $W$ be a compact
manifold of dimension $n$ with boundary. A handle of dimension $n$ and
index $k$ attached to $W$ is defined as a pair $h_{k}=(D^{k}\cross D^{n-k},$ $f)$ of an
n-disk with corner and an embedding $f:\partial_{-}(D^{k}\cross D^{n-k})arrow\partial IW$ , where
$\partial_{-}(D^{k}\cross D^{n-k})=\partial D^{k}\cross D^{n-k}$ . Let $W \bigcup_{f}h_{k}$ or $W+h_{k}$ denote the
manifold obtained from $W$ and $D^{k}\cross D^{n-k}$ by the attaching mapping
$f$ . Sometimes, $h_{k}$ also denotes $D^{k}\cross D^{k-\gamma\downarrow}$ itself and the corresponding
subset in $W \bigcup_{f}h_{k}$ .

Round handle is introduced by Asimov [As] to study the non-singular
Morse-Smale flow. A round handle of dimension $n$ and index $k$ attached
to $W$ is defined as a pair $R_{k}=(D^{k}\cross D^{n-k-1}\cross S^{1},$ $\psi)$ of a manifold
with corner and an embedding $\psi:\partial_{-}(D^{k}\cross D^{n-k-1}\cross S^{1})arrow\partial W$ , where
$\partial_{-}(D^{k}\cross D^{n-k-1}\cross S^{1})=\partial D^{k}\cross D^{n-k-1}\cross S^{1}$ . Let $W \bigcup_{\psi}R_{k}$ or $W+R_{k}$

denote the round handle body. Sometimes, $R_{k}$ also denotes $D^{k}\cross D^{k-n-1}\cross$

$S^{1}$ itself and the corresponding subset in $W \bigcup_{\psi}R_{k}$ .
The decomposability of manifold into round handles was studied by

Asimov [As]. He studied the decomposability of flow manifolds which
are defined as follows. A flow manifold is a pair $(l/V, \partial_{-}W)$ of a compact
connected manifold $W$ and some specified union $\partial_{-}W$ of connected com-
ponents of $\partial W$ which satisfics that thcre is a non-singular vector field on
IV looking inward on $\partial_{-}W$ and outward on $\partial_{+}W$ $:=\partial W\backslash \partial_{-}W$ . The
following theorem is proved in [As].

Theorem 4.1 (Asimov). Let $W$ be a flow manifold whose dimension is
greater than 3. Then, $W$ has a round handle decomposition,

A generalization of this theorem is Theorem $B$ in this paper.
One of the main tool to prove Theorem 4.1 is the following.
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Lemma 4.2 (Asimov). Let $W$ be a manifold with non-empty boundary
$\partial W\neq\emptyset$ , and $\partial_{1}W\subset\partial W$ a connected component. Assume that two
handles $h_{k}$ and $h_{k+1}$ of index $k$ and $k+1$ respectively, $k\geq 1$ , are attached
to $\partial_{1}W$ independently. Then, $W+h_{k}+h_{k+1}$ is diffeomorphic to $W+R_{k}$ ,
where $R_{k}$ is a round handle of index $k$ .

A version of this lemma for round handles is one of important tools to
prove Theorem B. In order to prove such a version, we need ideas in the
proof of Lemma 4.2. Then, we roughly review the proof of Lemma 4.2.

Rough sketch of the proof of Lemma 4.2. The idea is to slide $h_{k+1}$ onto
$h_{k}$ so that the union $h_{k+1}\cup h_{k}$ can be regarded as a round handle $R_{k}$ .

The isotopy is constructed as an isotopy of the attaching sphere of $h_{k+1}$

as follows. Let $h_{k}=(D^{k}\cross D^{n-k},$ $f_{k})$ and $h_{k+1}=(D^{k+1}.\cross D^{n-k-1},$ $f_{k+1})$

be the given two handles. First, we can take an embedded path $a:[0.1]arrow$

$\partial(W+h_{k}+h_{k+1})$ connecting the attaching sphere $f_{k+1}(\partial D^{k+1}\cross\{0\})$

of $h_{k+1}$ and the corner $f_{k}((\partial D^{k}\cross\partial D^{k-1})$ of $h_{k}$ wliicli satisfies the fol-
lowing conditions (see Figure 1):

$\bullet a(0)\in f_{k+1}(\partial D^{k+1}\cross\{0\})$ ,

$\bullet$ $a(1/2),$ $a(1)\in f_{h}(\partial D^{k}\cross\partial D^{n-k})$ ,

$\bullet a((0,1/2))\cap(f_{k+1}(\partial D^{k+1}\cross\{0\})\cup f_{k}(\partial D^{k}\cross\partial D^{r\iota-k}))=\emptyset$ ,

$\bullet$ $a([1/2,1])\subset D^{k}\cross\partial D^{n-k}=\partial_{+}h_{k}$ ,

$\bullet$ $a([1/2,1])$ intersects with $\{0\}\cross\partial D^{n-k}$ once transversely.

Figure 1: isotopy of $h_{k+1}$

110



Let $\varphi_{t}:\partial_{-}h_{k}arrow\partial_{+}(W+h_{k})$ be an isotopy pulling $N(a(O))\cross D^{n-k-1}$

along the path $a$ and keeping the rest fix, wbere $N(a(O))\subset$

$f_{k^{h}+1}(\partial D^{k+1}\cross\{0\})$ is a neighborhood of $a(O)$ in the attaching sphere
of $h_{k+1}$ . Furthermore, we make $h_{k}$ shrink to a neighborhood of the
transverse disk $\{0\}\cross D^{n-k}\subset D^{n}\cross D^{n-k}$ of $h_{k}$ . After applying the
isotopies above, we still use the same notations $h_{k}=(D^{k}\cross D^{n-k},$ $f_{k})$ ,
$h_{k+1}=(D^{k+1}\cross D^{n-k-1},$ $f_{k+1})$ (see Figure 1).

The obtained handle body $W+h_{k}+h_{k+1}$ is regarded as $W+R_{k}$

as follows. According to proper coordinates, the handles are regarded
as $h_{k}=D^{k}\cross(D^{1}\cross D^{n-k-1})$ and $h_{k+1}=(D^{k}\cross D^{1})\cross D^{n-k-1}$ . These
coordinates are also taken so that the intersection of two handles are
written down as $h_{k}\cap h_{k+1}=D^{k}\cross(\partial D^{1}\cross D^{n-k-1})$ from the view point
of $h_{k}$ , and $h_{k}\cap h_{k+i}=(D^{k}\cross\partial D^{1})\cross D^{n-k-1}$ from that of $k_{k+1}$ . Then,
the union of handles is

$h_{k}\cup h_{k+1}=D^{k}\cross(\partial D^{1}\cup\partial D^{1})\cross D^{n-k-1}=D^{k}\cross S^{1}\cross D^{n-k-1}=R_{k}$ ,

and the subset of $(h_{k}\cup h_{k+1})$ attached to $W$ is

$(h_{k}\cup h_{k+1})\cap W=\partial D^{k}\cross(\partial D^{1}\cup\partial D^{1})\cross D^{r\iota-k-1}$

$=\partial D^{k}\cross S^{1}\cross D^{n-k-1}=\partial_{+}R_{k}$ .

Thus, $W+h_{k}+h_{k+1}$ is considered as $W+R_{k}$ (see Figure 2). 口

$h_{k+1}$

$0^{k}$

$|$

$1$

$h_{k}$
$i$

Figure 2: union of handles

Round surgery was introduced by Asimov [As] to study flow iiianifolds.
Let $M$ be an n-dimensional manifold. A round surgery of index $k$ on $M$
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is the procedure that embeds $\partial D^{k}\cross D^{n-k}\cross S^{1}$ and removes $\partial D^{k}\cross$

int $(D^{n-k})\cross S^{1}$ and glues $D^{k}\cross\partial D^{n-k}\cross S^{1}$ by the identity mapping of
$\partial D^{k}\cross D^{n-k}\cross S^{1}$ . Similarly to ordinary handles, a kind of cobordisms
is defined for round handles. Two closed manifolds $\Lambda,\prime I_{1},$ $M_{2}$ of dimension
$N$ are said to be round cobordant if $M_{2}$ is obtained from $M_{1}$ by a finite
sequence of round surgeries. Round surgeries of 3-manifolds were studied
by Asimov [As] by using Theorem 4.1.

Theorem 4.3 (Asimov). A $ny$ closed 3-manifold is obtained from $S^{3}$ by
a finite sequence of round surgeries of index 1 and 2.

5 Torus round handle

Multi-round handle is defined as a generalization of round handle.

Definition. An i-th multi-round handle of dimension $n$ and index $k$

attached to $W$ is defied as a pair

$Q_{k}^{(i)}=(D^{k}\cross D^{n-k-i}\cross\tilde{S^{1}\cross\cdot\cdot\cross S^{1}},$
$\varphi)i$.

$d$

of a manifold with corner and an embedding

$\varphi:\partial_{-}(D^{k}\cross D^{n-k-i}\cross S^{1}\cross\cdots\cross S^{1})arrow\partial W$,

where $\partial_{-}(D^{k}\cross D^{n-k-i}\cross S^{1}\cross\cdots\cross S^{1})=\partial D^{k}\cross D^{n-k-i}\cross S^{1}\cross\cdots\cross S^{1}$ .
Let $W \bigcup_{\varphi}Q_{k}^{(i)}$ or $W+Q_{k}^{(i)}$ denote the multi-round handle body.

Sometimes, $Q_{k}^{(i)}$ also denotes $D^{k}\cross D^{k-n-i}\cross S^{1}\cross\cdots\cross S^{1}$ itself and
the corresponding subset in $W \bigcup_{\varphi}Q_{k}^{(i)}$ . Note that $Q_{k}^{(0)}$ is an ordinary
k-handle, and $Q_{k’}^{(1)}$ is a round k-handle.

Using multi-round handles instead of ordinary handles, we can define
multi-round handle decomposition.

Now, wc dcfinc multi-round surgcry. Let $M$ be an n-dimcnsional flow

manifold, and
$f: \partial D^{k}\cross D^{n-k-i+1}\cross\frac{i}{S^{1}\cross\cdots\cross S^{1}}arrow M$

an embedding.
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Definition. The manifold obtained from $M$ by an i-th round surgery of
index $k$ by $f$ is $M\backslash f(\partial D^{k}\cross D^{7l-k-i+1}\cross S^{1}\cross\cdots\cross S^{1})$ and $D^{k}\cross\partial D^{r\iota-k-i+1}\cross$

$S^{1}\cross\cdots\cross S^{1}$ glued by the identity mapping of $\partial D^{k}\cross\partial D^{n-k-i+1}\cross S^{1}\cross$

. $\cross S^{1}$ . Especially, we call a second round surgery a dual round surgery.

A kind of cobordisms is defined in a way similar to round cobordism
in [As].

Definition. Let $M_{1},$ $M_{2}$ be n-dimensional manifolds without boundaries.
They are said to be i-th round cobordant if $\Lambda^{\gamma}I_{2}$ is obtained from $A/I_{1}$ by a
finite sequence of i-th round surgeries. Especially, we call a second round
cobordant a dual round cobordant.

Then, by similar arguments to round handle, we obtain the following
([Ad2]):

Theorem B. Let $M$ be a compact flow manifold. Assume that the di-
mension of $M$ is greater than four, and that the $(n-1)st$ Stiefel- Whitney
class vanishes: $w_{n-1}(M)$ . Then $M$ can be decomposed into $T^{2}$ -round
handles.

6 A construction of some closed Engel manifolds

We construct Engel structures on certain closed 4-dimensional manifolds.
As a simple closed 4-manifold obtained by $T^{2}$-surgeries, we deal with

$M=(\Sigma\cross S^{1}\cross S^{1})\cup(\partial\Sigma\cross S^{1}\cross D^{2})$ ,

where $\Sigma$ is a compact orientable surface with boundary.

6.1 A construction of an Engel structure on $\Sigma\cross S^{1}\cross S^{1}$

We construct an Engel structure on $\Sigma\cross S^{1}\cross S^{1}$ . Two well-known
methods are applied to the construction. One is that of Thurston and
Winkelnkemper [TW], the other is the prolongation of a contact structure
(see in Sect. 2.2).
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First, we construct a contact form on $\Sigma\cross S^{1}$ , whcrc $\Sigma$ is a com-
pact orientable surface with boundary. Thurston and Winkelnkemper
constructed in [TW] a contact form on $\Sigma\cross S^{1}$ as follows:

$\omega:=K\cdot d\theta+\alpha$ ,

where $\theta$ is coordinate of $S^{1},$ $\alpha$ is a l-form on $\Sigma$ whose derivative $d\alpha$ is a
volume form, and $K>0$ is a sufficiently large constant.

Next, we prolong the contact 3-manifold $(\Sigma\cross S^{1,}.\omega)$ . In the prolonga-
tion procedure, a contact framing should be chosen carefully. Since $d\omega$ is
a volume form on $\Sigma_{j}$ the contact framing depends on the Euler character-
istic of tlie surface $\Sigma$ . In otlier words, we can count how inany tiines the
framing rotates on the boundary of $\Sigma$ . This information is important to
glue. Then, by perturbing, we obtain an Engel structure on $\Sigma\cross S^{1}\cross S^{1}$

wliose cliaracteristic line field is transverse to tlie boundary.
Note that the boundary of $\Sigma\cross S^{1}\cross S^{1}$ is the disjoint union of 3-tori

on which contact structures are induced.

6.2 A construction of an Engel structure on $S^{1}\cross S^{1}\cross D^{2}$

Now, we construct Engel structures on $S^{1}\cross S^{1}\cross D^{2}$ which induce all tight
contact structures on $T^{3}$ . Tight contact structures on $T^{3}$ are classified
by Kanda [K].

Let $(s, t, (x_{1}, x_{2}))$ be coordinates of $S^{1}\cross S^{1}\cross D^{2}$ . Setting

$C_{1} \cdot=\frac{\partial}{\partial x_{2}}$ , $C_{2}:= \frac{\partial}{\partial s}-x_{2}\frac{\partial}{\partial x_{1}}$ ,

we obtain a contact framing of $S^{1}\cross D^{2}$ . That is, Span$\{C_{1}, C_{2}\}$ is a contact
structure on $S^{1}\cross D^{2}$ . In addition, set $W$ $:=\partial/\partial t-x_{1}(\partial/\partial x_{1})-x_{2}(\partial/\partial x_{2})$ .
Then the plane field

$E_{k}$ $:=\{W, \cos(kt)C_{1}+\sin(kt)C_{2}\}$

is an Engel structure on $S^{1}\cross S^{1}\cross D^{2}$ . A diffeoinorpliisin $\Theta:S^{1}\cross S^{1}\cross$

$D^{2}arrow S^{1}\cross S^{1}\cross D^{2}$ defined by $\Theta(s, t, (r, \theta))$ $:=(s, t, (r, \theta+t))$ changes
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the isotopy class of $E_{k}$ . Now, setting

$E_{k_{\dagger^{7}}r\iota}:=(\Theta^{m})_{*}E_{k}$ ,

we obtain Engel structures on $S^{1}\cross S^{1}\cross D^{2}$ . It is easy to check that
the characteristic line field of $E_{m_{\dagger}k^{2}}$ is $W$ , which is transverse to $T^{3}$ as
the boundary $\partial(S^{1}\cross S^{1}\cross D^{2})$ . Then the even contact structures $E_{m_{\dagger}k^{2}}$

induce contact structures on $T^{3}=\partial(S^{1}\cross S^{1}\cross D^{2})$ , which correspond to
all Kanda’s model for all $m\in Z$ .

6.3 Gluing two Engel manifolds

We glue two Engel manifolds with the same boundary by the method
due to Montgomery [M]. On account of his method, two Engel man-
ifolds $(W_{1}, D_{1})$ and $(W_{2}, D_{2})$ can be glued if they satisfy the following
conditions:

$\bullet\partial W_{1}\cong\partial W_{2}$ ,
$\bullet$ Char$D_{i}^{2}rh\partial W_{i}$ ,
$\bullet$ the induced contact structures on $\partial W_{i}$ are equivalent.

Then by choosing a suitable Engel structures $E_{m_{\dagger}k}$ on $S^{1}\cross S^{1}\cross D^{2}$ for
each components of $\partial(\Sigma\cross S^{1}\cross S^{1})$ , we can glue $\Sigma\cross S^{1}\cross S^{1}$ and some
$S^{1}\cross S^{1}\cross D^{2}$ with Engel structures.
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