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Three years ago, in this same series of workshops, the speaker an-
nounced that any anisotropic torus over any number field is obtained

as a quotient group of the defining affine group scheme of a neutral Tan-

nakian category of equivalence classes of semi-stable systems of linear
inequalities of slope zero. Recently, he has extended the result to arbi-

trary algebraic groups over an arbitrary number field which is densely

generated by tori, whether it is anisotropic or not.
In this talk, the speaker explains his result and its limitations through

a few examples of systems of linear inequalities.

$C$ : a cat. of general Roth systems of slope $0$

‘Objects’ of $C$

Example 1
$x,$ $y$ : indeterminates; $\alpha\in \mathbb{R}\cap\overline{\mathbb{Q}}\backslash \mathbb{Q}$;
$f_{0},$ $f_{1}\in \mathbb{Q}(\alpha)[x, y]$

$f_{0}=x,$ $f_{1}=\alpha x-y$ ;

$c(0),$ $c(1)\in \mathbb{R}$

$c(0)=-1,$ $c(1)=1$ .

$(f_{0}, f_{1};c(O), c(1))$ a gen. Roth sys. of slope $0$

Fixed $\delta\in \mathbb{R}_{>0}$ ; variable $Q\in R_{>1}$

(1) $|x|<Q^{-c(0)-\delta},$ $|\alpha x-y|<Q^{-c(1)-\delta}$

$(x, y\in \mathbb{Z})$

$\#$ of sol. to (1) is finite $($Roth’s thm $)$ .

In these several years, $I’ m$ interested in a cate-
gory $C$ of certain equivalence classes of general Roth

systems of slope $0$ . $\ldots$ In place of the precise defini-
tion of the category $C$ , let’s look at a few examples

of ‘objects’ of that category.

In the lst example, we denote by $x$ and $y$ two

indeterminates. Take up a real algebraic number $\alpha$

which is irrational. We define linear forms $f_{0}$ and
$f_{1}$ in $x$ and $y$ with coefficients in the field generated
by $\alpha$ over the rationals respectively as $x$ and ax-y.
Real numbers $c(O)$ and $c(1)$ are set to equal-l and
1, respectively. The data $(f_{0}, f_{1};c(O), c(1))$ is an
example of general Roth system of slope $0$ .

With the help of an arbitrarily fixed positive
number $\delta$ and. . . , we associate the general Roth

system with the following linear inequalities. Here,

assume the indeterminates $x$ and $y$ take values in

the ring of rational integers. In this setting, the

number of solutions to the inequalities (1) is finite
thanks to the famous Roth’s theorem.
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Const. $C\in \mathbb{R}_{>0}$

(2) $|x|<C\cdot Q^{-c(0)},$ $|\alpha x-y|<C\cdot Q^{-c(1)}$

$(x, y\in \mathbb{Z})$

$C\gg 0\Rightarrow$

$\#$ of sol. to (2) is $\infty$ $($Minkowski’s thm $)$ .

Example 2
$x,$ $y,$ $z$ : indeterminates; $\alpha\in \mathbb{R}\cap\overline{\mathbb{Q}},$ $\deg\alpha>2$ ;
$f_{0},$ $f_{1},$ $f_{2}\in \mathbb{Q}(\alpha)[x, y, z]$

We consider at the same time, for a positive con-
stant $C$ , the next related linear inequalities. The
differences from the above inequalities are in the
coefficients and in the exponents of the variable
real number $Q$ . The area in the xy-plane of the
parallelogram defined by the inequalities (2) is a
constant times the square of $C$ for any value of the

variable $Q$ . So, if the constant $C$ is large enough,

then the number of solutions to (2) is infinite by
Minkowski’s theorem of the geometry of numbers.

$f_{0}=x,$ $f_{1}=\alpha x-y,$ $f_{2}=\alpha^{2}x-z$ ;

$c(0),$ $c(1),$ $c(2)\in \mathbb{R}$

$c(0)=-2,$ $c(.1)=1,$ $c(2)=1$ .

$(f_{0}, f_{1}, f_{2};c(O), c(1), c(2))$

a gen. Roth sys. of slope $0$

Fixed $\delta\in \mathbb{R}_{>0}$ ; variable $Q\in \mathbb{R}_{>1}$

(3) $|x|<Q^{-c(0)-\delta},$ $|\alpha x-y|<Q^{-c(1)-\delta}$ ,

$|\alpha^{2}x-z|<Q^{-c(2)-\delta}$

$(x, y, z\in \mathbb{Z})$

$\#$ of sol. to (3) is finite (subsp. thm of Schmidt).

Const. $C\in \mathbb{R}_{>0}$

(4) $|x|<C\cdot Q^{-c(0)},$ $|\alpha x-y|<C\cdot Q^{-c(1)}$ ,

$|\alpha^{2}x-z|<C\cdot Q^{-c(2)}$

$(x,y, z\in \mathbb{Z})$

$c\gg 0\Rightarrow$

In the 2nd example, we denote by $x,$ $y,$ $z$ three in-
determinates. For a real algebraic number $\alpha$ of de-
gree larger than 2, we define linear forms $f_{0},$ $f_{1},$ $f_{2}$

with coefficients in $\mathbb{Q}(\alpha)$ in $x,$ $y,$ $z$ respectively as $x$ ,

$\alpha x-y$ , and $\alpha^{2}x-z$ . Real numbers $c(O),$ $c(1),$ $c(2)$

are set to be equal to $-2,1,1$ , respectively. The
data $(f_{0}, f_{1}, f_{2};c(O), c(1), c(2))$ is a general Roth

system of slope $0$ .
As in the lst example, we associate the system

with the following linear inequalities. Compared

with the inequalities in the lst example, the in-

determinate $z$ and the third inequality are added.
The number of solutions in the ring of rational in-

tegers to the inequalities (3) is known to be finite
by the subspace theorem of Schmidt.

Also as in the lst example, consider the next re-
lated linear inequalities. The volume in the xyz-
space of the parallelepiped it defines is a constant
times the cube of $C$ . We see that when $C$ is suf-
ficiently large, the number of solutions to the in-
equalities (4) is infinite by Minkowski’s theorem.

$\#$ of sol. to (4) is $\infty$ $($Minkowski’s thm$)$ .
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Example 3
$x$ : indeterminate; $f,$ $g\in \mathbb{Q}[x]$

$f=x,$ $g=x$ ;

In the 3rd example, we define rational linear
forms $f$ and $g$ in one indeterminate $x$ both as $x$

itself. Real numbers $c$ and $d$ are now set to eqaul

1 and $-1$ , respectively. The data $((f;c), (g;d))$ is

$c,$ $d\in \mathbb{R}$

$c=1,$ $d=-1$ .

$((f;c),$ $(g;d))$ a gen. $Ro$ th sys. of slope $0$

$p\in \mathbb{Z}$ : prime; . $|_{p}$ : p-adic val., $|p|_{\rho}= \frac{1}{p}$

(5) $|x|<Q^{-c-\delta},$ $|x|_{p}\leq Q^{-d}$ $(x \in \mathbb{Z}[\frac{1}{p}])$

The only sol. to (5) is $x=0$ (prod. formula).

Const. $C\in \mathbb{R}_{>0}$

(6) $|x|<C\cdot Q^{-c},$ $|x|_{p}\leq Q^{-d}$ $(x \in \mathbb{Z}[\frac{1}{p}])$

$C>1\Rightarrow\#$ of sol. to (6) is $\infty$ .

Recent result
$k$ : base field of $C$ , fin. $/\mathbb{Q};\overline{G}$ : affine gp scheme/k

$C\simeq\underline{Rep}_{k}(\tilde{G})$

Thm
Any alg. $gpG/k$ generated by tori
(e.g. any torus or any reductive $gp$)

$Garrow\tilde{G}$ : quotient

i. e.,
Rep$k(G)arrow C$ : full subcat.

also an example of general Roth system of slope $0$ .

Choose a rational prime $p$ . We use the subscript
$p$ to denote the standard p-adic absolute value.

Associate the above system with the following
inequalities. This time, the second inequality is
defining a lattice in the x-line for each value of the

variable $Q$ . For this reason, the inequality contains
the equality, we do not attach the term $-\delta$ to the
exponent of $Q$ , and the indeterminate $x$ is assumed
to take values in the ring of rational numbers whose

denominators are powers of $p$ . The only solution to
(5) is $0$ because of the so-called product formula.

For a positive constant $C$ , consider the next re-
lated linear inequalities. It’s easily seen that if $C$ is

larger than 1, then the number of solutions to the

inequalities (6) is infinite.

Now let’s return to a category $C$ of general Roth

system of slope $0$ . We denote by $k$ its base field

which is a finite extension of $\mathbb{Q}$ . It’s known that

there exists an affine group scheme $\overline{G}$ defined over
$k$ such that the category $C$ is equivalent to the cat-

egory of finite dimensional rational representations

over $k$ of $\tilde{G}$ .
Our recent result says that any algebraic group

$G$ defined over $k$ which is densely generated by

subtori, whether it’s anisotropic or not, is a quo-

tient group of $\tilde{G}$ . In other words, the category of
finite dimensional representations over $k$ of $G$ can
be viewed as a full subcategory of $C$ .
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Consequence &limitations

Example 1 $($ conti.)
$Wh$ en $\mathbb{Q}(\alpha)/\mathbb{Q}$ of $deg$. $2$

$q(x, y)=Norm_{\mathbb{Q}(\alpha)/\mathbb{Q}}(\alpha x-y)$

Instead of giving an outline of the proof, . . . We
have only a partial knowledge in our present sit-
uation about the whole group scheme $\overline{G}$ , though
we have found a large class of algebraic groups as
quotients of $\overline{G}$ .

$(f_{0}, f_{1};c(O), c(1))arrow a$ rep. of

$S=Spec(\mathbb{Q}[x, y]/(q(x, y)-1))$

$m\in \mathbb{Q}$

$S_{m}=Spec(\mathbb{Q}[x, y]/(q(x, y)-m))$

{sol. to (2)} $\subset\prod_{m}S_{m}(\mathbb{Z})$ (fin. union)

$Q\gg 0\Rightarrow$

{sol. to (1)} $\subset S_{0}(\mathbb{Z})$

hence $x=y=0$
(lin. indep. of 1 and $\alpha$ over $\mathbb{Q}$ ; Liouville)

When $\mathbb{Q}(\alpha)/\mathbb{Q}$ of deg. $>2$ ,

$(f_{0}, f_{1};c(O), c(1))arrow a$ rep. of what?

When $\mathbb{Q}(\alpha)/\mathbb{Q}$ is a quadratic extension, . . .
The general Roth system $(f_{0}, f_{1};c(O), c(1))$ can
be derived from a representation of the next 1-
dimensional anisotropic torus $S$ .

For each rational number $m$ , we consider a prin-
cipal homogeneous space $S_{m}$ of $S$ of the following
type. The solutions to linear inequalities (2) are
integer points on a finite number of $S_{m}$ . The inclu-
sion can be interpreted as a kind of parametrization

of an infinite set of the solutions to (2) by integral
points on a finite number of principal homogeneous
spaces $S_{m}$ .

For large values of the variable $Q$ , the solutions
to inequalities (1) are integer points on $S_{0}$ . Hence
both $x$ and $y$ must be $0$ , by linear independence of
the numbers 1 and $\alpha$ over $\mathbb{Q}$ . This is a restatement
of a classical theorem of Liouville.

When the extension degree is bigger than 2, the
case we do need Roth’s theorem to claim the finite-
ness of the number of solutions to (1), we do not
know yet the way to understand the general Roth

system $(f_{0}, f_{1};c(O), c(1))$ as coming from a repre-
sentation of a group defined over $\mathbb{Q}$ .

Example 2 (conti.)
When $\mathbb{Q}(\alpha)/\mathbb{Q}$ Galois, of $deg$. $3$ ;
$r,$ $s,$ $t\in \mathbb{Q}$ satisfying $\alpha^{3}+r\alpha^{2}+s\alpha+t=0$

$n(x, y, z)= Norm_{Q(\alpha)/Q}(\frac{t}{\alpha}x-(r+\alpha)y-z)$

$(f_{0}, f_{1}, f_{2};c(O), c(1), c(2))arrow a$ rep. of

$T=Spec(\mathbb{Q}[.x,$ $y,$ $z|/(n(x, y, z)-1))$

When $\mathbb{Q}(\alpha)/\mathbb{Q}$ is a Galois extension of degree
3, we denote by $r,$ $s,$ $t$ the respective rational co-
efficients of the monic minimal polynomial of $\alpha$

over Q. We define a cubic polynomial $n(x, y, z)$

$ThegeneralRothsystem(f_{0},, f_{2}, c(0),c(1), c(2))asnormofthe1inearform\frac{t}{f_{1}\alpha}x-(r+\alpha)y-z$
.

can be derived from a representation of the next
2-dimensional anisotropic torus $T$ .
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$m\in \mathbb{Q}$

$T_{m}=Spec(\mathbb{Q}[x, y, z]/(n(x, y, z)-m))$

{sol. to (4)} $\subset\coprod_{m}T_{m}(\mathbb{Z})$
(fin. union)

$Q\gg 0\Rightarrow$

{sol. to (3)} $\subset T_{0}(\mathbb{Z})$

hence $x=y=z=0$
(lin. indep. of 1, $\alpha,$

$\alpha^{2}$ over $\mathbb{Q}$ )

When $\mathbb{Q}(\alpha)/\mathbb{Q}$ of deg. $>3$ ,

$(f_{0}, f_{1}, f_{2};c(O), c(1), c(2))arrow a$ rep. of what?

Example 3 (conti.)
$((f;c), (g;d))arrow rep$. of $G_{m}$
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