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Summary

Let 2 = R%\ E be a domain in R? where E is a compact subset of a Lipschitz
graph . It is known that there is a partition £ = E; U E; of E where FE; is the set
of simple points (w.r. to the Martin compactification of 2) in E and Fs is the set of
double points in F [2]. Also the harmonic measure (with respect to ?) and Hy 1,
are mutually absolutely continuous in E; and Hg_1(E;) = 0 [4]. The main result is
that for almost every point ¢ of E; (w.r. to the harmonic measure in §2) every open
“cone” .C' in ¥ with vertex at ¢ is minimally unthin (w.r. to Q) at ¢ (or, in other
words, a Brownian motion conditioned to exit from 2 at ¢ hits with probability one
CNQ = C\ FE during its lifetime). This extends to Lipschitz Denjoy domains one
of the results of C. J. Bishop in [7] and in the same time gives a different method of

proof. Using a similar method, another natural asymptotic result is also obtained.

1 Introduction and preliminaries.

In this paper, we deal with questions related to some of the results of
C. J. Bishop in [7] (see 1.7 and 1.8 below) about the behavior of the
Brownian motion in a Denjoy domain in R¢, d > 2, that is a domain in R¢

whose complement is contained in the hyperplane z4 = 0.
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We consider here a Lipschitz Denjoy domain € in R¢ : more precisely
Q = R\ F, with E compact in R? and contained in the graph X, of a
function f : R¢"! — R which is assumed to be k-Lipschitz for some constant
k > 1 (fixed in all what follows). The main results (Theorems 2.1, 3.2 and
4.1) are first described in 1.9.

Denote ocoge the point at infinity in the Alexandrov compactification of
R? and set F = E U {oog«}. If B is an open subset of E and if h is
harmonic in §2, we say that h vanishes on B if (i) for each ( € B, h is
bounded in the trace on 2 of some neighborhood of ¢, and (ii) the set

By = {¢ € B; limsup |h(z)| > 0} is polar. Recall (or take as a convention)
Qsz—(

that {ooge} is polar iff d = 2. If h = 0 on B, then h has the limit O at
every Dirichlet-regular boundary point for §2 lying in B (including ooga if
d > 3 and B 5 coga).

We now state some known basic properties of positive harmonic functions
in such a domain 2. Let H, (£2) denote the set of all nonnegative harmonic

functions in 2.

1.1. For each point P € E the dimension of the cone H} = {u € H,(Q); u
vanishes in E \ {P}} is one or two, H} being generated by one or two min-
imal harmonic functions in Q (See [1], [6] for E contained in a hyperplane
-or even a CU! hypersurface [1]-, and [2] for the general case). Moreover
P is a unique pole (see [17] for a definition) on E for these minimal func-
tions. Accordingly P is said to be a simple boundary point of Q if HFf is

one dimensional, and a double boundary point otherwise ([4]).

1.2. The set of double points is a Borel subset of FE (in fact a F,-subset
-see remark 1.3 below) and given a double point P € F, one of the minimal
attached to P is the limit -in the Martin topology- of every sequence {x,}
converging nontangentially to P in ¥t = {(2/,z4); zg > f(z') } (see [11]).
This minimal is denoted hf. The other minimal, denoted hp, 1s similarly

related to P and the strict subgraph P
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1.3. The property in 1.1 above is obtained in [2] (see p. 254) by establishing
a boundary Harnack principle. Let ¢ = (¢', () € £y and r > 0. Define
Te(r) := Bq-1(¢',r) x (¢4 —10kr,(y + 10k ) (where B;_; means an open
ball in R?"!). In the sequel it will be convenient to say that T¢(r) is a 3y
adapted cylinder, that ¢ is its center and r its radius. The point A,}:(r) =
(¢', ¢4 + Bkr), (resp. Ai(r) = (¢',¢4 — bkr)) is the upper (resp. lower)
reference point of T¢(r). A form of the above mentioned boundary Harnack
principle says that if f, g, h € H4(Q2\ T¢(r/4)) and f = g = h = 0 in

E\ T¢(r/2), then with A* = Ai(r) we have
h(A™) h(A”)
h(z) < C'{ FOAT flz) + (A g(z)} forz e Q\T(r) (1.1)

Here C is a constant depending only on d and the bound & for the Lipschitz

constant of f.

1.4. In the flat case, i.e. when f = 0, M. Benedicks [6] uses a different
method and gives also a criterion of simplicity of P € E. For a general
Lipschitz-Denjoy domain there is no similar criterion (in contrast with the

flat case, the multiplicity of ( € E is not in general an increasing function
of the set E [5]).

1.5. Let w = wg denote the harmonic measure in {2 of some point QQ € 2
(viewed as a measure in F). Let w = w,+w; be the Lebesgue decomposition
of w with respect to Hy_,, where w, is absolutely continuous with respect
to Hy 1 and w; is singular with respect to Hy_1 (Hy_; will mean here the

natural Riemannian measure on the graph >y).

Then, H,1—almost all point ¢ € E is a double point (for 2) and ws—almost
all point in F is simple. Moreover w, ~ Hy_; on F (that is: the restrictions

to £ of w, and Hy_; are mutually absolutely continuous). ([4], see also

[11])

A proof of these facts follows for the reader’s convenience.
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1.6. Proof. Recall X7 = {(z,t) € R“! x R; ¢ > f(z)} denotes the
open epigraph of f. By Naim’s results [17], if w™ is the harmonic measure
in 37 (evaluated at some point zp € 3}), then w‘g a.e. P € E is a pole
of a minimal hp in {2 for which L} is thin. But w™ is equivalent to Hy_;
(Dahlberg’s theorem) and repeating the argument with ZJT we find that
Hy_1—a.e. point P € E is a double point for which moreover each “half-
space” Z}*, 27, 1s minimally thin with respect to one of the minimals at P

(hp and h} respectively).

Thus there is a Borel set A of full H;_;—measure in £ and such that every
¢ € Ais a double point for 2. Since the harmonic measure w* in §2 is larger
than wl“%, we may also assume that w' and Hy_; are mutually absolutely

continuous on A.

It remains to see that w'-a.e. point in £ \ A is simple. If not, there exists
a compact subset L of F \ A, consisting of double points and such that
w(L) > 0. Consider then the projection map 7 : A; — E on the minimal
Martin boundary A; of Q2 and the decomposition of D = 7~!(L) into the
disjoint sets D, = {h}; P € L} and D_ = {hp; P € L}. These are Gj
subsets of A; (see remark 1.4 below) and hence also Polish spaces. By a
standard regularity result we may find compact subsets K and K’ of D, and
D_ respectively such that w®(7(K)) > 2w®(L) and w®(r(K')) > 3w?(L)
(note that o« +— w(7(c)) defines a Borel measure on D, or on D_ —the map
71 . L — D, being Borel as follows from a simple approximation of 7!
by a sequence of continuous maps, or from [8] p. 135). A slightly different
argument can also be obtained using the capacitability theorem [8]. Passing
to Lo = n(K)Nw(K'), we get a compact subset of L with positive harmonic
measure and such that 771(Ly) is a disjoint union K U K| of two compact

subsets of D, and D_ respectively. Moreover Ly = m(K ) = m(Kjy ).

Since the harmonic measure &% in 2 with respect to the Martin boundary

projects onto the harmonic measure in €2 with respect to E, one of the sets
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K§ and K; in the minimal Martin boundary of Q has positive harmonic

measure in Aj.

Assume that % (KJ) > 0. Fixing some closed neighborhood V' of Kj in
the Martin compactification of 2 with V N K = () we may attach to each
point P € Lg a closed “downward” cone Cp of fixed small aperture with
vertex at P and such that P is not in the closure in R? of (C; \ {P})\ V.
Say Cp =P +C,C ={(a',zq); xa < =10kg|2'| } T.

Let F' denote the union of these cones Cp. For every ¢* € K, (* is not
in the closure of F'\ Lo, thus the set F'\ Ly is thin at (*. Using again
standard general properties of the Martin compactification [17], it follows
that Lo should be of positive harmonic measure in 2\ F. But R\ F is a
Lipschitz domain and H;_1(Lo) = 0, so this contradicts Dahlberg’s theorem
[12]. O

Remark 1.1 In particular if Hy 1(F) = 0 then w'-a.e. point ¢ € E is

simple.

Remark 1.2 The proof also shows that for w a.e. double point P € E,
3f \ E is minimally thin at h}.

Remark 1.3 Denote K, the Martin kernel in € with pole at x € Q nor-
malized at some fixed point @ € Q with say d(Q,Xs) > 10. Let F, :=
{P e FE;||K: — Kplloopiy = + forz € Cp, 2’ € Cp and |z — /| < 11
The set [}, is closed in E and the set F, of double points in E is Un>1Fn.
Thus E5 is an F, subset of F.

Remark 1.4 For A > 0 in 2 and A C Q recall the notation “R;! (or Rf)
for the function w = inf{s; s > 0 and superharmonic in 2, s > h in
A} 9], [10]. Set C" = {(z',zq) € C*; L <z, < 1},Ch = P+C, and
Cp = Up>1Cp. For Q € Q, the map h — Ri’r’l(h)(Q) 1s continuous on Ay,

! Later we also use the notation C* = -C~, C,‘; =P+Ct.
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SO h R,Cf(h) = SUp,,>1 Rig(h)(Q) is Ls.c. It follows since DT = {h € Ay ;
w(h) € L, R,Cf“”(Q) =h(Q)} (if d(Q,Xf) > 10) that D, is a G5 set in Ay,

1.7. In the case d = 2 and for [ = 0 (so €2 is a standard Denjoy domain),
C. Bishop answered some questions of K. Burdzy about the behavior of the

Brownian motion in £ (ref. [7]).

One of the main results in [7] can be rephrased as follows in theorem 1.5
below. Note that in the flat case (f = 0) at hand, it is easy to see (by a
symmetry argument) that, given P € E, the set ¥\ E is minimally thin at
every minimal in H (£2) with pole at P € E' if and only if P is a “double”
point for 2. Recall also the probabilistic meaning (given a minimal function
he H, () of “A C Q is minimaly thin at ~A”: the last exit time from A

of the h-Brownian motion in {2 is a.s. strictly smaller than his lifetime.

Theorem 1.5 (see Theorem 1 in [7]) Suppose d = 2 and E is flat (more
precisely f = 0). At w-almost all simple point P € E the graph ¥f (or
rather X5 \ E) is minimally unthin on the “right” and on the “left” of P.

Here we say that ¥\ F is thin (resp. unthin) on the right at P = (a, f(a)) €
FEif 3\ E)N{(z,y); z > a} is minimally thin (resp. minimally unthin)
at each minimal Martin boundary point above P. Using the results in
the previous paragraphs, theorem 1.5 is easily translated into the follow-
ing property of the Brownian motion (in short BM) -actually, the original
formulation by Bishop, see Theorem 1 in [7].

Given € > 0, for almost all z € F C R (with respect to the harmonic
measure in 2 = C \ F), a Brownian motion in {2 conditioned to exit at z
will hit the interval (z,z + &) with probability one iff it hits the interval
(z — &, x) with probability one.

Theorem 1.5 also means that if S is the lifetime of the BM in (2, then
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almost surely the BM hits ¥ \ I/ on the right of Bg infinitely often as
t TS (i.e. there is a sequence of random times ¢, < S with limt¢, = S and
By, € 55, (Be,)1 = (Bg)y ) iff it hits ¥y \ Ei0. ast T S. Equivalently for
almost every simple point P € [J- with respect to harmonic measure- the
BM conditioned to exit from §2 at P a.s. hits 2y on the left of P and on
the right of P. In particular if H;(F) = 0 then the BM hits before time S
the set s on the left of Bg almost surely.

1.8. A generalization of theorem 1.5 to dimensions d > 3 (for f = 0) is
also obtained in [7] (see Theorem 5 there). Let us note another result from
[7] which will not be considered here: if d = 2 and dim(E) < 1, then with
probability one the planar BM stopped at time S separates its exit point
from the rest of E. A conjecture of Lyons and Burdzy says that this should
be true for every compact set E of dimension < 1 in the plane (for the BM

stopped on F).

1.9. In what follows we show that theorem 1.5 extends to general Lipschitz
functions f (the case d > 3 is considered in section 3). This also gives a
new proof of theorem 1.5. Its proof in [7] relies among other things on a
criterion (close to Benedicks criterion) characterizing left minimal thinness
of 5;\ F at P € E for f = 0 (Theorem 2 in [7]). As mentioned above
a similar characterization is not available when f is only assumed to be
k-Lipschitz.

1.10. From now on f is assumed to be a general Lipschitz function. As
before, let S denote the lifetime of the BM stopped on E. We will show
that almost surely

(i) after some time t; < S, B; stays on one side of ¥ if Bg is double.

(i1) If Bs is simple, then the BM {B;}:<s, hits “infinitely often” each of
the upper and lower cones Cg_, Cp ast T S. (If Qis a “flat” Denjoy

domain, i.e. f is constant, for every simple point ( € F this is true -and
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easy to see- for the BM conditioned to hit £ at (. But this is not true for
a general Lipschitz-Denjoy domain €2 [11].)

(iii) If d = 2, on the event {Bg is simple }, the BM hits a.s. ¥ on the
right and on the left of P = Bg. For d > 3, conditionaly on {Bg is a simple
point in £}, the BM hits I' N 2 for every cone I' = Bg + C' x R of vertex
Bs (where C is a cone with vertex 0 and nonempty interior in R%"1). In
other words, Theorem 1 and Theorem 5 in [7] can be extended to Lipschitz

Denjoy domains.

In particular, (ii) and (iii) holds a.s. if Hy_1(£) = 0.

2 Extension of Theorem 1.5

In this section, we assume that d = 2. Recall that E is a compact subset of
the Lipschitz graph (curve) X;. Let w = w® denote the harmonic measure

with respect to (.

Theorem 2.1 For w® almost every simple point P € E the graph ¥; is
minimally unthin on the right and on the left of P (w.r. to the unique
minimal with pole at P). On the other hand, at w®-almost every double
point € E the graph 5 (or rather ¥; \ E) is minimally thin at both hg
and hc”.

The last claim has essentially been noticed in 1.6 above (first two para-
graphs). It follows from the fact that the harmonic measures w*, w™ (of
some fixed points Q* € LT, Q™ ¢ 27 respectively) in the Lipschitz do-
mains 7 and X7 are such that H; ~ w™ ~ w™ on E (and even on Xj).
From this and Martin boundary theory [17], it follows that for H; a.e. point
¢ € E, the subgraph ¥ is minimally thin at hE’ (w.r. to ) (the minimal

. . . Xy .
for the epigraph is then proportionnal to hg — QRth ). Whence the claim
¢

since the set of double points has full H; measure in E and H; ~ w on this
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set.

To get the first claim it suffices to show the following: If K is compact
Cc E, Hi(K) = 0, and w(K) > 0 there exists a simple point ( € K such
that X\ £ is minimally unthin on the right of ¢ in 2.

Equivalently, it suffices to show that the following assumption

(H) : “ 3K compact C FE such that w(K) > 0, every point of K is simple
(w.r. to ©2) and the graph ¥y is minimally thin (in 2) on the right at each
point of K”

leads to a contradiction. Let us transform (H). Passing to Ey = K,
Qg = C\ K we see that H;(FEp) = 0, cap(Ep) > 0 and there exists a Borel
set A C FEy of positive harmonic measure in {2y consisting of points ( € FEjy
that are simple points for {2y and such that ¥ is minimally thin on the
right at ¢ (w. r. to £2p). This is because the set of double points in K w.r.
to €y has zero harmonic measure in 2y (1.5, section 1) and because, by
[17], at w® almost every point P in K, £ \ £ is minimally thin at P (w.r.

to 2p) and minimal thinness w.r. to {1 implies minimal thinness w.r. to 2.

Thus, there is a compact subset Ko C Fy of simple points for £y with
wo(Kp) > 0 and such that the graph ¥\ Ej is thin on the right at each
¢ € Ko.

We now distinguish two cases:

A. First case. Assume that the initial compact subset K of E has a lower
capacitary density larger than some real ¢y > 0 : by this we mean that for
each point ¢ € K and each r € (0,1] the harmonic measure w, ; x(y) of
B(z,r/4)NK in B(z,r) is larger than ¢y at every point y € 0B(x,r/2). We
use later the notation 0 (x) = inf{w, . x(y); 0 <r < 1,y € 0B(z,7/2) }.
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For ( € Ey simple with respect to {2y, denote by A, the minimal harmonic
function in g with pole at ¢ and normalized at some fixed point &, in (2.

Denote wy the harmonic measure of &, in 2. Consider the function
~376

s(x) = /EO\KO he(z) dwo(C) +/ Rh(f (z) dwo(C), = €

Ko
(recall that wp-a.e. point of Ey is simple for €y). Here the “réduite” is
performed in {2y and we have set E;’C = (25 \ Eo) N {(z1,22) € R*; (3 <
z1 < + £} where £ is fixed and such that ¢ > diam(Eyp).

It is easily checked that s is a positive superharmonic function in g (us-

ing Fatou’s lemma and Fubini theorem). Since for A C Ey, w?O(A) =
[ 4 he(€) dwn(C) and since Effc(a:) = h¢(z) in Z;’C we see that if I' = c:ﬂ is
an open sub-arc of ¥; contiguous to Ey, s(z) > wo(Ty) in I' where T, is
that part T, of Fjy standing on the left of . Using the capacitary density
assumption on K = Fj (at «) and Harnack inequality, it follows that for
some positive constant ¢ depending only on ¢y and k (and also the diameter
of Ey if larger than 1), we have s(z) > cin IV = a/b', the subarc of I" such
that 0] — a1 = %(;61 — a1). In particular, s(z) > cin I := a7\ﬁ’ if o/ € IV

is such that o — a; = (81 — a1). We note I = 3T".

Thus s > c in the “centered third” %I‘ ; of every bounded connected com-
ponent I'; of X7\ Ey . It follows then (see the next lemmas) that s > ¢/ > 0
on all intervals contiguous to Ey (where ¢ is another positive constant).

Since Hi(FEp) = 0 the union of these intervals has full harmonic measure in
Qo. Thus s > ¢’ in C\ Ey, i.e. s(x) > ¢ [ he(x) dwo(C) for z € Q.

: L : =53¢
Passing to the greatest harmonic minorant of s we get (since each Rhcf for
¢ € Ky is a potential in {2y by the minimal thinness at ¢ of EC;C) that

/ he(z) dw(¢) > ¢ / he() dw(C)
Eo\ Ko

Ko

for x € €29. This is in contradiction with the fact that the Martin repres-
entation map M(A;(Qp) ) — H4+ () is a cone isomorphism. So theorem
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2.1 is proven in the case where the lower capacitary density of K is > ¢ > 0
in K. [

Let us now complete this part of the proof by showing that s > ¢’ on each

subarc I of ¥ contiguous to Ey.

Lemma 2.2 Let L be a compact subset of X5 such that H1(L) = 0, denote
& the harmonic measure in R?\ L, T the set of all bounded component of
s\ L and set J; = %I for I € I, F := UjezJr. If T is a Ty-adapted
cylinder such that T N Y5 = PAQ with P, Q € L and if A= A}, we have

(I)A(FOT) _>_ C

for some constant ¢ > 0 depending only on k.

This is well-known and can be deduced from the doubling property of &
(see [14]). A more direct agument is obtained as follows. For I € Z, let
T; be the Xy adapted cylinder such that Ty MY, = I and AIi the reference
points of T7. It is clear that wyx(/) < 1 < Cwyx(Jr) for some constant
C > 1. So by the boundary Harnack principle wa(I) < ¢Co4(J;) (with
another constant ¢). Summing over all ] € Z, I C PAQ

CC(:JA(F) > (:)A((Ef \ L) N PQ) > ’LI,A(PQ)
if v is the harmonic measure with respect to 7' N Z‘f*. We have used the

fact that ua(L N PAQ) = 0 since H1(L) = 0. Now uA(PAQ) > ¢ for some

constant ¢ > 0 depending only on ¢y and the lemma follows. [J

Lemma 2.3 We retain the hypothesis and the notations of lemma 2.2.

Then,
(:).'IZ(F> Z C2

for everyx € I, I € Z, and a constant cy depending only on k.
Proof. Let [ :cfz\b be an“interval” in Z and let x € I, say in the left half

of I (i.e. z1 < (a +b)/2). By Harnack inequality we may assume that

z1 —a; < 55(b— a).
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Let y be the leftmost point in L such that a; — 1y < % (x; — a1). Then by
lemma 2.2 applied to ya, one gets (if y # a) that wa(F) > cif A= AL, T

being the ¥ f-adapted cylinder such that "N X, = ya.

If ag —y1 > % (r1 — a1), Harnack’s inequalities imply that w;(F) >
"wa(F) > " ¢, with ' = ¢"(k), which gives the desired conclusion.

Suppose now that a; — 17 < % (r1 — ay). Let z be the rightmost point in
L with z; < 1y if any. Denote T the > ¢—adapted cylinder of center a and
radius r = min{b; — a1,a; — 21} ( where a; — 23 = +o0 if y; = inf{u;; u €

LY).

Since F' NT contains an arc of length > %r we have wa.(F) > ¢; = ci(k)
and wg(F') > dc, ¢ = (k), for £ on the boundary of the shrinked cylinder
2. Since wo(F) > "¢, ¢’ = ’(k), on the boundary of 15 T, it follows
by the maximum principle that w,(F') > min{c'c;, c” ¢} (note that the case

y = a is trivial). O

Remark 2.4 If one adds the assumption that L has a positive lower capa-
citary density, a slightly simpler argument gives a constant c; = cy(L) > 0.

This would suffice to complete the proof of theorem 2.1.

B. Second case. We are now left with the case where the lower capacitary
density dx(x) of K is zero for almost every x € K with respect to the har-
monic measure class in {2. Otherwise replacing K by a suitable subcompact
K’ C K we are again in case A. For the notation d; see the beginning of
part A of the proof.

By restricting K we may even assume that dx is zero in K. Moreover
substituting £y = K to F and choosing suitably Ky C K we may assume
that : 0z = 0in Ey, Hi(Ep) = 0 (this is implied by dp = 0), w(Kp) > 0,
every point ¢ of Ky is simple and such that the set ¥ \ Ey is minimally
thin on the right of ¢ (using once again the results of [17]).
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To get a contradiction we will rely on the following lemma.

Lemma 2.5 Let T be a Ys-adapted cylinder and let L be a compact subset
of Xf. There is an g1 > 0 such that whenever the harmonic measure at A7
of TN L in T s less than €1, then for every function h € H, (T \ L)

e1h(AF) < h(A7) < er' h(AF) (2.1)

and moreover, if U := T \ L, if x is the center of T,

RUMT(AL) > e h(AD) (2.2)

and similarly Riﬂz}y(A}) > g1 h(Ar).

The réduites above are taken with respect ot the domain U = T\ L and
we have set here Z;I ={ze€Xs; z1 > a1}

Proof. The harmonic measure w(A7; By, T\ L) in T\ L of the ball By :=
B(Az,7/10k) at A7 is larger than w(Af}; B7,T) — &1 = cx — &1 > 3¢ if
g < -zl-ck. Thus, by Harnack and maximum principle, there is an absolute
constant ¢’ > 0 such that

dw(A7; TNLU) < [inf w(z;TNL,U)|w(AF; B, T\ L)

zeB
< w(A5LTNLU) <e.
So w(A;; T N L,U) is also small for ¢ sufficiently small and as before, for
g1 small enough,

1
w(Az; Bf,U) > 5Ck- (2.3)

Using again Harnack and maximum principle, it follows that for some con-

stant ¢’ .
MA7) > seed h(AZ)

and similarly h(A}) > Zcp ¢ h(A7), if €1 is small enough.
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To prove (2.2), introduce the ¥s-adapted cylinder 7" with radius p = ry/2
and center @’ such that ) = z; + p (so that 3" N T = X" N7T"). By
Harnack inequalities and standard argument similar to the above, we have

L. U ,
for the réduite URhf with respect to U,

T, 1

VR "V (A7) = Ch(AR) w(Az; B, T\ L) > scach(Af) (2.4)
provided £; is small enough. This follows from the inequality h(z) >
dh(A})w(z; B, T'\ L) for z € U N T’ and the maximum principle (the
second inequality is (2.3) ). And the lemma follows, using (2.1) and Harnack

inequality. [J

Remark 2.6 Let xz denote as before the center of T and E;’x the part of
25 on the right of x. For €1 > 0 small enough, (2.1) in lemma 2.5 holds
for h positive harmonic in T\ (7" |J L)

This remark follows on applying lemma 2.5 to the ¥ s-adapted cylinder 7"
with radius rr~ = r¢/2 and center z” such that z{ = z; — r’ (using again

Harnack’s inequality).

We now finish the proof of Theorem 2.1 in case B. Let ¢ > 0 and let
¢ € Ko. We may choose arbitrarily small X ¢-adapted cylinder 7' centered
at ¢ and such that the harmonic measure of Ey in T is smaller than ¢ at

the references points A% and A7.

Thus taking € > 0 small enough, it follows from the previous lemma that
for these suitably chosen cylinders T' (we let 2 = R? \ Ey and denote h¢ a

minimal harmonic function in 2 with pole at () :

¢
TN,
h(

¢
Ty

Ry (AF) ~ Ry (A7) ~ he(Az) ~ he(AF) (2.5)

(which means that the first three quantities are between two constant times
h¢(A7F)). We have used here the fact that by definition

¢ ¢
TﬂEf TﬂZf

he(AF) = Ry T (Af) = TR, (A%
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By (2.5) and the boundary Harnack principle (1.1) we have (the réduites

being taken w.r. to {2) with another constant ¢

TNT}* QNE’e
he(z) < c R, I'(z) < c Ry, T (x)

for z € Q\ 2T (if 2T is the image of 7" under the dilation z — (+2(z —()).

Since we may choose arbitrarily small cylinders T" at ¢, we get that

ET’C . 2
R,) > ch¢ in Q=R"\ E.
¢ ]

O A .- .
This means that Rh(f is not a potential in U (and that in fact Rh(f = h¢)

and hence that £7¢ is not minimally thin at ¢ which is a contradiction.
f

The proof of Theorem 2.1 is complete. [

3 Extension to the higher dimension case (d > 3).

3.1. We start with a preliminary lemma asserting the existence of some
coverings and allowing the extension of the argument used for the d = 2
case. Let C, C’ be two nonempty open convex cones in R%! with vertex at
the origin, rotation-invariant around the axis generated by ug = (1,...,1)
in R¢"! and such that

C\ {0} cC' cR (3.1)

Denote C;, ={x € C;x1+ - +z41 <1}, Co={z e 214+ - +x4.1 <
1} two corresponding truncated cones, and T' = {z € Ciixi+-+xgq1 =
1} the base of Cj.

Choose and fix a positive real p; so small that min{z,...,z4-1} > p1 (1 +
-+ +x4-1) for x € C. Choose then a point a € C; on the axis of C; close
enough to 0 so that a+C3 D T and |a| < & . Fix finally a small positive real
p < & such that B(a,2p) C C; and then A > 1 such that 0 € B(a, Ap).
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Lemma 3.1 Let K be a compact subset of Qo = [0,1]%"! such that 0 € K.
Then there is a family of disjoint balls B(z®,re) C Qo \ K, a € I, in
R4 1such that (z® — fpﬂ Co) N K # 0 and User B(z®,5A1,) D (C N Qo) \ K.

i 1
Of course ry < 5

Proof. For each point z € (CNQy) \ K, 0 € x— (d— 1)C; and there
is a maximal R = R, € (0,d — 1] such that z — R,(C; \ T) € K¢ Then
(x — R;Ty)NK # 0. Set y, = — Rya, 7, = Ry;p and consider the family
of balls B(y,, Ar;), € (C N Qo) \ K, in R*1. Tt covers (C N Qo) \ K and
hence by a well-known lemma from measure theory (see [16] p. 24) there is a
subfamily of disjoint balls B(y., Ar;), z € I, such that |, .; B(yz,5A 1) D

(CNQo)\ K.

Also, for z € (CN Qo) \ K, B(yy,72) =x — Ry B(a,p) Cz— R (C1 \T) C
K¢ Since 0 ¢  — R,(C1\ T), we have € C'\ R;(C1\ T) and, by the
choice of pi, ming zx > Ryp1. Thus for z € B(ys,7z) and 1 < j < d — 1,
zj = x; — Ry w; > Rp1 — Rp1; = 0 (because w; € B(a, p) C B(0, p1)) so that
B(yz,7rz) C Qo.

Moreover since y; — rop 'Cy = = — Rz(a + C) D = — R,T;, we have
(yz == Co)NK # 0. So the family { B(yz, rz)}zer fulfills all the requirement
of the lemma.[]

3.2. We return now to the study of Lipschitz Denjoy domains. We also
return to the notations used in section 1 and consider the Lipschitz Denjoy
domain ©Q = R?\ E defined by a compact subset E of the graph ¥¢, where

f:R31 — R, is k-Lipschitz and k£ > 1 fixed .

Fix a nonempty open cone Cj in R4™! with vertex at the origin and set
I'=T¢, = Cy x R. If ( € E is a simple boundary point w.r. to 2, we say
now that X is minimally thin (with respect to 2) at ¢ in the direction Cqy
(or T') if the set [Z5 N (¢ +T')] \ E is minimally thin at ¢ (w.r. to Q).

The next statement generalizes Theorem 5 in [7] to Lipschitz Denjoy do-
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mains. As before w = w® is the harmonic measure w.r. to the domain €.

Theorem 3.2 For ' almost every simple point P € E the graph X7 is
mainimally unthin in the direction Cy at P. On the other hand, at Wit
almost all double point { € E the graph Xy (or rather ¢\ ) is minimally
thin at both hEL and h; .

Clearly it follows that in fact w® a.e. simple point ¢ € F is such that the

graph is minimally unthin at ¢ in every possible direction I'.

Proof. A straightforward extension of the argument in the first paragraph

after the statement of theorem 2.1 proves the last claim.

To prove the first we may assume, using a rotation, that the cone Cj in
R¢-1 contains the half-line {(¢,...,t); t > 0}. We then fix two cones C and
C" as above in 3.1 with C\ {0} ¢ ¢’ c T'\{0} C CoN(R* )41, Recall that
Cr={zeC;x1+ - +zx41=1},Co={ze 1+ +x4-1 = 1}.

We then follow the strategy of proof of theorem 2.1 (first claim) and after
reductions completely similar to those made in this proof we are left with

showing that the following two cases A and B are impossible.

Case A. The compact F has a lower capacitary density bounded from
below on E: §g(z) > ¢y >0 forz € £, Hy_1(F) =0, K C E is compact,
w(K) > 0 and ¥y is minimally thin (w.r. to £2) in the direction Cy at each
(e K.

We set ZI]:’C = (X5 \ £)N(¢+T) and introduce the following function

~5I¢

Z? T w T
s(:z:):/E\th(a:)dwo(C)Jr/ B (@) do(¢) , meQ

K

where h¢ is a minimal harmonic function in 2 with pole at ¢ (normalized
L S AN s :
at some point in 2) and R,/ = R,/ is a réduite with respect to .
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Fix a = (d’,aq) € FZ, 0 < ry < 1, and consider the d — 1-dimensional cube
a +10Qu_1, Qa1 = [0,1]%7". Let £’ denote the projection of £ in R4
and B, = E'N (a' 4+ r9Qq-1).

Applying the lemma we obtain a cover of (@’ +ro(C N Qq-1)) \ E' by balls
B(z!, A'r;) (of R9"1) such that the balls B(z},7;) are disjoint and contained
in (a' +r9Qq-1) \ E'. Moreover there is a point z; € (z; — t;7; Cy) N E}
with 0 < t; < % and we may choose z; associated to a minimal t;. So
0 < by <t < -[1; (where 0y depends only on Cy), z, € z; + %—C‘z and
for a small enough positive constant 3, we have z; € 2’ + Cy whenever
12" — 2| < Br; Tt follows that (if z; = (], f(2])), s = (3, f(z;)) and the

notation By refers to balls in R9)

e z;) dw
s@) = | el () + / B (@) dw(©)

KNBy(z:,87:)

> / he(zy) dw(C) = w(xs; £ N By(zs, Bri); ). (3.2)
ENBy(z;,0r;)

But the assumption that dg(z;) > ¢o implies that w(z; EN By(z, Bri); Q) >
co for z € Bg(zi,30r;). Since z belongs to the boundary (in R4-1) of
By_1(z}, ri)U(xf—t,riCo)N(a’ +roQa-1), it follows using Harnack inequalities
that s(z;) > w(zi; E N Ba(ys, Bri); 1) > ¢ for some positive constant c;.

In that way it is now seen that in E}f (the open epigraph of f), the function
s is larger than a constant times the harmonic measure (in E;F) of the union
of the pseudo-balls ¥ N By(zi, 73).

The doubling property of w(a + rpe; .;Z}“) where e = (0,...,0,1) € R%)
and the covering property of the balls B(x;, Ar;) imply that finally s(a+rge)

is larger than a constant times the harmonic measure (in E}r and at a+rpe)
of {x € Bs; 2" € (' +10Qa-1) N (a' +C1) \ E' }.

Thus we have shown that there is a positive constant cg (depending only
on d, k and the positive capacitary condition) such that for each x € E and

0 < r <1, we have s(z + re) > c3 and similarly s(z — re) > cs.
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To conclude we may for example use the general Fatou-Doob-Naim theorem
(see [17], [13] or [3],) and the fact that at each boundary simple point ( €
the union Cf U C/ is not minimally thin at ¢ (w.r. to the domain €2). The
extended Fatou -theorem says that the fine limit (w.r. to Q) at { € K of
s is zero for w-almost all { € K (since each réduite ﬁ,il;'c 1s a potential in
2, the second expression in the definition of s is a potential, whereas the
first is a harmonic function generated by a measure not charging K). So
by Harnack we should have for such ¢, liminf;jo(s(¢ 4+ te) A s(¢ —te)) =0

This gives a contradiction. [

Case B. The set E C ¥y is compact, its lower capacitary density in R is
zero at each of its points, and (w.r. to §2) there is a simple point zg € Ej

such that > is thin at zo in the direction C.

In fact the argument for the case B in the proof of theorem 2.1 does not
really use the assumption d = 2 as the reader may easily check. It shows
that Ep has only simple points (w.r. to €2) and that Xy is unthin in the
direction Cy at each ( € Fy. [

4 Another statistical unthinness result

Recall the notations (section 1) C* = {(2',z4); zq4 > 10k |2'| } € R¥! x R,
ChH=P+C" Cp=P—C*t. Asbefore, Q = R?\ E is a Lipschitz Denjoy

domain with £ a compact subset of R? contained in Xf.

Theorem 4.1 For w = w% almost every simple point ( € E, both upper

and lower cones, Cg” and C;, are minimally unthin at ¢ (w.r. to ).

We note here that this result is well-known when €2 is a flat Denjoy domain
and in fact CEL and C{ are in this case unthin at every simple point { € F

(a fact which does not extend to the general Lipschitz Denjoy case).
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Proof. We argue again by contradiction and so assume the existence of
a compact subset K of E whose elements are all simple and such that :(i)
VUK > 0, (ii) C/ is minimally thin at ¢ (w.r. to Q = RI\E) forall ¢ € K.
This of course implies that Hy 1 (K) = 0.

Again after replacing £ by Iy = K, we may assume that w almost every
point of F is simple (Hy_1(E) = 0).

As in the preceding sections, we distinguish two cases:

A. First case : F has a lower capacitary density > ¢ > 0 at each of its

points.

Denote C° = {(2',z4); g > 20k|2’|} € R xR, C5 = P + C°. Let
® = B(0,R) N [Uceg C] where R is so large that £ C B(0, R/2) and
denote u the harmonic measure of £\ K in Q = R?\ E. We construct now

the function:

pl@) = q(e) + | Fyi(z) dw(o) (4.1)

where ¢ = R? is the réduite of u on ®\ E with respect to €2 and the notation

h¢ has the same meaning as before.

The function p is a potential in €2, i.e. its greatest harmonic minorant in 2
is 0 (note that @ is thin at every minimal point with pole in £\ K so that
g is a potential in ). The capacitary density assumption for E implies
that p > c on @: in fact for z € [C¢\ {0}] N B(0, R) the harmonic measure
of (x — CT)N E is > c at z, (first for z sufficiently close to ¢ and then by
Harnack for |z — (| < R).

Thus, since K is of zero harmonic measure for R4\ ® (Dahlberg’s theorem),

K is also of zero harmonic measure in 2\ ¢ and
p(z) > cw(z; &;Q\ ) > cw(z; K; Q) (4.2)

by the maximum principle and the definition of harmonic measure. But

since the greatest harmonic minorant of p in {2 must be zero it follows that
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wW(K) = 0 which is a contradiction. [

B. Second case : The compact set K has a zero lower capacitary density

at w-a.e. ¢ € K (otherwise we arc easily reduced to the first case).

In this case, we may reduce ourselves to the case where Hy_{(E) = 0 the
. . cr

lower capacitary density of £ vanishes everywhere, ha # he forall ¢ € K,

K C EF and w(K) > 0.

Then as already seen in section 2 (case B) -and using similar notations— a
point ¢ € E is necessarlly simple and for each { € F there are arbltrarlly
small r such that R, “ > Ch¢ out of Ty, (using the relation R C’"(AC,,,) >
ch¢(A;,) and then the boundary Harnack principle).

ct : S .
So, we get Rh; > Ch¢ in €2, which is a contradiction when ¢ € K. O

5 Two open problems

1) The above does not answer the following very natural question for the
d = 2 case. Consider the Brownian motion X = {X;}o<i;<s in a planar
Lipschitz Denjoy domain 2 = C \ E starting from a point 25 in £ and
conditioned to exit from (2 at some simple boundary point ( € E. Let
{6:}i<s be the continuous determination of the argument of {X; — Clo<t<s
with say 0 < 6y < 27. Is it true that for w® almost every ¢, lim Supgrs 0 =

+o00 a.s. 7

Note that this is obviously true when () is symmetric w.r. to z; = 0 (the
flat case) -using a simple Borel-Cantelli argument-. We remark also that it

suffices to solve the question when H;(F) = 0.
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2) Another obvious question is : does Bishop’s theorem 3 in [7] extends to

Lipschitz Denjoy domains in the plane ?” namely does the Burdzy-Lyons

conjecture (see [7]) for a compact £ C C with dim(E) < 1 holds when

(2 = C\ FE is a Lipschitz Denjoy domain in C 7
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