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Summary

Let $\Omega=\mathbb{R}^{d}\backslash E$ be a domain in $\mathbb{R}^{cl}$ where $E$ is a compact subset of a Lipschitz
graph $\Sigma$ . It is known that there is a partition $E=E_{1}\cup E_{2}$ of $E$ where $E_{1}$ is the set
of simple points (w.r. to the Martin compactification of $\Omega$ ) in $E$ and $E_{2}$ is the set of
double points in $E[2]$ . Also the harmonic measure (with respect to $\Omega$ ) and $H_{d-1|E_{2}}$

are mutually absolutely continuous in $E_{2}$ and $H_{d-1}(E_{1})=0[4]$ . The main result is
that for almost every point $\zeta$ of $E_{1}$ ( $w.r$ . to the harmonic measure in $\Omega$ ) every open
((

$cone$
” $.C$ in $\Sigma$ with vertex at $\zeta$ is minimally unthin (w.r. to $\Omega$ ) at $\zeta$ (or, in other

words, a Brownian motion conditioned to exit from $\Omega$ at $\zeta$ hits with probability one
$C\cap\Omega=C\backslash E$ during its lifetime). This extends to Lipschitz Denjoy domains one
of the results of C. J. Bishop in [7] and in the same time gives a different method of
proof. Using a similar method, another natural asymptotic result is also obtained.

1 Introduction and preliminaries.

In this paper, we deal with questions related to some of the results of
C. J. Bishop in [7] (see 1.7 and 1.8 below) about the behavior of the
Brownian motion in a Denjoy domain in $\mathbb{R}^{d},$ $d\geq 2$ , that is a domain in $\mathbb{R}^{d}$

whose complement is contained in the hyperplane $x_{d}=0$ .
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We consider here a $Lipsch\iota tzDenJ^{0}?/$ domain $\Omega$ in $\mathbb{R}^{d}$ : more precisely
$\Omega=\mathbb{R}^{d}\backslash E$ , with $Econ1p_{c1(}\prime 1t$ in $\mathbb{R}^{(1}$ and contained in the graph $\Sigma_{f}$ of a
function $f$ : $\mathbb{R}^{d-1}arrow \mathbb{R}$ which is assumed t,o be k-Lipschitz for some constant
$k\geq 1$ (fixed in all what, follows). The main results (Theorems 2.1, 3.2 and
4.1) are first described in 1.9.

Denote $\infty_{\mathbb{R}^{d}}$ the point at infinity in the Alexandrov compactification of
$\mathbb{R}^{d}$ and set $\hat{E}=E\cup\{\infty_{\mathbb{R}^{d}}\}$ . If $B$ is an open subset of $\hat{E}$ and if $h$ is
harmonic in $\Omega$ , we say that $h$ vanishes on $B$ if (i) for each $\zeta\in B,$ $h$ is
bounded in the trace on $\Omega$ of some neighborhood of $\zeta$

) and (ii) the set

$B_{h}= \{\zeta\in B_{)}\cdot\lim_{\Omega\ni x}\sup_{arrow\zeta}|h(x)|>0\}$
is polar. Recall (or take as a convention)

that $\{\infty_{\mathbb{R}^{d}}\}$ is polar iff $d=2$ . If $h=0$ on $B$ , then $h$ has the limit $0$ at
every Dirichlet-regular boundary point for $\Omega$ lying in $B$ (including $\infty_{\mathbb{R}^{d}}$ if
$d\geq 3$ and $B\ni\infty_{\mathbb{R}^{d}}$ ).

We now state some known basic properties of positive harmonic functions
in such a domain $\Omega$ . Let $\mathcal{H}_{+}(\Omega)$ denote the set of all nonnegative harmonic
functions in $\Omega$ .

1.1. For each point $P\in E$ the dimension of the cone $\mathcal{H}_{P}^{+}=\{u\in \mathcal{H}_{+}(\Omega);u$

vanishes in $\hat{E}\backslash \{P\}\}$ is one or two, $\mathcal{H}_{P}^{+}$ being generated by one or two min-
imal harmonic functions in $\Omega$ (See [1], [6] for $E$ contained in a hyperplane
-or even a $C^{1,1}$ hypersurface $[1]-$ , and [2] for the general case). Moreover
$P$ is a unique pole (see [17] for a definition) on $\hat{E}$ for these minimal func-
tions. Accordingly $P$ is said to be a $s\iota mple$ boundary point of $\Omega$ if $\mathcal{H}_{P}^{+}$ is
one dimensional, and a double boundary point otherwise ([4]).

1.2. The set of double points is a Borel subset of $E$ (in fact a $F_{\sigma}$-subset
-see remark 1.3 below) and given a double point $P\in E$ , one of the minimal
attached to $P$ is the limit-in the Martin topology-of every sequence $\{x_{n}\}$

converging nontangentially to $P$ in $\Sigma_{f}^{+}=\{(x’, x_{d});x_{d}>f(x’)\}$ (see [11]).
This minimal is denoted $h_{P}^{+}$ . The other minimal, denoted $h_{P}^{-}$ , is similarly
related to $P$ and the strict subgraph $\Sigma_{\overline{f}}$
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1.3. The property in 1.1 above is obtained in [2] (see p. 254) by establishing
a boundary Harnack principle. Let, $\zeta=((’, \zeta_{d})\in\Sigma_{f}$ and $r>0$ . Define
$T_{\zeta}(r)$ $:=B_{d-1}((/, r)\cross(C_{d}-10kr. t_{d}^{\llcorner}+10kr)$ (where $B_{d-1}$ means an open
ball in $\mathbb{R}^{d-1}$ ). In the sequel if will be convenient to say that $T_{\zeta}(r)$ is a $\Sigma_{f}$

adapted cylinder, that $\zeta$ is its center and $r$ its radius. The point $A_{\tau_{((r)}}^{+}=$

$((/)\zeta_{d}+5kr)$ , (resp. $A_{T_{\zeta}(r)}^{-}=(\zeta’, (d-5kr))$ is the upper (resp. lower)

reference point of $T_{\zeta}(r)$ . A form of the above mentioned boundary Harnack
principle says that if $f,$ $g,$ $h\in \mathcal{H}_{+}((]\backslash T_{\zeta}(r/4))$ and $f=g=h=0$ in
$\hat{E}\backslash T_{\zeta}(r/2))$ then with $A^{\pm}=A_{\tau_{((r)}}^{\pm}$ we have

$h(x) \leq C\{\frac{h(A^{+})}{f(A^{+})}f(x)+\frac{h(A^{-})}{g(A^{-})}g(x)\}$ for $x\in\Omega\backslash T_{\zeta}(r)$ (1.1)

Here $C$ is a constant depending only on $d$ and the bound $k$ for the Lipschitz
constant of $f$ .

1.4. In the flat case, i.e. when $f=0$ , M. Benedicks [6] uses a different
method and gives also a criterion of simplicity of $P\in E$ . For a general
Lipschitz-Denjoy domain there is no similar criterion (in contrast with the
flat case, the multiplicity of $\zeta\in E$ is not in general an increasing function
of the set $E[5])$ .

1.5. Let $\omega=\omega_{Q}^{\Omega}$ denote the harmonic measure in $\Omega$ of some point $Q\in\Omega$

(viewed as a measure in $E$ ). Let $\omega=\omega_{a}+\omega_{s}$ be the Lebesgue decomposition
of $\omega$ with respect to $H_{d-1)}$ where $\omega_{a}$ is absolutely continuous with respect
to $H_{d-1}$ and $\omega_{s}$ is singular with respect to $H_{d-1}(H_{d-1}$ will mean here the
natural Riemannian measure on the graph $\Sigma_{f}$ ).

Then, $H_{d-1}$ -almost all point $\zeta\in E$ is a double point (for $\Omega$ ) and $\omega_{s}$-almost
all point in $E$ is simple. Moreover $\omega_{a}\sim H_{d-1}$ on $E$ (that is: the restrictions
to $E$ of $\omega_{a}$ and $H_{d-1}$ are mutually absolutely continuous). ([4], see also
[11] $)$

A proof of these facts follows for the reader’s convenience.
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1.6. ProoE Recall $\Sigma^{+}f=\{(x, t)\in \mathbb{R}^{d-1}\cross \mathbb{R};t>f(x)\}$ denotes the
open epigraph of $f$ . By Naim’s results [17], if $\omega^{+}$ is the harmonic measure
in $\Sigma^{+}f$ (evaluated at some point $x_{0}\in\Sigma^{+}f$ ), then $\omega_{|E}^{+}$ a.e. $P\in E$ is a pole

of a minimal $h_{P}$ in $\Omega$ for which $\Sigma_{\overline{f}}$ is thin. But $\omega^{+}$ is equivalent to $H_{d-1}$

(Dahlberg’s theorem) and repeating the argument with $\Sigma_{\overline{f}}$ we find that
$H_{d-1}-a.e$ . point $P\in E$ is a double point for which moreover each ((half-

space“ $\Sigma_{f}^{+},$ $\Sigma_{\overline{f}}$ , is minimally thin with respect to one of the minimals at $P$

( $h_{P}^{-}$ and $h_{P}^{+}$ respectively).

Thus there is a Borel set $A$ of full $H_{d-1}$ -measure in $E$ and such that every
$(\in A$ is a double point for $\Omega$ . Since the harmonic measure $\omega^{\Omega}$ in $\Omega$ is larger
than $\omega_{|E}^{+}$ , we may also assume that $\omega^{\Omega}$ and $H_{d-1}$ are mutually absolutely
continuous on $A$ .

It remains to see that $\omega^{\Omega}-a.e$ . point in $E\backslash A$ is simple. If not, there exists
a compact subset $L$ of $E\backslash A$ , consisting of double points and such that
$\omega^{\Omega}(L)>0$ . Consider then the projection map $\pi$ : $\triangle_{1}arrow\hat{E}$ on the minimal
Martin boundary $\triangle_{1}$ of $\Omega$ and the decomposition of $D=\pi^{-1}(L)$ into the
disjoint sets $D_{+}=\{h_{P}^{+} ; P\in L\}$ and $D_{-=}\{h_{P)}^{-}P\in L\}$ . These are $G_{\delta}$

subsets of $\triangle_{1}$ (see remark 1.4 below) and hence also Polish spaces. By a
standard regularity result we may find compact subsets $K$ and $K’$ of $D_{+}$ and
$D_{-}$ respectively such that $\omega^{\Omega}(\pi(K))\geq\frac{3}{4}\omega^{\Omega}(L)$ and $\omega^{\Omega}(\pi(K‘))$ $\geq\frac{3}{4}\omega^{\Omega}(L)$

(note that $\alpha\mapsto\omega^{\Omega}(\pi(\alpha))$ defines a Borel measure on $D_{+}$ or on $D_{-}$ -the map
$\pi^{-1}$ : $Larrow D_{+}$ being Borel as follows from a simple approximation of $\pi^{-1}$

by a sequence of continuous maps, or from [8] p. 135). A slightly different
argument can also be obtained using the capacitability theorem [8]. Passing
to $L_{0}=\pi(K)\cap\pi(K’)$ , we get a compact subset of $L$ with positive harmonic
measure and such that $\pi^{-1}(L_{0})$ is a disjoint union $K_{0}^{+}\cup K_{0}^{-}$ of two compact
subsets of $D_{+}$ and $D$-respectively. Moreover $L_{0}=\pi(K_{0}^{+})=\pi(K_{0}^{-})$ .

Since the harmonic measure $\tilde{\omega}^{\Omega}$ in $\Omega$ with respect to the Martin boundary
projects onto the harmonic measure in $\Omega$ with respect to $\hat{E}$ , one of the sets
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$K_{0}^{+}$ and $K_{0}^{-}$ in the minimal Martin boundary of $\Omega$ has positive harmonic
measure in $\triangle_{1}$ .

Assume that $\tilde{\omega}^{\Omega}(K_{0}^{+})>0$ . Fixing soine $(10\llcorner s^{\backslash }e\mathfrak{c}1$ neighborhood $V$ of $K_{()}^{-}$ in
the Martin compactification of $\zeta$ ] with $\overline{V}\cap K_{0}^{+}=\emptyset$ we may attach to each
point $P\in L_{0}$ a closed $(\prime downward\cdot\cdot$ cone $C_{P}^{-}$ of fixed small aperture with
vertex at $P$ and such that $P$ is not in the closure in $\mathbb{R}^{d}$ of $(C_{P}^{-}\backslash \{P\})\backslash V$ .

Say $C_{P}^{-}=P+C^{-},$ $C^{-}=\{(x’, x_{d}) ; x_{d}\leq-10k_{f}|x’|\}$ T.

Let $F$ denote the union of these cones $C_{P}^{-}$ . For every $\zeta^{+}\in K_{0}^{+},$ $\zeta^{+}$ is not
in the closure of $F\backslash L_{0}$ , thus the set $F\backslash L_{0}$ is thin at $\zeta^{+}$ . Using again
standard general properties of the Martin compactification [17], it follows
that $L_{0}$ should be of positive harmonic measure in $\Omega\backslash F$ . But $\mathbb{R}^{d}\backslash F$ is a
Lipschitz domain and $H_{d-1}(L_{0})=0$ , so this contradicts Dahlberg’s theorem
$[$ 12$]$ . $\square$

Remark 1.1 In particular if $H_{d-1}(E)=0$ then $\omega^{\Omega}-a.e$ . point $\zeta\in E$ is
simple.

Remark 1.2 The proof also shows that for $\omega$ a.e. double point $P\in E$ ,
$\Sigma_{f}\backslash E$ is minimally thin at $h_{P}^{\pm}$ .

Remark 1.3 Denote $K_{x}$ the Martin kernel in $\Omega$ with pole at $x\in\Omega$ nor-
malized at some fixed point $Q\in\Omega$ with say $d(Q, \Sigma_{f})\geq 10$ . Let $F_{n}$ $:=$

$\{P\in E;\Vert K_{x}-K_{x’}\Vert_{\infty,B(Q,1)}\geq\frac{1}{n}$ for $x\in C_{P}^{+},$ $x’\in C_{P}^{-}$ and $|x-x’| \leq\frac{1}{n}\}$ .

The set $F_{n}$ is closed in $E$ and the set $E_{2}$ of double points in $E$ is $\bigcup_{n\geq 1}F_{n}$ .
Thus $E_{2}$ is an $F_{\sigma}$ subset of $E$ .

Remark 1.4 For $h\geq 0$ in $\Omega$ and $A\subset\Omega$ recall the notation $\Omega R_{h}A$ (or $R_{h}^{A}$ )
for the function $w= \inf\{s)s\geq 0$ and superharmonic in $\Omega,$ $s\geq h$ in
$A\}[9],$ $[10]$ . Set $C^{n}= \{(x’, x_{d})\in C^{+} ; \frac{1}{n}\leq x_{d}\leq 1\},$ $C_{P}^{n}=P+C_{n}$ and
$C_{P}= \bigcup_{n\geq {}_{1}C_{P}^{n}}$ . For $Q\in\Omega$ , the map $h\mapsto R_{h}^{C_{\pi(h)}^{n}}(Q)$ is continuous on $\triangle_{1}$ ,

\dagger Later we also use the notation $C^{+}=-C^{-},$ $C_{P}^{+}=P+C^{+}$
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so $h \mapsto R_{h}^{c_{\pi(h)}}=\sup_{7b\geq 1}R_{h}^{C_{\pi(h)}^{n}}(Q)$ is l.s.c. It follows since $D^{+}=\{h\in\triangle_{1}$ ;
$\pi(h)\in L,$ $R_{h}^{C_{\pi(h)}}(Q)=h(Q)\}$ $(if d(Q. \Sigma_{f})\geq 10)$ that $D_{+}$ is a $G_{\delta}$ set in $\triangle_{1}$ .

1.7. In the case $d=2$ and for $f=0$ (so $\Omega$ is a standard Denjoy domain),

C. Bishop answered some questions of K. Burdzy about the behavior of the

Brownian motion in $\Omega$ (ref. [7]).

One of the main results in [7] can be rephrased as follows in theorem 1.5
below. Note that in the flat case $(f=0)$ at hand, it is easy to see (by a
symmetry argument) that, given $P\in E$ , the set $\Sigma_{f}\backslash E$ is minimally thin at

every minimal in $\mathcal{H}_{+}(\Omega)$ with pole at $P\in E$ if and only if $P$ is a “double“
point for $\Omega$ . Recall also the probabilistic meaning (given a minimal function
$h\in \mathcal{H}_{+}(\Omega))$ of (

$(A\subset\Omega$ is minimaly thin at $h$”: the last exit time from $A$

of the h-Brownian motion in $\Omega$ is $a.s$ . strictly smaller than his lifetime.

Theorem 1.5 (see Theorem 1 in [7]) Suppose $d=2$ and $E$ is flat (more

precisely $f=0$). At $\omega$ -almost all simple point $P\in E$ the graph $\Sigma_{f}$ (or

rather $\Sigma_{f}\backslash E$) is minimally unthin on the cright) and on the $t$ ‘left“ of $P$ .

Here we say that $\Sigma_{f}\backslash E$ is thin (resp. unthin) on the right at $P=(a, f(a))\in$
$E$ if $(\Sigma_{f}\backslash E)\cap\{(x, y);x>a\}$ is minimally thin (resp. minimally unthin)

at each minimal Martin boundary point above $P$ . Using the results in
the previous paragraphs, theorem 1.5 is easily translated into the follow-
ing property of the Brownian motion (in short BM)-actually, the original
formulation by Bishop, see Theorem 1 in [7].

Given $\in>0$ , for almost all $x\in E\subset \mathbb{R}$ (with respect to the harmonic
measure in $\Omega=\mathbb{C}\backslash E$ ), a Brownian motion in $\Omega$ conditioned to exit at $x$

will hit the interval $(x, x+\in)$ with probability one iff it hits the interval
$(x-\in, x)$ with probability one.

Theorem 1.5 also means that if $S$ is the lifetime of the BM in $\Omega$ , then
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almost surely the BM hits $\Sigma_{f}\backslash E$ on the right of $B_{S}$ infinitely often as
$t\uparrow S$ (i.e. there is a sequence of random tintes $t_{n}<S$ with $\lim t_{n}=S$ and
$B_{t_{n}}\in\Sigma_{f},$ $(B_{t_{n}})_{1}\geq(B_{S})_{1})$ iff it hits $\Sigma_{f}\backslash E$ i.o. as $t\uparrow S$ . Equivalently for
almost every simple point $P\in E-$ with respect to harmonic measure- the
BM conditioned to exit from $\Omega$ at $P$ a.s. hits $\Sigma_{f}$ on the left of $P$ and on
the right of $P$ . In particular if $H_{1}(E)=0$ then the BM hits before time $S$

the set $\Sigma_{f}$ on the left of $B_{S}$ almost surely.

1.8. A generalization of theorent 1.5 to dimensions $d\geq 3$ $($ for $f=0)$ is

also obtained in [7] (see Theorem 5 there). Let us note another result from
[7] which will not be considered here: if $d=2$ and dim(E) $<1$ , then with

probability one the planar BM stopped at time $S$ separates its exit point

from the rest of $E$ . A conjecture of Lyons and Burdzy says that this should
be true for every compact set $E$ of dimension $<1$ in the plane (for the BM
stopped on $E$ ).

1.9. In what follows we show that theorem 1.5 extends to general Lipschitz

functions $f$ (the case $d\geq 3$ is considered in section 3). This also gives a
new proof of theorem 1.5. Its proof in [7] relies among other things on a
criterion (close to Benedicks criterion) characterizing left minimal thinness
of $\Sigma_{f}\backslash E$ at $P\in E$ for $f=0$ (Theorem 2 in [7]). As mentioned above
a similar characterization is not available when $f$ is only assumed to be
k-Lipschitz.

1.10. From now on $f$ is assumed to be a general Lipschitz function. As
before, let $S$ denote the lifetime of the BM stopped on $E$ . We will show
that almost surely

(i) after some time $t_{1}<S,$ $B_{t}$ stays on one side of $\Sigma_{f}$ if $B_{S}$ is double.

(ii) If $B_{S}$ is simple, then the BM $\{B_{t}\}_{t<S}$ , hits ($(infinitely$ often” each of
the upper and lower cones $C_{B_{S}}^{+},$ $C_{B_{S}}^{-}$ as $t\uparrow S$ . (If $\Omega$ is a ( $(flat$ ” Denjoy
domain, i.e. $f$ is constant, for every simple point $\zeta\in E$ this is true-and
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easy to see-for the BM conditioned to hit $E$ at $\zeta$ . But this is not true for
a general LipschitZ-Denjoy domain $\zeta 2[11].)$

(iii) If $d=2_{7}$ on the event { $B_{S}$ is simple }, the BM hits a.s. $\Sigma_{f}$ on the
right and on the left of $P=B_{S}$ . For $d\geq 3$ , conditionaly on $\{B_{S}$ is a simple

point in $E$ }, the BM hits $\Gamma\cap\Sigma_{f}$ for every cone $\Gamma=B_{S}+C\cross \mathbb{R}$ of vertex
$B_{S}$ (where $C$ is a cone with vertex $0$ and nonempty interior in $\mathbb{R}^{d-1}$ ). In
other words, Theorem 1 and Theorem 5 in [7] can be extended to Lipschitz
Denjoy domains.

In particular, (ii) and (iii) holds a.s. if $H_{d-1}(E)=0$ .

2 Extension of Theorem 1.5

In this section, we assume that $d=2$ . Recall that $E$ is a compact subset of
the Lipschitz graph (curve) $\Sigma_{f}$ . Let $\omega=\omega^{\Omega}$ denote the harmonic measure
with respect to $\Omega$ .

Theorem 2.1 For $\omega^{\Omega}$ almost every simple point $P\in E$ the graph $\Sigma_{f}$ is
minimally unthin on the right and on the left of $P(w.r$. to the unique
minimal with pole at $P$). On the other hand, at $\omega^{\Omega}$ -almost every double
point $\zeta\in E$ the graph $\Sigma_{f}$ (or rather $\Sigma_{f}\backslash E$) is minimally thin at both $h_{\zeta}^{+}$

and $h_{\zeta}^{-}$ .

The last claim has essentially been noticed in 1.6 above (first two para-
graphs). It follows from the fact that the harmonic measures $\omega^{+},$ $\omega^{-}($of
some fixed points $Q^{+}\in\Sigma_{f}^{+},$ $Q^{-}\in\Sigma_{f}^{-}$ respectively) in the Lipschitz do-
mains $\Sigma_{f}^{+}$ and $\Sigma_{f}^{-}$ are such that $H_{1}\sim\omega^{+}\sim\omega^{-}$ on $E$ (and even on $\Sigma_{f}$ ).
From this and Martin boundary theory [17], it follows that for $H_{1}a.e$ . point
$\zeta\in E$ , the subgraph $\Sigma_{\overline{f}}$ is minimally thin at $h_{\zeta}^{+}$ (w.r. to $\Omega$ ) (the minimal

for the epigraph is then proportionnal to $h_{\zeta}^{+}-\Omega f$ . Whence the claim
since the set of double points has full $H_{1}$ measure in $E$ and $H_{1}\sim\omega$ on this
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set.

To get the first claim it suffices to show the following: If $K$ is compact
$\subset E,$ $H_{1}(K)=0$ , and $\omega(K)>0$ there exists a simple point $\zeta\in K$ such
that $\Sigma_{f}\backslash E$ is minimally unthin on the right of (in $\Omega$ .

Equivalently, it suffices to show that the following assumption

$(H)$ : (
$(\exists K$ compact $\subset E$ such that $\omega(K)>0$ , every point of $K$ is simple

(w.r. to $\Omega$ ) and the graph $\Sigma_{f}$ is minimally thin (in $\Omega$ ) on the right at each
point of $K$”

leads to a contradiction. Let us transform $(H)$ . Passing to $E_{0}=K$ ,
$\Omega_{0}=\mathbb{C}\backslash K$ we see that $H_{1}(E_{0})=0$ , cap $(E_{0})>0$ and there exists a Borel
set $A\subset E_{0}$ of positive harmonic measure in $\Omega_{0}$ consisting of points $\zeta\in E_{0}$

that are simple points for $\Omega_{0}$ and such that $\Sigma_{f}$ is minimally thin on the
right at $((w. r. to \Omega_{0})$ . This is because the set of double points in $K$ w.r.
to $\Omega_{0}$ has zero harmonic measure in $\Omega_{0}$ (1.5, section 1) and because, by

[17], at $\omega^{\Omega}$ almost every point $P$ in $K,$ $\Omega_{0}\backslash \Omega$ is minimally thin at $P$ (w.r.

to $\Omega_{0})$ and minimal thinness w.r. to $\Omega$ implies minimal thinness w.r. to $\Omega_{0}$ .

Thus, there is a compact subset $K_{0}\subset E_{0}$ of simple points for $\Omega_{0}$ with
$\omega_{0}(K_{0})>0$ and such that the graph $\Sigma_{f}\backslash E_{0}$ is thin on the right at each
$\zeta\in K_{0}$ .

We now distinguish two cases:

A. First case. Assume that the initial compact subset $K$ of $E$ has a lower
capacitary density larger than some real $c_{0}>0$ : by this we mean that for
each point $x\in K$ and each $r\in(0,1]$ the harmonic measure $\omega_{r,x,K}(y)$ of
$B(x, r/4)\cap K$ in $B(x, r)$ is larger than $c_{0}$ at every point $y\in\partial B(x, r/2)$ . We
use later the notation $\underline{\delta}_{K}(x):=\inf\{\omega_{r,x,K}(y);0<r\leq 1, y\in\partial B(x, r/2)\}$ .
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For $\zeta\in E_{0}$ simple with respect to $\Omega_{0}$ , denote by $h_{(}$ the minimal harmonic

function in $\Omega_{0}$ with pole at (and normalized at some fixed point $\xi_{0}$ in $\Omega_{0}$ .

Denote $\omega_{0}$ the harmonic measure of $\xi_{0}$ in $\Omega_{0}$ . Consider the function

$s(x)= \int_{E_{0}\backslash K_{0}}h_{(}(x)d\omega_{0}(\zeta)+\int_{K_{0}}\hat{R}_{1\iota_{(}}^{\Sigma}f(x)r,\zeta d\omega_{0}(\zeta))$
$X\in\Omega_{0}$

(recall that $\omega_{0}-a.e$ . point of $E_{0}$ is simple for $\Omega_{0}$ ). Here the ((r\’eduite’’ is

performed in $\Omega_{0}$ and we have set $\Sigma_{f}^{r,\zeta}=(\Sigma_{f}\backslash E_{0})\cap\{(x_{1}, x_{2})\in \mathbb{R}^{2};\zeta_{1}<$

$x_{1}\leq\zeta_{1}+\ell\}$ where $\ell$ is fixed and such that $P\geq$ diam$(E_{0})$ .

It is easily checked that $s$ is a positive superharmonic function in $\Omega_{0}$ (us-

ing Fatou’s lemma and Fubini theorem). Since for $A\subset E_{0},$ $\omega_{\xi}^{\Omega_{0}}(A)=$

$\int_{A}h_{\zeta}(\xi)d\omega_{0}(\zeta)$ and since $\hat{R}_{h_{\zeta}}^{\Sigma}f(x)r,(=h_{\zeta}(x)$ in $\Sigma^{r,\zeta}f$ we see that if $\Gamma=\alpha\beta\wedge$ is

an open sub-arc of $\Sigma_{f}$ contiguous to $E_{0},$ $s(x)\geq\omega_{0}(T_{\alpha})$ in $\Gamma$ where $T_{\alpha}$ is

that part $T_{(X}$ of $E_{0}$ standing on the left of $\alpha$ . Using the capacitary density

assumption on $K=E_{0}$ (at $\alpha$ ) and Harnack inequality, it follows that for
some positive constant $c$ depending only on $c_{0}$ and $k$ (and also the diameter

of $E_{0}$ if larger than 1), we have $s(x)\geq c$ in $\Gamma’=\alpha\beta’$ , the subarc of $\Gamma$ such

that $\beta_{1}’-\alpha_{1}=\frac{2}{3}(\beta_{1}-\alpha_{1})$ . In particular, $s(x)\geq c$ in $\Gamma’’$ $:=\alpha’\beta’$ if $\alpha’\in\Gamma’$

is such that $\alpha_{1}’-\alpha_{1}=\frac{1}{3}(\beta_{1}-\alpha_{1})$ . We note $\Gamma"=\frac{1}{3}$ F.

Thus $s\geq c$ in the “centered third“ $\frac{1}{3}\Gamma_{j}$ of every bounded connected com-
ponent $\Gamma_{j}$ of $\Sigma_{f}\backslash E_{0}$ . It follows then (see the next lemmas) that $s\geq c’>0$

on all intervals contiguous to $E_{0}$ (where $c’$ is another positive constant).

Since $H_{1}(E_{0})=0$ the union of these intervals has full harmonic measure in
$\Omega_{0}$ . Thus $s\geq c’$ in $\mathbb{C}\backslash E_{0}$ , i.e. $s(x) \geq d\int_{E_{0}}h_{\zeta}(x)d\omega_{0}(\zeta)$ for $x\in\Omega_{0}$ .

Passing to the greatest harmonic minorant of $s$ we get (since each $\hat{R}_{h_{\zeta}^{f}}^{\Sigma}r,\zeta$ for
$\zeta\in K_{0}$ is a potential in $\Omega_{0}$ by the minimal thinness at $\zeta$ of $\Sigma^{r,\zeta}f$ ) that

$\int_{E_{0}\backslash K_{0}}h_{\zeta}(x)d\omega(\zeta)\geq c^{/}\int_{K_{0}}h_{\zeta}(x)d\omega(\zeta)$

for $x\in\Omega_{0}$ . This is in contradiction with the fact that the Martin repres-
entation map $\mathcal{M}(\triangle_{1}(\Omega_{0}))arrow \mathcal{H}_{+}(\Omega_{0})$ is a cone isomorphism. So theorem
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2.1 is proven in the case where the lower capacitary density of $K$ is $\geq c>0$

in K. $\square$

Let us now complete this part of the proof by showing that $s\geq c’$ on each
subarc $I$ of $\Sigma_{f}$ contiguous to $E_{0}$ .

Lemma 2.2 Let $L$ be a compact subset of $\Sigma_{f}$ such that $H_{1}(L)=0\rangle$ denote
$\tilde{\omega}$ the $har^{r}m$onic measure $\prime m\mathbb{R}^{2}\backslash L,$ $\mathcal{I}$ the set of all bounded component of
$\Sigma_{f}\backslash L$ and set $J_{I}= \frac{1}{3}$ I for $I\in \mathcal{I},$ $F$ $:= \bigcup_{I\in \mathcal{I}}]_{I}$ . If $T$ is a $\Sigma_{f}$ -adapted

cylinder such that $T\cap\Sigma_{f}=PQ$ with $P,$ $Q\in L$ and if $A=A_{T}^{+}$ , we have

$\tilde{\omega}_{A}(F\cap T)\geq C$

for some constant $c>0$ depending only on $k$ .

This is well-known and can be deduced from the doubling property of $\tilde{\omega}$

(see [14]). A more direct agument is obtained as follows. For $I\in \mathcal{I}$ , let
$T_{I}$ be the $\Sigma_{f}$ adapted cylinder such that $T_{I}\cap\Sigma_{f}=I$ and $A_{I}^{\pm}$ the reference
points of $T_{I}$ . It is clear that c2 $A_{I}^{\pm}(I)\leq 1\leq C\tilde{\omega}_{A_{I}^{\pm}}(J_{I})$ for some constant
$C\geq 1$ . So by the boundary Harnack principle $\tilde{\omega}_{A_{\wedge}}(I)\leq cC\tilde{\omega}_{A}(J_{I})$ (with

another constant $c$ ). Summing over all $I\in \mathcal{I},$ $I\subset PQ$

$cC \tilde{\omega}_{A}(F)\geq\tilde{\omega}_{A}((\sum_{f}\backslash L)\cap P^{\wedge}Q)\geq u_{A}(P^{\wedge}Q)$

if $u$ is the harmonic measure with respect to $T\cap\Sigma_{f}^{+}$ . We have used the

fact that $u_{A}(L\cap P^{\wedge}Q)=0$ since $H_{1}(L)=0$ . Now $u_{A}(P^{\wedge}Q)\geq c’$ for some
constant $c’>0$ depending only on $c_{0}$ and the lemma follows. $\square$

Lemma 2.3 We retain the hypothesis and the notations of lemma 2.2.
Then,

di$x(F)\geq c_{2}$

for every $x\in I_{2}I\in \mathcal{I}_{\rangle}$ and a constant $c_{2}$ depending only on $k$ .

Proof. Let $I=ab$ be an $((interval)$ in $\mathcal{I}$ and let $x\in I$ , say in the left half
of $I$ $(i.e. x_{1}\leq(a+b)/2)$ . By Harnack inequality we may assume that
$x_{1}-a_{1} \leq\frac{1}{10}(b-a)$ .

24



Let $y$ be the leftmost point in $L$ such that $a_{1}-y_{1} \leq\frac{3}{2}(x_{1}-a_{1})$ . Then by
lemma 2.2 applied to $ya$ } one gets $(if y\neq a)$ that $\omega_{A}(F)\geq c$ if $A=A_{T}^{+},$ $T$

being the $\Sigma_{f}$-adapted cylinder such that $T\cap\Sigma_{f}=ya$ .

If $a_{1}-y_{1} \geq\frac{1}{2}(x_{1}-a_{1})$ , Harnack’s inequalities imply that $\omega_{x}(F)\geq$

$c”\omega_{A}(F)\geq c^{\prime/}c$ , with $c”=c”(k)$ , which gives the desired conclusion.

Suppose now that $a_{1}-y_{1}< \frac{1}{2}(x_{1}-a_{1})$ . Let $z$ be the rightmost point in
$L$ with $z_{1}<y_{1}$ if any. Denote $\tilde{T}$ the $\Sigma_{\Gamma}adapted$ cylinder of center $a$ and
radius $r= \min\{b_{1}-a_{1}, a_{1}-z_{1}\}$ (where $a_{1}-z_{1}=+\infty$ if $y_{1}= \inf\{u_{1)}u\in$

$L\})$ .

Since $F\cap\tilde{T}$ contains an arc of length $\geq\frac{1}{6}r$ we have $\omega_{A_{\overline{T}}}(F)\geq c_{1}=c_{1}(k)$

and $\omega_{\xi}(F)\geq c’c_{1}$ , $c’=c’(k)$ , for $\xi$ on the boundary of the shrinked cylinder
$\frac{9}{10}\tilde{T}$ . Since $\omega.(F)\geq c’$ $c$ , $c’=c”(k)$ , on the boundary of $\frac{11}{10}T$ , it follows
by the maximum principle that $\omega_{x}(F)\geq\min\{c’c_{1}, c’’c\}$ (note that the case
$y=a$ is trivial). $\square$

Remark 2.4 If one adds the assumption that $L$ has a positive lower capa-
citary density, a slightly simpler argument gives a constant $c_{2}=c_{2}(L)>0$ .

This would suffice to complete the proof of theorem 2.1.

B. Second case. We are now left with the case where the lower capacitary
density $\underline{\delta}_{K}(x)$ of $K$ is zero for almost every $x\in K$ with respect to the har-
monic measure class in$\cdot$ $\Omega$ . Otherwise replacing $K$ by a suitable subcompact
$K’\subset K$ we are again in case A. For the notation $\underline{\delta}_{K}$ see the beginning of
part A of the proof.

By restricting $K$ we may even assume that $\underline{\delta}_{K}$ is zero in $K$ . Moreover
substituting $E_{0}=K$ to $E$ and choosing suitably $K_{0}\subset K$ we may assume
that: $\underline{\delta}_{E_{0}}=0$ in $E_{0},$ $H_{1}(E_{0})=0$ (this is implied by $\underline{\delta}_{E_{0}}=0$ ), $\omega(K_{0})>0$ ,
every point (of $K_{0}$ is simple and such that the set $\Sigma_{f}\backslash E_{0}$ is minimally
thin on the right of $\zeta$ (using once again the results of [17]).
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To get a contradiction we will rely on the following lemma.

Lemma 2.5 Let $T$ be a $\Sigma_{f}$ -adapted cylmd $’\supset$ and let $L$ be a compact subset

of $\Sigma_{f}$ . There $\uparrow(\backslash \backslash$ an $\xi j1>()s^{\gamma}n([\iota$ $that\uparrow l)f_{l()}n(Jv()7^{\cdot}$ the harmonic $mea\sigma\cdot nre$ at $A_{T}^{+}$

of $T\cap L$ in $T\iota s$ less than $\mathcal{E}_{1)}$ ther2 $f’ 07’$ every function $h\in \mathcal{H}_{+}(T\backslash L)$

$\mathcal{E}_{1}h(A_{T}^{+})\leq h(A_{T}^{-})\leq \mathcal{E}_{1}^{-1}h(A_{T}^{+})$ (2.1)

and $mo\gamma\cdot eover,$ $\iota fU$ $:=T\backslash L$ , if $x\iota s$ the center of $T_{\rangle}$

$R_{h}^{U}(A_{T}^{+})\cap\Sigma_{f}^{\prime,\lambda}\geq\in 1h(A_{T}^{+})$ (2.2)

and similarly $R_{h}^{U}(A_{T}^{-})\cap\Sigma_{f}^{r,x}\geq \mathcal{E}_{1}h(A_{T}^{-})$ .

The reduites above are taken with respect ot the domain $U=T\backslash L$ and
we have set here $\Sigma^{r,x}=f\{z\in\Sigma_{f};z_{1}>x_{1}\}$ .

Proof. The harmonic measure $\omega(A_{T}^{+};B_{T}^{-}, T\backslash L)$ in $T\backslash L$ of the ball $B_{T}^{-}$ $:=$

$B(A_{T}^{-}, r/10k)$ at $A_{T}^{+}$ is larger than $\omega(A_{T}^{+};B_{T}^{-}, T)-\mathcal{E}_{1}=c_{k}-\mathcal{E}_{1}\geq\frac{1}{2}c_{k}$ if
$\mathcal{E}_{1}\leq\frac{1}{2}c_{k}$ . Thus, by Harnack and maximum principle, there is an absolute
constant $c’>0$ such that

$c’\omega(A_{T}^{-};T\cap L, U)\leq$
$[ \inf_{z\in B_{T}^{-}}\omega(z, T\cap L, U)]\omega(A_{T}^{+};B_{T}^{-}, T\backslash L)$

$\leq\omega(A_{T}^{+};T\cap L, U)\leq\epsilon_{1}$ .

So $\omega(A_{T}^{-};T\cap L, U)$ is also small for $\mathcal{E}_{1}$ sufficiently small and as before, for
$5_{1}$ small enough,

$\omega(A_{T}^{-};B_{T}^{+}, U)\geq\frac{1}{2}c_{k}$ . (2.3)

Using again Harnack and maximum principle, it follows that for some con-
stant $c’$

$h(A_{T}^{-}) \geq\frac{1}{2}c_{k}$ $c$
’

$h(\mathcal{A}_{T}^{+}))$

and similarly $h(A_{T}^{+}) \geq\frac{1}{2}c_{k}c’h(A_{T}^{-})$ , if $6_{1}$ is small enough.

26



To prove (2.2), introduce the $\Sigma_{f}$-adapted cylinder $T’$ with radius $\rho=r_{T}/2$

and center $x’$ such that $x_{1}’=x_{1}+\rho$ $($ so that, $\Sigma_{f}^{r,x’}\cap T=\Sigma_{f}^{r.x’}\cap T’)$ . By
Harnack inequalities and standard argument similar to the above, we have
for the r\’eduitc $UR^{\sum_{h}\cap U}f7,J$ with respect to $U$ ,

$UR_{h}^{\Sigma_{f}^{r,x}\cap U}(A_{T^{1}}^{-}) \geq c’h(A_{T}^{+},)\omega(A_{T^{f}}^{-};B_{T}^{+},, T’\backslash L)\geq\frac{1}{2}c’c_{k}h(A_{T}^{+},)$ (2.4)

provided $\xi j_{1}$ is small enough. This follows from the inequality $h(z)\geq$

$c’h(A_{l}^{+}\urcorner’)\omega(z;B_{T}^{+},, T’\backslash L)$ for $z\in U\cap T’$ and the maximum principle (the
second inequality is (2.3) $)$ . And the lemma follows, using (2.1) and Harnack
inequality. $\square$

Remark 2.6 Let $x$ denote as before the center of $T$ and $\Sigma^{r,x}f$ the part of
$\Sigma_{f}$ on the right of $x$ . For $\mathcal{E}_{1}>0$ small enough, (2.1) in lemma 2.5 holds
for $h$ positive harmonic in $T\backslash (\Sigma_{f}^{rx})\cup L)$

This remark follows on applying lemma 2.5 to the $\Sigma_{f}$-adapted cylinder $T”$

with radius $r_{T’’}=r_{T}/2$ and center $x”$ such that $x_{1}’’=x_{1}-r’$ (using again
Harnack’s inequality).

We now finish the proof of Theorem 2.1 in case B. Let $\in>0$ and let
$\zeta\in K_{0}$ . We may choose arbitrarily small $\Sigma_{f}$-adapted cylinder $T$ centered
at (and such that the harmonic measure of $E_{0}$ in $T$ is smaller than $\in$ at
the references points $A_{T}^{+}$ and $A_{T}^{-}$ .

Thus taking $\in>0$ small enough, it follows from the previous lemma that
for these suitably chosen cylinders $T$ (we let $\Omega=\mathbb{R}^{2}\backslash E_{0}$ and denote $h_{(}$ a
minimal harmonic function in $\Omega$ with pole at $\zeta$ ) :

$\Omega R_{h_{\zeta}}^{T\cap\Sigma_{f}^{r,(}}(A_{T}^{+})\sim\Omega R_{h_{(}}^{T\cap\Sigma_{f}^{r,(}}(A_{T}^{-})\sim h_{(}(A_{T}^{-})\sim h_{\zeta}(A_{T}^{+})$ (2.5)

(which means that the first three quantities are between two constant times
$h_{(}(A_{T}^{+}))$ . We have used here the fact that by definition

$h_{\zeta}(A_{T}^{+})\geq\Omega R_{h_{\zeta}}^{T\cap\Sigma_{f}^{r,(}}(A_{2}^{+}\urcorner)\geq T\cap\Omega R_{h_{(}}^{T\cap\Sigma_{f}^{r,\zeta}}(A_{T}^{+})$
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By (2.5) and the boundary Harnack principle (1.1) we have (the r\’eduites

being taken w.r. to $\Omega$ ) with another constant $c$

$h_{\zeta}(x)\leq cR_{h_{\zeta}}^{T\cap\Sigma_{f}^{r,(}}(x)\leq cR_{h_{\zeta}}^{\Omega\cap\Sigma_{f}^{r,\zeta}}(x)$

for $x\in\Omega\backslash 2T$ (if $2T$ is the image of $T$ under the dilation $x\mapsto\zeta+2(x-\zeta)$ ).

Since we may choose arbitrarily small cylinders $T$ at $\zeta$

) we get that

$R_{h_{(}}^{\Sigma}r,(f\geq ch_{(}$ in $\Omega=\mathbb{R}^{2}\backslash E_{0}$ .

This means that $R_{h_{\zeta}}^{\Sigma}r,\zeta f$ is not a potential in $U$ (and that in fact $R_{h_{\zeta}}^{\Sigma}r,\zeta f=h_{\zeta}$ )

and hence that $\Sigma^{r,\zeta}f$ is not minimally thin at $\zeta$ which is a contradiction.

The proof of Theorem 2.1 is complete. $\square$

3 Extension to the higher dimension case $(d\geq 3)$ .

3.1. We start with a preliminary lemma asserting the existence of some
coverings and allowing the extension of the argument used for the $d=2$

case. Let $C$ , C’ be two nonempty open convex cones in $\mathbb{R}^{d-1}$ with vertex at

the origin, rotation-invariant around the axis generated by $u_{0}=(1, \ldots, 1)$

in $\mathbb{R}^{d-1}$ and such that

$\overline{C}\backslash \{0\}\subset C’\subset \mathbb{R}_{+}^{d-1}$ $($ 3. 1 $)$

Denote $C_{1}=\{x\in C;x_{1}+\cdots+x_{d-1}<1\},$ $C_{2}=\{x\in C’$ ; $x_{1}+\cdots+x_{d-1}<$

$1\}$ two corresponding truncated cones, and $T=\{x\in\overline{C_{1}};x_{1}+\cdots+x_{d-1}=$

$1\}$ the base of $\overline{C_{1}}$ .

Choose and fix a positive real $\rho_{1}$ so small that $\min\{x_{1}, \ldots, x_{d-1}\}\geq\rho_{1}(x_{1}+$

. . . $+x_{d-1})$ for $x\in C$ . Choose then a point $a\in C_{1}$ on the axis of $C_{1}$ close
enough to $0$ so that $a+C_{2}\supset T$ and $|a|< \frac{\rho_{1}}{2}$ . Fix finally a small positive real
$\rho<\frac{\rho_{1}}{2}$ such that $B(a, 2\rho)\subset C_{1}$ and then $A\geq 1$ such that $0\in B(a, A\rho)$ .
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Lemma 3.1 Let $K$ be a compact subset of $Q_{0}=[0,1]^{d-1}$ such that $0\in K$ .

Then there is a family of disjomt balls $B(x^{\alpha}, r_{\alpha})\subset Q_{0}\backslash K,$ $\alpha\in I$ , in
$\mathbb{R}^{d-1}$ such that $(x^{\alpha}- \frac{r_{\alpha}}{p}C_{2})\cap K\neq\emptyset$ and $\bigcup_{\alpha\in I}B(x^{\alpha})5Ar_{\alpha})\supset(\overline{C}\cap Q_{0})\backslash K$ .

Of course $\gamma_{\alpha}\leq\frac{1}{2}$ .

Proof. For each point $x\in(\overline{C}\cap Q_{0})\backslash K,$ $0\in x-(d-1)\overline{C_{1}}$ and there

is a maximal $R=R_{x}\in(0, d-1]$ such that $x-R_{x}(\overline{C}_{1}\backslash T)\subset K^{c}$ . Then
$(x-R_{x}T_{1})\cap K\neq\emptyset$ . Set $y_{x}=x-R_{r}a,$ $r_{i\Gamma}=R_{x}\rho$ and consider the family

of balls $B(y_{x}, Ar_{x}),$ $x\in(\overline{C}\cap Q_{0})\backslash K$ , in $\mathbb{R}^{d-1}$ It covers $(\overline{C}\cap Q_{0})\backslash K$ and

hence by a well-known lemma from measure theory (see [16] p. 24) there is a
subfamily of disjoint balls $B(y_{x}, Ar_{x}),$ $x\in I$ , such that $\bigcup_{x\in I}B(y_{x}, 5Ar_{x})\supset$

$(\overline{C}\cap Q_{0})\backslash K$ .

Also, for $x\in(\overline{C}\cap Q_{0})\backslash K,$ $B(y_{x}, r_{x})=x-R_{x}B(a, \rho)\subset x-R_{x}(C_{1}\backslash T)\subset$

$K^{c}$ . Since $0\not\in x-R_{x}(\overline{C}_{1}\backslash T)$ , we have $x\in\overline{C}\backslash R_{x}(\overline{C}_{1}\backslash T)$ and, by the
choice of $\rho_{1},$ $\min_{k}x_{k}\geq R_{x}\rho_{1}$ . Thus for $z\in B(y_{x}, r_{x})$ and $1\leq j\leq d-1$ ,

$z_{j}=x_{j}-R_{x}w_{j}>R\rho_{1}-R\rho_{1}=0$ $($ because $w_{j}\in\overline{B}(a,$ $\rho)\subset B(O,$ $\rho_{1}))$ so that
$B(y_{x)}r_{x})\subset Q_{0}$ .

Moreover since $y_{x}-r_{x}\rho^{-1}C_{2}=x-R_{x}(a+C_{2})\supset x-R_{x}T_{1}$ , we have
$(y_{x}- \frac{r_{x}}{\rho}C_{2})\cap K\neq\emptyset$ . So the family $\{B(y_{x}, r_{x})\}_{x\in I}$ fulfills all the requirement

of the lemma. $\square$

3.2. We return now to the study of Lipschitz Denjoy domains. We also

return to the notations used in section 1 and consider the Lipschitz Denjoy

domain $\Omega=\mathbb{R}^{d}\backslash E$ defined by a compact subset $E$ of the graph $\Sigma_{f}$ , where
$f$ : $\mathbb{R}^{d-1}arrow \mathbb{R}$ , is k-Lipschitz and $k\geq 1$ fixed

Fix a nonempty open cone $C_{0}$ in $\mathbb{R}^{d-1}$ with vertex at the origin and set
$\Gamma=\Gamma_{C_{0}}=C_{0}\cross \mathbb{R}$ . If $\zeta\in E$ is a simple boundary point w.r. to $\Omega$ , we say
now that $\Sigma_{f}$ is minimally thin (with respect to $\Omega$ ) at $\zeta$ in the direction $C_{0}$

(or $\Gamma$ ) if the set $[\Sigma_{f}\cap(\zeta+\Gamma)]\backslash E$ is minimally thin at $\zeta$ (w.r. to $\Omega$ ).

The next statement generalizes Theorem 5 in [7] to Lipschitz Denjoy do-

29



mains. As before $\omega=\omega^{()}$ is the harmonic measure w.r. to the domain $\zeta$}.

Theorem 3.2 For $\omega^{(?}$ almost $evC’7y|s\uparrow mple$ point $P\in E$ the graph $\Sigma_{f}$ is

mznzmally unth, $\iota r\iota$ in th $(^{\lrcorner}d\prime i7^{\cdot}ectio7l(_{/()}^{\gamma}\sim$ at P. $Or|,$ $thc^{J}$
, other hand, at $\omega^{\Omega}-$

almost all double point $\zeta\in Etf_{l,(}’\lrcorner qrap1\iota\Sigma_{f}(0\tau\cdot r\cdot athe\gamma\cdot\Sigma_{f}\backslash E)$ is miMmally

thin at both $h_{\zeta}^{+}$ and $h_{(}^{-}$ .

Clearly it follows that in fact $\omega^{\Omega}a.(\}$ . simple point $\zeta\in E$ is such that the

graph is minimally unthin at $\zeta$ in $ev\epsilon^{1}\iota\cdot y$ possible direction $\Gamma$ .

Proof. A straightforward extension of the argument in the first paragraph

after the statement of theorem 2.1 proves the last claim.

To prove the first we may assume, using a rotation, that the cone $C_{0}$ in
$\mathbb{R}^{d-1}$ contains the half-line $\{(t, \ldots, t);t>0\}$ . We then fix two cones $C$ and

C’ as above in 3.1 with $\overline{C}\backslash \{0\}\subset C’\subset\overline{C}’\backslash \{0\}\subset C_{0}\cap(\mathbb{R}_{+}^{*})^{d-1}$ Recall that
$C_{1}:=\{x\in C;x_{1}+\cdots+x_{d-1}=1\}iC_{2}:=\{x\in C’ )x_{1}+\cdots+x_{d-1}=1\}$.

We then follow the strategy of proof of theorem 2.1 (first claim) and after
reductions completely similar to those made in this proof we are left with

showing that the following two cases A and $B$ are impossible.

Case A. The compact $E$ has a lower capacitary density bounded from
below on $E:\underline{\delta}_{E}(x)\geq c_{0}>0$ for $x\in E,$ $H_{d-1}(E)=0,$ $K\subset E$ is compact,
$\omega(K)>0$ and $\Sigma_{f}$ is minimally thin (w.r. to $\Omega$ ) in the direction $C_{0}$ at each
$\zeta\in K$ .

We set $\Sigma_{f}^{\Gamma,(}$ $:=(\Sigma_{f}\backslash E)\cap(\zeta+\Gamma)$ and introduce the following function

$s(x)= \int_{E\backslash K}h_{(}(x)d\omega_{0}(\zeta)+\int_{Ie^{r}}\hat{R}_{h_{\zeta}}^{\Sigma}f\Gamma,((x)d\omega(()$ , $X\in\Omega$

where $h_{\zeta}$ is a minimal harmonic function in $\Omega$ with pole at $\zeta$ (normalized

at some point in $\Omega$ ) and $\hat{R}_{h_{\zeta}}^{\Sigma}f=R_{h_{(}}^{\Sigma}\Gamma,c\Gamma,\zeta f$ is a r\’eduite with respect to $\Omega$ .
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Fix $a=$ $(a$‘, $a_{d})\in E,$ $0<r_{0}<1$ , and consider the $d-1$-dimensional cube
$a’+r_{0}Q_{d-1)}Q_{d-1}=[0_{/}.1]^{d-1}$ Let $E’$ denote the projection of $E$ in $\mathbb{R}^{d-1}$

and $E_{0}’=E’\cap(a’+r_{0}Q_{d-1})$ .

Applying the lemma, we obtain a ( $(V\xi^{1}r$ of $(a’+r_{0}(\overline{C}\cap Q_{d-1}))\backslash E’$ by balls
$B(x_{i}’, A’r_{i})$ (of $\mathbb{R}^{d-1}$ ) such that the balls $B(x_{\dot{\iota})}’r_{i})$ are disjoint and contained

in $(a‘ +r_{0}Q_{d-1})\backslash E’$ . Moreover there is a point $z_{i}’\in(x_{i}’-t_{i}r_{i}\overline{C}_{2})\cap E_{0}’$

with $0<t_{i} \leq\frac{1}{\rho}$ and we may choose $z_{i}’$ associated to a minimal $t_{i}$ . So
$0< \theta_{0}\leq t_{i}\leq\frac{1}{\rho}$ (where $\theta_{0}$ depends only on $C_{2}$ ) . $x_{i}’\in z_{i}’+\lrcorner r\overline{C}_{2}\rho$ and

for a small enough positive constant $\beta$ , we have $x_{i}’\in z’+C_{0}$ whenever
$|z’-z_{i}’|\leq\beta r_{i}$ It follows that (if $z_{i}=(z_{i}’, f(z_{i}’)),$ $x_{i}=(x_{i)}’f(x_{i}’))$ and the

notation $B_{d}$ refers to balls in $\mathbb{R}^{d}$ )

$s(x_{i})$ $\geq\int_{E\backslash K}h_{(}(x)d\omega_{0}(\zeta)+\int_{K\cap B_{d}(z_{t},\beta r_{t})}\hat{R}_{h_{\zeta}}^{\Sigma}f(x_{i})\Gamma,\zeta d\omega(\zeta)$

$\geq\int_{E\cap B_{d}(z_{i},\beta_{7_{i}}’)}h_{\zeta}(x_{i})d\omega(\zeta)=\omega(x_{i};E\cap B_{d}(z_{i}, \beta r_{i});\Omega)$ . (3.2)

But the assumption that $\underline{\delta}_{E}(z_{i})\geq c_{0}$ implies that $\omega(x;E\cap B_{d}(z_{i}, \beta r_{i}))\Omega)\geq$

$c_{0}$ for $x \in B_{d}(z_{i}, \frac{1}{2}\beta r_{i})$ . Since $z_{i}’$ belongs to the boundary (in $\mathbb{R}^{d-1}$ ) of
$B_{d-1}(x_{i)}’r_{i})\cup(x_{i}’-t_{i}r_{i}C_{2})\cap(a’+r_{0}Q_{d-1})$ , it follows using Harnack inequalities

that $s(x_{i})\geq\omega(x_{i)}\cdot E\cap B_{d}(y_{i}, \beta r_{i});\Omega)\geq c_{1}$ for some positive constant $c_{1}$ .

In that way it is now seen that in $\Sigma^{+}f$ (the open epigraph of $f$ ), the function
$s$ is larger than a constant times the harmonic measure (in $\Sigma_{f}^{+}$ ) of the union

of the pseudo-balls $\Sigma_{f}\cap B_{d}(x_{i}, r_{i})$ .

The doubling property of $\omega(a+r_{0}e;. ; \Sigma_{f}^{+})$ where $e=(0, \ldots, 0,1)\in \mathbb{R}^{d})$

and the covering property of the balls $B(x_{i}, Ar_{i})$ imply that finally $s(a+r_{0}e)$

is larger than a constant times the harmonic measure (in $\Sigma_{f}^{+}$ and at $a+r_{0}e$ )

of $\{x\in\Sigma_{f};x’\in(a’+r_{0}Q_{d-1})\cap(a’+C_{1})\backslash E’\}$ .

Thus we have shown that there is a positive constant $c_{3}$ (depending only

on $d,$ $k$ and the positive capacitary condition) such that for each $x\in E$ and
$0<r\leq 1$ , we have $s(x+re)\geq c_{3}$ and similarly $s(x-re)\geq c_{3}$ .
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To conclude we may for example use the general Fatou-Doob-Naim theorem
(see [17], [13] or [3],) and the fact that at each boundary simple point $\zeta\in E$

the union $C_{(}^{+}\cup C_{(}^{-}$ is not minimally thin at $\zeta$ (w.r. to the domain $\Omega$ ). The
extended Fatou theorem says that the firie limit (w.r. to $\Omega$ ) at $\zeta\in K$ of
$s$ is zero for $\omega$-almost all $\zeta\in K$ (since each r\’eduite $\hat{R}_{h_{(}}^{\Sigma}f\Gamma,($ is a potential in
$\Omega$ , the second expression in the definition of $s$ is a potential, whereas the
first is a harmonic function generated by a measure not charging $K$ ). So
by Harnack we should have $for$ such $\zeta,$ $\lim\inf_{t\downarrow 0}(s(\zeta+te)\wedge s(\zeta-te))=0$

This gives a contradiction. $\square$

Case B. The set $E\subset\Sigma_{f}$ is compact, its lower capacitary density in $\mathbb{R}^{d}$ is
zero at each of its points, and (w.r. to $\Omega$ ) there is a simple point $x_{0}\in E_{0}$

such that $\Sigma_{f}$ is thin at $x_{0}$ in the direction $C_{0}$ .

In fact the argument for the case $B$ in the proof of theorem 2.1 does not
really use the assumption $d=2$ as the reader may easily check. It shows
that $E_{0}$ has only simple points (w.r. to $\Omega$ ) and that $\Sigma_{f}$ is unthin in the
direction $C_{0}$ at each $\zeta\in E_{0}$ . $\square$

4 Another statistical unthinness result

Recall the notations (section 1) $C^{+}=\{(x’, x_{d});x_{d}\geq 10k|x’|\}\in \mathbb{R}^{d-1}\cross \mathbb{R}$,
$C_{P}^{+}=P+C^{+},$ $C_{P}^{-}=P-C^{+}$ . As before, $\Omega=\mathbb{R}^{d}\backslash E$ is a Lipschitz Denjoy
domain with $E$ a compact subset of $\mathbb{R}^{d}$ contained in $\Sigma_{f}$ .

Theorem 4.1 For $\omega=\omega^{\Omega}$ almost every simple point $\zeta\in E$ , both upper
and lower cones, $C_{\zeta}^{+}$ and $C_{(}^{-}$ , are minimally unthin at $\zeta$ $(w.r. to \Omega)$ .

We note here that this result is well-known when $\Omega$ is a flat Denjoy domain
and in fact $C_{\zeta}^{+}$ and $C_{(}^{-}$ are in this case unthin at every simple point $\zeta\in E$

(a fact which does not extend to the general Lipschitz Denjoy case).
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Proof. We argue again by contradiction and so assume the existence of
a compact subset $K$ of $E$ whose elements are all simple and such that $:(i)$

$\omega^{\Omega}(K)>0$ , (ii) $C_{(}^{+}$ is minimally thin at $\zeta$ $(w.r. to \Omega=\mathbb{R}^{d}\backslash E)$ for all $(\in K$ .

This of course implies that $H_{d-1}(K)=0$ .

Again after replacing $E$ by $E_{0}=K$ , we may assume that $\omega$ almost every
point of $E$ is simple $(H_{d-1}(E)=0)$ .

As in the preceding sections, we distinguish two cases:

A. First case : $E$ has a lower capacitary density $\geq c>0$ at each of its
points.

Denote $C^{s}=\{(x’, x_{d});x_{d}\geq 20k|x’|\}\in \mathbb{R}^{d-1}\cross \mathbb{R},$ $C_{P}^{s}=P+C^{s}$ . Let
$\Phi=\overline{B}(0, R)\cap[\bigcup_{\zeta\in K}C_{\zeta}^{S}]$ where $R$ is so large that $E\subset B(O, R/2)$ and
denote $u$ the harmonic measure of $E\backslash K$ in $\Omega=\mathbb{R}^{d}\backslash E$ . We construct now
the function:

$p(x)=q(x)+ \int_{K}\hat{R}_{h_{\zeta}}^{C_{\zeta}^{s}}(x)d\omega(\zeta)$ (4.1)

where $q=R_{u}^{\Phi}$ is the r\’eduite of $u$ on $\Phi\backslash E$ with respect to $\Omega$ and the notation
$h_{\zeta}$ has the same meaning as before.

The function $p$ is a potential in $\Omega,$ $i.e$ . its greatest harmonic minorant in $\Omega$

is $0$ (note that $\Phi$ is thin at every minimal point with pole in $E\backslash K$ so that
$q$ is a potential in $\Omega$ ). The capacitary density assumption for $E$ implies

that $p\geq c$ on $\Phi$ : in fact for $x\in[C_{\zeta}^{s}\backslash \{0\}]\cap\overline{B}(0, R)$ the harmonic measure
of $(x-C^{+})\cap E$ is $\geq c$ at $x$ , (first for $x$ sufficiently close to $\zeta$ and then by
Harnack for $|x-(|\leq R)$ .

Thus, since $K$ is of zero harmonic measure for $\mathbb{R}^{d}\backslash \Phi$ (Dahlberg’s theorem),
$K$ is also of zero harmonic measure in $\Omega\backslash \Phi$ and

$p(x)\geq c\omega(x\cdot, \Phi;\Omega\backslash \Phi)\geq c\omega(x;K;\Omega)$ (4.2)

by the maximum principle and the definition of harmonic measure. But
since the greatest harmonic minorant of $p$ in $\Omega$ must be zero it follows that
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$\omega^{\Omega}(K)=0$ which is a contradiction. $\square$

B. Second case : The compact set $K$ has a zero lower capacitary density
at $\omega- a.e$ . $\zeta\in K$ (otherwise we are easily reduced to the first case).

In this case, we may reduce ourselves to the case where $H_{d-1}(E)=0$ the
lower capacitary density of $E$ vanishes everywhere. $R_{h_{\zeta}}^{C_{\zeta}^{+}}\neq h_{\zeta}$ for all $\zeta\in K$ ,
$K\subset E$ and $\omega(K)>0$ .

Then as already seen in section 2 (case B)-and using similar $notations-a$
point $\zeta\in E$ is necessarily simple and for each $\zeta\in E$ there are arbitrarily
small $r$ such that $R_{h_{\zeta}}^{B_{(,r}^{+}}\geq Ch_{\zeta}$ out of $T_{\zeta,r}$ (using the relation $R_{h_{(}}^{B_{\zeta,r}^{+}}(A_{()r}^{-})\geq$

$ch_{\zeta}(A_{(,r}^{-})$ and then the boundary Harnack principle).

So, we get $R_{h_{(}}^{C_{\zeta}^{+}}\geq Ch_{(}$ in $\Omega$ , which is a contradiction when $\zeta\in K$ . $\square$

5 Two open problems

1 $)$ The above does not answer the following very natural question for the
$d=2$ case. Consider the Brownian motion $X=\{X_{t}\}_{0\leq t<S}$ in a planar
Lipschitz Denjoy domain $\Omega=\mathbb{C}\backslash E$ starting from a point $z_{0}$ in $\Omega$ and
conditioned to exit from $\Omega$ at some simple boundary point $(\in E$ . Let
$\{\theta_{t}\}_{t<S}$ be the continuous determination of the argument of $\{X_{t}-\zeta\}_{0\leq t<S}$

with say $0\leq\theta_{0}<2\pi$ . Is it true that for $\omega^{\Omega}$ almost every $\zeta,$ $\lim\sup_{t\uparrow S}\theta_{t}=$

$+\infty a.s$ . ?

Note that this is obviously true when $\Omega$ is symmetric w.r. to $x_{2}=0$ (the
flat case)-using a simple Borel-Cantelli argument-. We remark also that it
suffices to solve the question when $H_{1}(E)=0$ .
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2 $)$ Another obvious question is: does Bishop) $s$ theorem 3 in [7] extends to
Lipschitz Denjoy domains in the plane $l$ namely does the Burdzy-Lyons
conjecture (see [7]) for a compact $E\subset \mathbb{C}$ with $\dim(E)<1$ holds when
$\Omega=\mathbb{C}\backslash E$ is a Lipschitz Denjoy domain in $\mathbb{C}$ ?
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