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ABSTRACT. We determine the possible $mod 2$ cohomology algebra of orbit
spaces of free involutions on finitistic $mod 2$ cohomology lens spaces and
projective spaces. We also give applications to $Z_{2}$-equivariant maps from
spheres to such spaces. Outlines of proofs are given and the details will
appear elsewhere.

1. INTRODUCTION

Let $G$ be a group acting continuously on a space $X$ . Then there are two
associated spaces, narnely, the fixed point set and the orbit space. It has
always been one of the basic problems in topological transformation groups
to determine these two associated spaces. Determining these two associated
spaces up to topological or homotopy type is often difficult and hence we try
to determine the (co)homological type. The pioneering result of Smith [31],
determining fixed point sets up to homology of prime periodic maps on homol-
ogy spheres, was the first in this direction. More explicit relations between the
space, the fixed point $set_{r}$ and the orbit space were obtained by Floyd [10].

From now onwards, our focus will be on orbit spaces. One of the most famous
conjectures in this direction was posed by Montgomery in 1950. Montgomery
conjectured that:
For any action of a compact Lie group $G$ on $\mathbb{R}^{n}$ , the orbit space $\mathbb{R}^{n}/G$ is
contractible.
The conjecture was reformulated by Conner [5] and is often called as the Con-
ner conjecture. Even for a well understood space such as $\mathbb{R}^{n}$ , it took more
than 25 years to prove the above conjecture. It was due to work of Conner [5],
Hsiangs [13, 14], Mostow [21] and finally that of Oliver [30], that the conjecture
was proved in 1976. For spheres the orbit spaces of free actions of finite groups
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have been studied extensively by Livesay [19], Rice [23], Ritter [24], Rubinstein
[26] and many others. However, very little is known if the space is a compact
manifold other than a sphere. Myers [22] determined the orbit spaces of free
involutions on three dimensional lens spaces. Tao [29] determined the orbit
spaces of free involutions on $S^{1}\cross S^{2}$ . Ritter [25] extended the results of Tao
to free actions of cyclic groups of order $2^{n}$ . Recently Dotzel and others [9]
determined completely the cohomology algebra of orbit spaces of free $Z_{p}(p$

prime) and $S^{1}$ actions on cohomology product of two spheres. Similar results
for free involutions on cohomology projective spaces were obtained in [27].

In his study of fixed point theory, Swan [32] introduced a class of spaces
known as finitistic spaces. A paracompact Hausdorff space $X$ is said to be
finitistic if its every open covering has a finite dimensional open refinement.
Here the dimension of a covering is one less than the maximum number of
members of the covering which intersect non-trivially. It is a large class of
spaces including all compact Hausdorff spaces and all paracompact spaces of
finite covering dimension. Bredon realized that the class of finitistic spaces
was the most suitable for studying topological transformation groups and his
book $[$ 3] contains an excellent account of results in this direction. Finitistic
spaces behave nicely under group actions. More precisely, if $G$ is a compact
Lie group acting continuously on a space $X$ , then the space $X$ is finitistic if
and only if the orbit space $X/G$ is finitistic [7, 8]. Our results are also for
finitistic spaces.

Recall that an involution on a topological space $X$ is a continuous action of
the cyclic group $G=Z_{2}$ on $X$ . In this note, we present some results on the mod
2 cohomology of orbit spaces of frec involutions on finitistic $mod 2$ cohomology
lens spaces and projective spaces. In Section 2, we briefly summarize the tools
used in our work. In Section 3, we give examples of free involutions on lens
spaces and projective spaces. In Section 4, we state our main results. In
Section 5, we give applications to $Z_{2}$-equivariant maps from spheres to such
spaces. We end this note with some concluding remarks in Section 6. Detailed
proofs of the results presented here will appear elsewhere [28].

The author would like to thank Tomohiro Kawakami for inviting him and
for encouraging him to write this announcement paper for the proceedings
of the conference ( $(\ulcorner Ransformation$ Groups from a New Viewpoint” held at
the Research Institute for Mathematical Sciences, Kyoto University (Japan),
during the period 17-20 August, 2009. The author would also like to thank
the Kyoto University for the hospitality during the above period.

16



INVOLUTIONS ON COHOMOLOGY LENS SPACES AND PROJECTIVE SPACES

2. PRELIMINARIES

Throughout we will use \v{C}ech cohomology. It is a well known fact that
this is the most suitable cohomology for studying the cohomology theory of
topological transformation groups on general spaces. Let $G$ be a group and $X$

be a G-space. Let
$Garrow E_{G}arrow B_{G}$

be the universal principal G-bundle. Consider the diagonal action of $G$ on
$X\cross E_{G}$ . Let

$X_{G}=(X\cross E_{G})/G$

be the orbit space of the diagonal action on $X\cross E_{G}$ . Then the projection
$X\cross E_{G}arrow E_{G}$ is G-equivariant and gives a fibration

$Xarrow X_{G}arrow B_{G}$

called the Borel fibration [4, Chapter IV]. Borel defined the equivariant coho-
mology of the G-space $X$ to be any fixed cohomology (\v{C}ech cohomology in
our case) of $X_{G}$ . Our main tool is the Leray spectral sequence associated to
the Borel fibration $Xarrow X_{G}arrow B_{G}$ given by the following proposition.

Proposition 2.1. [20, Theorem 5.2] Let $G=Z_{2}$ act on a space $X$ and
$X\llcornerarrow X_{G}arrow B_{G}$ be the associated $Bo7^{\cdot}elfib_{7}\cdot atio\gamma\iota$ . $The7ltf\iota e7^{\cdot}e$ is a first
quadrant spectral sequence of algebras $\{E_{r}^{**}, d_{r}\}$ , converging to $H^{*}(X_{G};Z_{2})$ as
an algebra, with

$E_{2}^{kl})=H^{k}(B_{G};\mathcal{H}^{l}(X;Z_{2}))$ ,

the cohomology of the base $B_{G}$ with locally constant coefficients $\mathcal{H}^{l}(X\cdot, Z_{2})$

twisted by a canonical action of $\pi_{1}(B_{G})$

Let $h:X_{G}arrow X/G$ be the map induced by the G-equivariant projection
$X\cross E_{G}arrow X$ . Then the following is true.

Proposition 2.2. [3, Chapter VII, Proposition 1.1] Let $G=Z_{2}$ act freely on
a finitistic space X. Then

$h^{*}$ : $H^{*}(X/G;Z_{2})arrow^{\cong}H^{*}(X_{G};Z_{2})$ .

An action of a group on a space induces an action on the cohomology of the
space. This induced action plays an important role in the cohomology theory of
transformation groups. For $Z_{2}$-actions on finitistic spaces the following result
is true.

Proposition 2.3. [3, Chapter VII, Theorem 1.6] Let $G=Z_{2}$ act freely on a
finitistic space X. Suppose that $\sum_{i\geq 0}$ rank $(H^{i}(X;Z_{2}))<\infty$ and the induced
action on $H^{*}(X;Z_{2})$ is trivial, then the Leray spectral sequence associated to
$Xrightarrow X_{G}arrow B_{G}$ do not degenerate.
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3. FREE INVOLUTIONS ON LENS SPACES AND PROJECTIVE SPACES

Lens Spaces. These are odd dimensional spherical space forms described as
follows. Let $p\geq 2$ be a positive integer and $q_{1},$ $q_{2},$

$\ldots,$
$q_{m}$ be integers coprime

to $p$ , where $m\geq 1$ . Let $S^{2m-1}\subset \mathbb{C}^{m}$ be the unit sphere and let $\iota^{2}=-1$ . Then
the map

$(z_{1}, \ldots, z_{m})\mapsto(e^{\frac{2\pi q}{p}\perp}z_{1}, \ldots, e^{\frac{2\pi\iota\eta m}{p}}z_{m})$

defines a free action of the cyclic group $Z_{p}$ on $S^{2m-1}$ . The orbit space is
called as lens space (also called as generalized lens space) and is denoted by
$L_{p}^{2m-1}(q_{1}, \ldots, q_{m})$ . It is a compact Hausdorff orientable manifold of dimension
$2m-1$ . Lens spaces are well understood and their homology groups can be eas-
ily computed using cell decomposition. They are important examples of spaces
with finite fundamental group and $\pi_{1}(L_{p}^{2m-1}(q_{1}, \ldots, q_{m}))=Z_{p}$ . The three di-
mensional lens spaces are of great importance and they appear frequently in
works concerning three manifolds, surgery and knot theory. They are the first
known examples of three manifolds which are not determined by their homol-
ogy and fundamental group alone. From now onwards, for convenience, we
write $L_{p}^{2m-1}(q)$ for $L_{p}^{2m-1}(q_{1}, \ldots, q_{m})$ .

We now construct a free involution on the lens space $L_{p}^{2}-1(q)$ . Let $q_{1},$
$\ldots,$

$q_{m}$

be odd integers coprime to $p$ . Consider the map $\mathbb{C}^{m}arrow \mathbb{C}^{m}$ given by

$(z_{1}, \ldots, z_{m})\mapsto(p$ .

This map commutes with the $Z_{p}$-action on $S^{2m-1}$ defining the lens sp $\subset’\iota ce$ and
hence descends to a map

$\alpha:L_{p}^{2m-1}(q)arrow L_{p}^{2m-1}(q)$

such that $\alpha^{2}=$ identity. Thus $\alpha$ is an involution. Denote an element of
$L_{p}^{2m-1}(q)$ by $[z]$ for $z=(z_{1}, \ldots, z_{m})\in S^{2m-1}$ . If $\alpha([z])=[z]$ , then

$(e^{\frac{2\pi\iota q}{2\rho}}z_{1}, \ldots, e^{\underline{2\pi}_{2\rho}}\iota z_{m})=(e\Delta nL\frac{2\pi\iota kq_{1}}{p}z_{1},$

$\ldots,$

$e^{\underline{2\pi}}t\mathcal{P}kRzn_{Z_{m})}$

for some integer $k$ . Let 1 $\leq i\leq m$ be an integer such that $z_{i}\neq 0$ , then
$e^{\frac{2\pi\iota q}{2\rho}}z_{i}=e^{\frac{2\pi\prime kq}{p}}z_{i}$ and hence $e^{\frac{2\pi\iota q_{i}}{2p}}=e^{\frac{2\pi\iota kq}{\rho}}$ This implies

$\frac{q_{i}}{2p}-\frac{kq_{i}}{p}=\frac{q_{i}(1-2k)}{2p}$

is an integer, a contradiction. Hence the involution $\alpha$ is free. Note that the
orbit space of the above involution is $L_{2p}^{2m-1}(q)$ .

Real Projective Spaces. Observe that $L_{2}^{2m-1}(q)=\mathbb{R}P^{2m-1}$ , the odd di-
mensional real projective space. Recall that $\mathbb{R}P^{2m-1}$ is the orbit space of the
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antipodal involution on $S^{2m-1}$ given by
$(x_{1},$ $x_{2},$

$\ldots,$ $X_{2m-1},$ $x_{2m})\mapsto(-x_{1},$ $-x_{2},$ $\ldots,$ $-x_{2m-1},$ $-x_{2m})$ .

If we denote an element of $\mathbb{R}P^{2m-1}$ by $[x_{1}, x_{2}, \ldots, x_{2m-1}, x_{2m}]$ , then the map
$[x_{1}, x_{2}, \ldots, x_{2m-1}, x_{2m}]\mapsto[-x_{2}, x_{1}, \ldots, -x_{2m}, x_{2m-1}]$

defines a free involution on $\mathbb{R}P^{2m-1}$ . Infact this is the involution $\alpha$ for $p=2$ .

Complex Projective Spaces. Similarly, the complex projective space $\mathbb{C}P^{2m-1}$

admit free involutions. Recall that $\mathbb{C}P^{2m-1}$ is the orbit space of the free $S^{1}-$

action on $S^{4m-1}$ given by
$(z_{1}, z_{2}, \ldots, z_{2m-1}, z_{2m})\mapsto(\zeta z_{1},$ $(z_{2}, \ldots, \zeta z_{2m-1}, \zeta z_{2m})$ for $\zeta\in S^{1}$ .

If we denote an element of $\mathbb{C}P^{2m-1}$ by $[z_{1}, z_{2}, \ldots, z_{2m-1}, z_{2m}]$ , then the map
$[z_{1}, z_{2}, \ldots, z_{2m-1}, z_{2m}]\mapsto[-\overline{z}_{2}, \overline{z}_{1}, \ldots, -\overline{z}_{2m}, \overline{z}_{2m-1}]$

defines an involution on $\mathbb{C}P^{2m-1}$ . If
$[z_{1}, z_{2}, \ldots, z_{2m-1}, z_{2m}]=[-\overline{z}_{2},\overline{z}_{1}, \ldots, -\overline{z}_{2m}, \overline{z}_{2m-1}]$ ,

then
$(\lambda z_{1}, \lambda z_{2}, \ldots, \lambda z_{2m-1}, \lambda z_{2m})=(-\overline{z}_{2}, \overline{z}_{1}, \ldots, -\overline{z}_{2m},\overline{z}_{2m-1})$

for some $\lambda\in S^{1}$ , which gives $z_{1}=z_{2}=\ldots=z_{2m-1}=z_{2m}=0$ , a contradiction.
Hence the involution is free.

4. ORBIT SPACES OF FREE INVOLUTIONS ON LENS SPACES AND
PROJECTIVE SPACES

Before proceeding further, we set some notations. If $X$ and $Y$ are spaces,
then $X\simeq 2Y$ mean that $X$ and $Y$ have isomorphic $mod 2$ cohomology algebras.
If $X$ is a space such that $X\simeq 2L_{p}^{2m-1}(q)$ , we say that $X$ is a $mod 2$ cohomology
lens space and refer to dimension of $L_{p}^{2m-1}(q)$ as its dimension.

Involutions on lens spaces have been studied in detail, particularly on three
dimensional lens spaces [11, 15, 16, 17, 22]. Hodgson and Rubinstein [11]
obtained a classification of smooth involutions on three dimensional lens spaces
having one dimensional fixed point sets. Kim [17] obtained a classification of
free involutions on three dimensional lens spaces whose orbit spaces contains
Klein bottles. Kim [16] showed that, if $p=4k$ for some $k$ , then the orbit space
of any sense preserving free involution on $L_{p}^{3}(1, q)$ is the lens space $L_{2p}^{3}(1, q^{J})$ ,
where $q^{J}q\equiv\pm 1$ or $q^{J}\equiv\pm qmod p$ . Here an involution is sense preserving if
the induced map on $H_{1}(L_{p}^{3}(1, q);Z)$ is the identity map. Myers [22] showed
that every free involution on a three dimensional lens space is conjugate to an
orthogonal free involution, in which case, the orbit space is again a lens space.
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The work in this note is motivated by the work of Kim [16] and Myers [22].
We consider free involutions on finitistic $mod 2$ cohomology lens spaces and
determine the possible $mod 2$ cohomology algebra of orbit spaces. Note that
the lens space $L_{p}^{2m-1}(q)$ is a compact Hausdorff space and hence is finitistic.
If $X/G$ denotes the orbit space, then we prove the following theorem.

Theorem 4.1. [28, Main Theorem] Let $G=Z_{2}$ act freely on a finitistic space
$X\simeq 2L_{p}^{2m-1}(q)$ . If 4 $(m_{f}$ then $H^{*}(X/G;Z_{2})$ is isomorphic to one of the
following gmded algebras:

(1) $Z_{2}[x]/\langle x^{2m}\rangle$ ,
where $deg(x)=1$ .

(2) $Z_{2}[x, y]/\{x^{2}, y^{m}\}$ ,
where $deg(x)=1$ and $deg(y)=2$ .

(3) $Z_{2}[x, y, z]/\langle x^{4},$ $y^{2},$ $z^{\frac{m}{2}},$ $x^{2}y-\lambda x^{3}\rangle$ ,
where $deg(x)=1,$ $deg(y)=1_{f}deg(z)=4,$ $\lambda\in Z_{2}$ , $m>2$ is even.

Proof. The proof involves computations in the Leray spectral sequence of Pro-
postion 2.1 and usage of equivariant cohomology along with Propositions 2.2
and 2.3. $\square$

Since $L_{2}^{2m-1}(q)=\mathbb{R}P^{2m-1}$ , as a side product of above computations, we
determine the $mod 2$ cohomology algebra of orbit spaces of free involutions on
$mod 2$ cohomology real projective spaces without any condition on $m$ . More
precisely, we prove the following.

Theorem 4.2. [28, Proposition 5.2] Let $G=Z_{2}$ act freely on a finitistic space
$X\simeq 2\mathbb{R}P^{2m-1}$ . Then

$H^{*}(X/G;Z_{2})\cong Z_{2}[x, y]/\langle x^{2},$ $y^{m}\rangle$ ,

where $deg(x)=1$ and $deg(y)=2$ .

Similar computations yield the following result for the complex case, which
was first obtained in [27].

Theorem 4.3. [27, Theorem 1] Let $G=Z_{2}$ act freely on a finitistic space
$X\simeq 2\mathbb{C}P^{2m-1}$ . Then

$H^{*}(X/G;Z_{2})\cong Z_{2}[x, y]/\{x^{3},$ $y^{m}\rangle$ ,

where $deg(x)=1$ and $deg(y)=4$ .

Remark 4.4. It is easy to see that, when $n$ is even, then $Z_{2}$ cannot act freely
on a finitistic space $X\simeq 2\mathbb{R}P^{n}$ or $\mathbb{C}P^{n}$ . For, if $n$ is even, then the Floyd’s
Euler characteristic formula [3, p.145]

$\chi(X)+\chi(X^{Z_{2}})=2\chi(X/Z_{2})$

gives a contradiction.
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Remark 4.5. Let $X\simeq 2\mathbb{H}P^{n}$ be a finitistic space, where $\mathbb{H}P^{n}$ is the quaternionic
projective space. For $n=1,$ $X\simeq 2S^{4}$ , which is well studied. And for $n\geq 2$

there is no free involution on $X$ , which follows from the stronger fact that such
spaces have the fixed point property.

Remark 4.6. Let $X\simeq 2\mathbb{O}P^{2}$ be a finitistic space, where $\mathbb{O}P^{2}$ is the Cayley
projective plane. Just as in Remark 4.4, it follows from the Floyd’s Euler
characteristic formula that there is no free involution on $X$ .

5. APPLICATION TO $Z_{2}$ -EQUIVARIANT MAPS

Let $S^{k}$ be the unit k-sphere equipped with the antipodal involution and $X$

be a paracompact Hausdorff space with a fixed free involution. Conner and
Floyd [6] proposed an invariant of the involution, which they called the index
of the involution and defined as

ind(X) $= \max$ { $k|$ there exist a $Z_{2}$-equivariant map $S^{k}arrow X$ }.
It is natural to look for a purely cohomological criteria to study the above
invariant. The best known and most easily managed cohomology class are the
charactcristic classes with coefficients in $Z_{2}$ . Generalizing the Yang’s index
[33], Conner and Floyd defined

$co- ind_{Z_{2}}(X)=\max\{k|w^{k}\neq 0\}$ ,

where $w\in H^{1}(X/G;Z_{2})$ is the Whitney class of the principal G-bundle

$Xarrow X/G$ .

Since X is paracompact Hausdorff, we can take a classifying map

$c:X/Garrow B_{G}$

for the principal G-bundle $Xarrow X/G$ . The image of the Whitney class of the
universal principal G-bundle $Garrow E_{G}arrow B_{G}$ under the classifying map $c^{*}$ is
the Whitney class of the principal G-bundle $Xarrow X/G$ .

If $X\simeq 2L_{p}^{2m-1}(q)$ is a finitistic space with a free involution, then our com-
putations determine the Whitney class explicitly and also $co- ind_{Z_{2}}(X)$ . Since
$co- ind_{Z_{2}}(S^{k})=k$ , by [6, (4.5)], we have

ind(X) $\leq co- ind_{Z_{2}}(X)$ .

As a consequence we have the following result.

Proposition 5.1. [28, Theorem 6.1] Let $X\simeq 2L_{p}^{2m-1}(q)$ be a finitistic space
with a free involution. If 4 $(m$ , then there does not exist any $Z_{2}$ -equivariant
map from $S^{k}arrow X$ for $k\geq 2$ .
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The above result extends a result of Jaworowski [15] (proved for lens spaces)
to cohomology lens spaces. For cohomology real projective spaces we have the
following result without any condition on $m$ .

Proposition 5.2. [28, Theorem 6.1] Let $X\simeq 2\mathbb{R}P^{2m-1}$ be a finitistic space
with a free involution. Then there does not exist any $Z_{2}$ -equivariant map from
$S^{k}arrow X$ for $k\geq 2$ .

For cohomology complex projective spaces we deduce the following result,
which was first obtained in [27].

Proposition 5.3. [27, Corollary] Let $X\simeq 2\mathbb{C}P^{2m-1}$ be a finitistic space with
a free involution. Then there does not exist any $Z_{2}$ -equivariant map from
$S^{k}arrow X$ for $k\geq 3$ .

6. SOME CONCLUDING REMARKS

Let $F$ be either the field $\mathbb{R}\cap fre$al numbers or the field $\mathbb{C}$ of complex numbers.
Let $FG_{n,k}$ be the Grassmann manifold of all k-dimensional vector subspaces in
$F^{n}$ . In particular, $\mathbb{R}G_{n,1}=\mathbb{R}P^{n-1}$ , the real projective space of dimension $n-1$ .
Similarly, $\mathbb{C}G_{n,1}=\mathbb{C}P^{n-1}$ , the complex projective space of complex dimension
$n-1$ . The Grassmann manifolds are important objects of study in topology
and geometry. It is interesting to note that they admit free involutions. For
example, if $n=2k$ , then the map $FG_{n,k}arrow FG_{n,k}$ sending any k-dimensional
vector subspace in $F^{n}$ to its orthogonal complement, defines a free involution
on $FG_{n,k}$ . See [1] for some more examples of free involutions on $FG_{n,k}$ for $n$

even. Since, the Grassmann manifolds are generalizations of projective spaces,
it is tempting to ask the following question:

Question. Can we describe the cohomology algebm of orbit spaces of free
involutions on cohomology Grassmann manifolds?

Though the cohomology algebra of Grassmann manifolds is well understood,
the computations in spectral sequences seems to be complicated in this case,
since the induced action in the cohomology may not be trivial.

There are situations in topology, where one needs to obtain cohomological
information of the total space of a fiber bundle if the cohomological information
of its fiber is given. In general, it is difficult to obtain information about
the total space of a fiber bundle. However, for certain types of fibers, some
results are known [2, 12, 18]. Horanska and Korba\v{s} [12, 18] have studied this
problem for fiber bundles with Grassmann manifolds as fibers. Consider fiber
bundles with cohomology Grassmann manifolds as fibers. Let the bundles be
equipped with fiber preserving free involutions. With an answer to the above
question, one would be able to describe the equivariant cohomology of such
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fiber bundles. This would extend the results of Horansk\’a and Korba\v{s} to the
equivariant setting.
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