SMITH SET FOR A NONGAP OLIVER GROUP

九州大学大学院芸術工学研究院 角 俊雄（Toshio Sumi）
Faculty of Design
Kyushu University

1．Introduction

We study the Smith problem that two tangential representations are isomorphic or not for a smooth action on a homotopy sphere with exactly two fixed points（［11］）．Two real G－modules U and V are called Smith equivalent if there exists a smooth action of G on a sphere Σ such that $S^{G}=\{x, y\}$ for two points x and y at which $T_{x}(\Sigma) \cong U$ and $T_{y}(\Sigma) \cong V$ as real G－modules which is a finite dimensional real vector space with a linear G－action．Let $\operatorname{Sm}(G)$ ，called a Smith set，be the subset of the real representation ring $R O(G)$ of G consisting of the differences $U-V$ of real G－modules U and V which are Smith equivalent．In many groups，Smith equivalent modules are not isomorphic．Let $\mathcal{P}(G)$ be the set of subgroups of G of prime power order，possibly 1 ．We also define a subset $\operatorname{CSm}(G)$ of $\operatorname{Sm}(G)$ consisting of the differences $U-V \in \operatorname{Sm}(G)$ of real G－modules U and V such that for the sphere Σ appearing in the definition of Smith equivalence of U and V satisfies that Σ^{P} is connected for every $P \in \mathcal{P}(G)$ ．For any $U-V \in \operatorname{CSm}(G), G$－modules U and V are $\mathcal{P}(G)$－matched pair，that is，

$$
\operatorname{Res}_{P}^{G} U \cong \operatorname{Res}_{P}^{G} V
$$

for any subgroup P of G of prime power order，possibly 1 ．Let $R O(G)$ be the real representation ring and we denote by $R O(G)_{\mathcal{P}(G)}$ the subset of $R O(G)$ consisting the differences of real $\mathcal{P}(G)$－ matched pairs．Then $\operatorname{CSm}(G)$ is a subset of $R O(G)_{\mathcal{P}(G)}$ ．

Proposition 1．1．

$$
\begin{cases}0 \in \operatorname{CSm}(G) & \text { if } G \text { is not of prime power order } \\ \operatorname{CSm}(G)=\varnothing & \text { if } G \text { is of prime power order } .\end{cases}
$$

In this paper，we discuss the Smith problem for an Oliver nongap group．Throughout this paper we assume a group is finite．

2．$R O(G)_{\mathcal{P}(G)}$ and induced virtual modules

We denote by $\pi(G)$ the set of all primes dividing the order $|G|$ of G ．For a prime p ，we denote by $O^{p}(G)$ ，called the Dress subgroup of type p ，the smallest normal subgroup of G with index a power of p ：

$$
O^{p}(G)=\bigcap_{L \triangleleft G,[G: L]=p^{*} \geq 1} L .
$$

Note that $O^{p}(G)=G$ if $p \notin \pi(G)$ ．Let $\mathcal{L}(G)$ be the set of subgroups of G containing some Dress subgroup．

[^0]```
Let
\[
L O(G):=\left(R O(G)_{\mathcal{P}(G)}\right)^{\mathcal{L}(G)}=\bigcap_{p \in \pi(G)} \operatorname{ker}\left(\mathrm{fix}^{O^{p}(G)}: R O(G) \rightarrow R O\left(G / O^{p}(G)\right) \cap R O(G)_{\mathcal{P}(G)} .\right.
\]
```

A group $G$ is called Oliver if there is no series of subgroups

$$
P \triangleleft H \triangleleft G
$$

such that $P$ and $G / H$ are of prime power order and $H / P$ is cyclic. An Oliver group can be characterized as a group having a one fixed action on a sphere ([2]). A group $G$ is called gap if there is a real $G$-module $W$ such that $V^{O^{p}(G)}=0$ for any prime $p$ and

$$
\operatorname{dim} V^{P}>2 \operatorname{dim} V^{H}
$$

for all pairs $(P, H)$ of subgroups of $G$ which satisfy that $P$ is of prime power order and $P<H$. If $G$ is a gap Oliver group, then $\operatorname{LO}(G)$ is a subset of $\operatorname{CSm}(G)$ ([8]). We remark that $\operatorname{CSm}(G)$ is not a subset of $L O(G)$ in general (cf. [3]).

For an element not of prime power order, we call it an NPP element. We denote by $a_{G}$ the number of real conjugacy classes of NPP elements of $G$.
Proposition 2.1. $R O(G)_{\mathcal{P}_{( }(G)}$ is a free abelian subgroup of $R O(G)$ with rank $a_{G}$.
For a complex $G$-module $\xi$ we denote by $\bar{\xi}$ whose character is the complex conjugate of the character of $\xi$.
Proposition 2.2. Let $p_{1}, p_{2}, \ldots, p_{k}$ be distinct primes each other and let $a_{1}, a_{2}, \ldots, a_{k}$ be positive integers. Put $G=C_{p_{1}^{a_{1}}} \times C_{p_{2}^{a_{2}}} \times \cdots \times C_{p_{k}^{a_{k}}}$, where $C_{p_{j}^{a_{j}}}$ is a cyclic group of order $p_{j}^{a_{j}}$. Then $R O(G)_{\mathcal{P}(G)}$ is spanned by the set of virtual real $G$-modules having characters as same as

$$
\bigotimes_{j}\left(\mathbb{C}-\xi_{j}\right)+\bigotimes_{j}\left(\mathbb{C}-\bar{\xi}_{j}\right)
$$

where $\xi_{j}$ 's are irreducible complex $C_{p_{j}}{ }_{j}$-modules or zero and two of them are nonzero at least. In particular the rank of $R O(G)_{\mathcal{P}(G)}$ is equal to $\left(\left(\prod_{j} p_{j}^{a_{j}}-1\right)-\sum_{j}\left(p_{j}^{a_{j}}-1\right)\right) / 2$.

This proposition can be extend to nilpotent groups instead of cyclic groups.
Theorem 2.3. Let $p_{1}, p_{2}, \ldots, p_{k}$ be distinct primes each other and $P_{j}$ a nontrivial $p_{j}$-group for each $j$. Put $G=P_{1} \times P_{2} \times \cdots \times P_{k}$. Then the set of virtual real $G$-modules having characters as same as

$$
\bigotimes_{j}\left(\operatorname{dim}_{\mathbb{C}}\left(\xi_{j}\right) \mathbb{C}-\xi_{j}\right)+\bigotimes_{j}\left(\operatorname{dim}_{\mathbb{C}}\left(\xi_{j}\right) \mathbb{C}-\bar{\xi}_{j}\right)
$$

where $\xi_{j}$ 's are irreducible complex $P_{j}$-modules or zero and two of them are nonzero at least, become a basis of $R O(G)_{\mathcal{P}(G)}$. In particular the rank of $R O(G)_{\mathcal{P}(G)}$ is equal to $\left(\left(\prod_{j} q_{j}-1\right)-\right.$ $\left.\sum_{j}\left(q_{j}-1\right)\right) / 2$, where $q_{j}$ is the number of irreducible complex $P_{j}$-modules.
Theorem 2.4. Let $p_{1}, p_{2}, \ldots, p_{k}$ be distinct primes each other, $P$ a nontrivial $p_{1}$-group and $C_{j} a$ nontrivial cyclic $p_{j}$-group for each $j \geq 2$. Put $G=P \times C_{2} \times \cdots \times C_{k}$ which is an elementary group. Then $\operatorname{RO}(G)_{\mathcal{P}(G)}$ is spanned by the set of virtual real $G$-modules $\operatorname{Ind}_{E}^{G} \eta$ for subgroups $E$ and for virtual real $E$-modules $\eta$ whose character is same as one of

$$
\bigotimes_{j}\left(\mathbb{C}-\xi_{j}\right)+\bigotimes_{j}\left(\mathbb{C}-\bar{\xi}_{j}\right)
$$

where $\xi_{j}$ 's are 1-dimensional complex $p_{j}$-modules or zero and two of them are nonzero at least.

We denote by $\mathfrak{B}(G)$ the set of all virtual real $G$-modules as in Theorem 2.4 for an elementary group $G$.
$\operatorname{CSm}(G)$ is a subset of

$$
R O(G)_{\mathcal{P}(G)}^{|G\rangle}=\operatorname{ker}\left(\mathrm{fix}^{G}: R O(G) \rightarrow R O(G / G)\right) \cap R O(G)_{\mathcal{P}(G)}
$$

For a nilpotent group $G$, by fixing $X_{0} \in \mathfrak{B}(G)$, the set consisting of $X-X_{0}$ for $X \in \mathfrak{B}(G), X \neq X_{0}$ spans $R O(G)_{\mathcal{P}(G)}^{\{G\}}$.

Artin's induction theorem gives the following.
Theorem 2.5. The set

$$
\bigcup_{C}\left\{\operatorname{Ind}_{C}^{G} \eta \mid \eta \in \mathfrak{B}(C)\right\}
$$

where $C$ runs over all representative of conjugacy classes of cyclic subgroups of $G$ not of prime power order spans the vector space $\mathbb{Q} \otimes_{\mathbb{Z}} R O(G)_{\mathcal{P}(G)}$ over the rational number field $\mathbb{Q}$. The set of differences of virtual modules of the above set spans $\mathbb{Q} \otimes_{\mathbb{Z}} R O(G)_{\mathcal{P}(G)}^{\{G\}}$.

The following theorem is related to Brauer's induction theorem.
Theorem 2.6. An virtual G-module $R O(G)_{\mathcal{P}(G)}$ is described as a linear combination (with integer coefficients) of virtual modules of

$$
\bigcup_{E}\left\{\operatorname{Ind}_{E}^{G} \eta \mid \eta \in \mathfrak{B}(E)\right\}
$$

where $E$ runs over all representatives of conjugacy classes of elementary subgroups $E$ of $G$. Furthermore, $R O(G)_{\mathcal{P}(G)}^{|G|}$ is described as a linear combination (with integer coefficients) of differences of the above virtual modules.

Let $\overline{\mathrm{NPP}}(G)$ be the set of all representatives of real conjugacy classes of NPP elements of $G$. For a normal subgroup $N$ of $G$ and $g N \in G / N$ we denote by $a_{G, N}(g N)$ the number of elements of $f_{N}^{-1}(g N)$, where $f_{N}: \overline{\operatorname{NPP}}(G) \rightarrow G / N$ is a mapping induced by a canonical epimorphism $G \rightarrow$ $G / N$. It holds that

$$
a_{G}=\sum_{g N \in G / N} a_{G, N}(g N)
$$

For a normal subgroup $N$ of $G$ let

$$
R O(G)_{\mathcal{P}(G)}^{\{N\}}=\operatorname{ker}\left(\mathrm{fix}^{N}: R O(G) \rightarrow R O(G / N)\right) \cap R O(G)_{\mathcal{P}(G)}
$$

We denote by $G^{\text {nil }}$ the smallest normal subgroup of $G$ by which a quotient group of $G$ is nilpotent:

$$
G^{\text {nil }}=\bigcap_{p \in \pi(G)} O^{p}(G)
$$

Proposition 2.7. Let $p$ be a prime and $N$ a normal subgroup of $G$. The rank of $R O(G)_{\mathcal{P}(G)}^{\{N\}}$ is less than or equal to

$$
\sum_{g N \in G / N} \max \left(a_{G, N}(g N)-1,0\right)
$$

The rank of $L O(G)$ is greater than or equal to

$$
\sum_{\left.g G^{\mathrm{nil}} \in G / G^{\mathrm{nil}}\right)} \max \left(a_{G, G^{\text {nil }}}\left(g G^{\mathrm{nil}}\right)-1,0\right)
$$

and in particular if $G / G^{\text {nil }}$ is a p-group then the equality holds.

Theorem 2.8 ([4, Morimoto]). Let $G$ be a finite group. $\operatorname{Sm}(G) \subset R O(G)_{\mathcal{P}(G)}^{\left|G^{\prime 2}\right\rangle}$ where $G^{\prime 12}=$ $\cap_{[G: L] \leq 2} L$ is a normal subgroup of $G$.

Therefore, if $G / G^{\text {nil }}$ is an elementary abelian 2-group then $\operatorname{CSm}(G) \subset L O(G)$.
Theorem 2.9. Let $N$ be a normal subgroup of $G$. Then $\mathbb{Q} \otimes_{\mathrm{Z}} R O(G)_{\mathcal{P}(G)}^{[N]}$ is spanned by the set of virtual modules $X-Y$ such that

$$
X, Y \in \bigcup_{C}\left\{\operatorname{Ind}_{C}^{G} \eta \mid \eta \in \mathfrak{B}(C)\right\}
$$

with fix ${ }^{N}(X-Y)=0$ in $R O(G / N)$, where $C$ runs over all representative of conjugacy classes of cyclic subgroups of $G$ not of prime power order.
Theorem 2.10. Let $N$ be a normal subgroup of $G$. An virtual $G$-module $R O(G)_{\mathcal{P}(G)}^{[N]}$ is described as a linear combination (with integer coefficients) of virtual modules $X-Y$ such that

$$
X, Y \in \bigcup_{E}\left\{\operatorname{Ind}_{E}^{G} \eta \mid \eta \in \mathfrak{B}(E)\right\}
$$

with fix ${ }^{N}(X-Y)=0$ in $R O(G / N)$, where $E$ runs over all representatives of conjugacy classes of elementary subgroups $E$ of $G$.

## 3. Weak gap condition

We say that a smooth $G$-manifold $X$ satisfies the weak gap condition (WGC) if the conditions (WGC1)-(WGC4) all hold (cf. [5]).
(WGC1) $\operatorname{dim} X^{P} \geq 2 \operatorname{dim} X^{H}$ for every $P<H \leq G, P \in \mathcal{P}(G)$.
(WGC2) If $\operatorname{dim} X^{P}=2 \operatorname{dim} X^{H}$ for some $P<H \leq G, P \in \mathcal{P}(G)$, then $[H: P]=2, \operatorname{dim} X^{H}>$ $\operatorname{dim} X^{K}+1$ for every $H<K \leq G$, and $X^{H}$ is connected.
(WGC3) If $\operatorname{dim} X^{P}=2 \operatorname{dim} X^{H}$ for some $P<H \leq G, P \in \mathcal{P}(G)$, and $[H: P]=2$, then $X^{H}$ can be oriented in such a way that the map $g: X^{H} \rightarrow X^{H}$ is orientation preserving for any $g \in N_{G}(H)$.
(WGC4) If $\operatorname{dim} X^{P}=2 \operatorname{dim} X^{H}$ and $\operatorname{dim} X^{P}=2 \operatorname{dim} X^{H^{\prime}}$ for some $P<H, P<H^{\prime}, P \in \mathcal{P}(G)$, then the smallest subgroup $\left\langle H, H^{\prime}\right\rangle$ of $G$ containing $H$ and $H^{\prime}$ is not a large subgroup of $G$.
A real $G$-module $V$ is called $\mathcal{L}(G)$-free if $\operatorname{dim} V^{H}=0$ for each $H \in \mathcal{L}(G)$, which amounts to saying that $\operatorname{dim} V^{O^{p}(G)}=0$ for each prime $p \in \pi(G)$. For a finite group $G$, we define subgroups $W L O(G)$ of the free abelian group $L O(G)$ as follows.
$W L O(G)=\{U-V \in L O(G) \mid U$ and $V$ both satisfy the weak gap condition $\}$
A real $G$-module $W$ is called nonnegative if (WGC1) holds for $X=W$.
We denote by $V(G)$ as

$$
\mathbb{R}[G]_{\mathcal{L}(G)}=(\mathbb{R}[G]-\mathbb{R})-\bigoplus_{p \in \pi(G)}(\mathbb{R}[G]-\mathbb{R})^{o^{p}(G)}
$$

Theorem 3.2 in [2] implies the following proposition.
Proposition 3.1. Let $W$ be a real nonnegative $G$-module. For $X=W \oplus V(G)$, (WGC2) holds if $G$ is a finite group with $\mathcal{P}(G) \cap \mathcal{L}(G)=\varnothing$ and and (WGC4) holds if $G$ is an Oliver group.
Theorem 3.2. For an Oliver group $G$, it holds that $W L O(G)$ is a subset of $\operatorname{CSm}(G)$.

More generally we obtain
Theorem 3.3. Let $G$ be an Oliver group and let $V_{1}, \ldots, V_{k}$ be real $G$-modules satisfying that $V_{i}-V_{j} \in W L O(G)$. Then there exist a real G-module $W$ and a smooth action on a sphere $\Sigma$ such that $\Sigma^{G}=\left\{x_{1}, \ldots, x_{k}\right\}$ and $V_{i} \oplus W$ is isomorphic to the tangential $G$-module $T_{x_{i}}(\Sigma)$ for any $i$.

## 4. $L O(G)$ vs $W L O(G)$

In this section we consider the difference between $L O(G)$ and $W L O(G)$. Note that if $G / G^{\text {nil }}$ is an elementary abelian 2-group then $W L O(G) \subset C S m(G) \subset L O(G)$.

We say that $G$ is a gap group if $G$ admits an $\mathcal{L}(G)$-free positive $G$-module $V$, that is, $\operatorname{dim} V^{O^{p}(G)}=$ 0 for any prime $p \in \pi(G)$ and $\operatorname{dim} V^{P}>2 \operatorname{dim} V^{H}$ for any pair $(P, H)$ of subgroups of $G$ with $P \in \mathcal{P}(G), P<H$.

Theorem 4.1. Let $G$ be a group with $\mathcal{P}(G) \cap \mathcal{L}(G)=\varnothing$. Suppose that for each $X \in L O(G)$ there are $\mathcal{L}(G)$-free nonnegative $G$-modules $U$ and $V$ such that $X=U-V$. For each subgroup $K$ of $G$ with $K>O^{2}(G),\left[K: O^{2}(G)\right]=2$, if all elements $x$ of $K \backslash O^{2}(G)$ of order 2 such that $C_{K}(x)$ is not a 2-group are not conjugate in $K$, then $K$ is a gap group.

Theorem 4.2. Let $G$ be an Oliver group. Let $U$ and $V$ be $\mathcal{L}(G)$-free nonnegative $G$-modules with $U-V \in R O(G)_{\mathcal{P}(G)}$. There are $\mathcal{L}(G)$-free $G$-modules $X$ and $Y$ such that they satisfy the weak gap condition and $U-V=X-Y$.

Thus we have immediately the following theorem.
Theorem 4.3. Let $G$ be an Oliver group. Suppose that for each subgroup $K$ of $G$ with $K>O^{2}(G)$, $\left[K: O^{2}(G)\right]=2$, if $K$ is not a gap group then all elements $x$ of $K \backslash O^{2}(G)$ of order 2 such that $C_{K}(x)$ is not a 2-group are conjugate in $G$. Then $L O(G) \subset \operatorname{CSm}(G)$. Furthermore, if $G / G^{\text {nil }}$ is an elementary abelian 2-group then $L O(G)=\operatorname{CSm}(G)$.

If $K$ is an Oliver group with $|K| \leq 2000$ and $\left[K: O^{2}(K)\right]=2$, then $K$ is a gap group or all elements $x$ of $K \backslash O^{2}(K)$ of order 2 such that $C_{K}(x)$ is not a 2 -group are conjugate in $K$. We have still no example of a group $G$ so that $W L O(G) \neq L O(G)$.

Let $H=D_{2 p_{1}} \times D_{2 p_{2}} \times \cdots \times D_{2 p_{r}}$ be a direct product group of dihedral groups $D_{2 p_{j}}$, where $p_{1}, \ldots, p_{r} \geq 1$ are odd integers. Then $G \times H$ is a nongap group if $G$ is a nongap group.

Theorem 4.4. Let $G$ be an Oliver group as in Theorem 4.3 and let $H$ be as above. It holds that $L O(G \times H)$ is a subset of $\operatorname{CSm}(G \times H)$. Furthermore if $G / G^{\text {nil }}$ is an elementary abelian 2-group, then $\operatorname{CSm}(G \times H)=L O(G \times H)$.

## 5. Profective General Linear Groups

We note that $P G L(2, q)$ is isomorphic to the dihedral group $D_{6}$ for $q=2$, the symmetric group $S_{4}$ for $q=3$, the alternating group $A_{5}$ for $q=4$, the symmetric group $S_{5}$ for $q=5$, and nonsolvable for $q \geq 4$. The group $\operatorname{PGL}(2, q)$ is isomorphic to $\operatorname{PSL}(2, q)$ if $q$ is a power of 2 . If $q \geq 5$ is odd, $P G L(2, q)$ has a perfect subgroup $P S L(2, q)$ with index 2 , which implies $[P G L(2, q)$ : $\left.O^{2}(\operatorname{PGL}(2, q))\right]=2$.

It is easy to see the rank of $L O(P G L(2, q))$. Note that $\operatorname{rank} L O(G)=\max \left(a_{G}-1,0\right)$ if $G$ is a perfect group.

Proposition 5.1. Suppose that $q$ is odd.

$$
\operatorname{rank} L O(P G L(2, q))= \begin{cases}0 & q=3,5,7 \\ a_{P G L(2, q)}-1 & q=9,17 \\ a_{P G L(2, q)}-2 & \text { otherwise }\end{cases}
$$

Remark 5.2. Suppose that $q$ is an odd prime power integer.
(1) $P G L(2, q)$ is not a gap group if and only if $q=3,5,7,9,17$.
(2) $P G L(2, q)$ is a Oliver group if and only if $q \geq 5$.
(3) $\operatorname{rank} L O(P G L(2, q))=a_{C_{q+1}}-1$ if $q=9,17$.
(4) $\operatorname{rank} L O(P G L(2, q))=a_{C_{q+1}}+a_{C_{q-1}}-2$ if $q \neq 3,5,7,9,17$.

Theorem 4.3 gives $\operatorname{CSm}(\operatorname{PGL}(2, q))=L O(P G L(2, q))$. Furthermore, we obtain the following.
Theorem 5.3. $\operatorname{Sm}(P G L(2, q))=L O(P G L(2, q))$.

## 6. Small Groups

In this section we discuss by viewing from the order of a Sylow 2-subgroup of an Oliver group. If $G$ is an Oliver group of odd order then $G$ is a gap group and $L O(G)$ is a subset of $\operatorname{CSm}(G)$.

Theorem 6.1. If $G$ is an Oliver group whose order is divisible by 2 not by 4 then $L O(G)$ is a subset of $\operatorname{CSm}(G)$.
Example 6.2. Let $K$ be a finite abelian group of odd order whose rank is greater than 2. Let $h$ be an automorphism on $K$ which sends $k \in K$ to it's inverse $k^{-1}$. Put $G=\langle h, K\rangle$. Then $G$ is an Oliver nongap group satisfying $\operatorname{CSm}(G)=L O(G)$.
Theorem 6.3. Let $N$ be a normal subgroup of $G$. Suppose that $a_{G} \leq a_{G, N}(N)+1$. The induction mapping $\operatorname{Ind}_{N}^{G}: L O(N) \otimes \mathbb{Q} \rightarrow L O(G) \otimes \mathbb{Q}$ is surjective.

From now on, we suppose that $G$ is a finite Oliver group, $\left[G: G^{\text {nil }}\right]=2$ and $a_{G} \geq 2$. Note that $a_{G, G^{\text {ni }}}\left(G \backslash G^{\text {nil }}\right)=a_{G}-a_{G, G^{\text {nil }}}\left(G^{\text {nil }}\right)$. The above theorem yields the following.

Theorem 6.4. If $a_{G} \leq a_{G, G^{\mathrm{nil}}}\left(G^{\mathrm{nil}}\right)+1$ then $L O(G)=W L O(G)=\operatorname{CSm}(G)$.
So, we are interesting in the case when $a_{G, G^{\text {nii }}}\left(G \backslash G^{\text {nil }}\right)=a_{G}-a_{G, G^{\text {nil }}}\left(G^{\text {nil }}\right) \geq 2$.
Let $\mathcal{F}$ be the set of isomorphism classes of finite Oliver nongap groups $K$ such that $4||K|$, $\left[K: K^{\text {nil }}\right]=2$, and $a_{K, K^{\text {nil }}}\left(K \backslash K^{\text {nil }}\right) \geq 2$. Note that $|G|$ is divisible by 8 if $|G|$ is divisible by 4 and less than or equal to 2000 . The set of all representatives of elements in $\mathcal{F}$ consists of 5 groups

$$
G_{648}, P G L(2,9), G_{1296}, G_{1944 a}, G_{1944 b} .
$$

Here they are given as follows.


$G_{648}$ gives the isomorphism class of the smallest group in $\mathcal{F} . G_{1296}$ has center $C_{2}$ and the quotient group by it's center is isomorphic to $G_{704}$. For these groups $G$, it holds that $\operatorname{CSm}(G)=$ $S m(G) . a_{G}=4,2,10,6,6$ and $a_{G, G \mathrm{Gil}}\left(G \backslash G^{\text {nil }}\right)=3,2,4,3,3$ respectively. There are only five groups up to order 2000. However we have the following.

Proposition 6.5. There are infinitely many finite groups $G$ such that $\left[G: G^{\text {nil }}\right]=2$ and $a_{G, G^{\text {nil }}}(G \backslash$ $\left.G^{\text {nil }}\right) \geq 2$.

Problem 6.6. Is there a finite nongap group $G$ and involutions $x$ and $y$ of $G \backslash O^{2}(G)$ such that $\left[G: G^{\text {nil }}\right]=2, x$ and $y$ are not conjugate in $G$, and $C_{G}(x)$ and $C_{G}(y)$ are both not 2-groups.

There is no such a group if the order is less than or equal to 2000.
Proposition 6.7. Suppose that there is a finite nongap group satisfying the property in the above problem. Then there are infinitely many finite nongap groups satisfying the same property.

## 7. Direct product gap groups

In this section, we consider about when a direct product group is a gap group. First we remark that

Proposition 7.1 ([6, 12]). Let $K$ be a finite group with $\mathcal{P}(K) \cap \mathcal{L}(K)=\varnothing$ and $H$ be a 2-group. $K \times H$ is a gap group if and only if so is $K$.

We call a finite group $G$ is a generalized dihedral group if $\left[G: O^{2}(G)\right]=2$ and there is an involution $h \in G \backslash O^{2}(G)$ such that $h g h=g^{-1}$ for any $g \in O^{2}(G)$. A generalized dihedral group is a subgroup of certain direct product group of dihedral groups.

Proposition 7.2 ([13, Lemma 7.2]). Suppose $\left[K: K^{\text {nil }}\right]=2$ and $\mathcal{P}(K) \cap \mathcal{L}(K)=\varnothing$. For an odd prime $p$ and a nontrivial p-group $H, K \times H$ is a gap group if and only if $K$ is not a generalized dihedral group.

Moreover we have the following.
Proposition 7.3. Suppose that $\left[K: K^{\text {nil }}\right]=2$ and $\mathcal{P}(K) \cap \mathcal{L}(K)=\varnothing$. If $|\pi(H /[H, H])| \geq 2$, or $|\pi(H /[H, H])|=1$ and $K$ is not a generalized dihedral group then $K \times H$ is a gap group, where $[H, H]$ is a commutator subgroup of $H$.

If $K$ or $H$ is a gap group then so is $K \times H$. We put

$$
\kappa(K)=\bigcup_{x \in K \backslash O^{2}(K)} \pi(\langle x\rangle)
$$

$\kappa(K)$ is a subset of $\pi(K)$ and if $K \neq O^{2}(K)$ then it contains 2 .
Theorem 7.4. Suppose that $K$ and $H$ are nongap groups with $\left[K: K^{\text {nil }}\right]=\left[H: H^{\text {nil }}\right]=2$. Let $L$ be a unique subgroup of $K \times H$ with index 2 which is neither $K$ nor $H$. Further suppose that $\mathcal{P}(L) \cap \mathcal{L}(L)=\varnothing$. The following claims are equivalent.
(1) $L$ is a gap group.
(i) $a_{K, O^{2}(K)}\left(K \backslash O^{2}(K)\right) \geq 1$ and there is a 2-element $x$ of $H \backslash O^{2}(H)$ with $|x| \geq 4$, or
(ii) $a_{H, O^{2}(H)}\left(H \backslash O^{2}(H)\right) \geq 1$ and there is a 2-element $y$ of $K \backslash O^{2}(K)$ with $|y| \geq 4$, or
(iii) $a_{K, O^{2}(K)}\left(K \backslash O^{2}(K)\right) \geq 1, a_{H, O^{2}(H)}\left(K \backslash O^{2}(H)\right) \geq 1$ and $|\kappa(K) \cup \kappa(H)| \geq 3$.

Corollary 7.5. Let $K, H$, and $L$ be groups as in Theorem 7.4. If
(1) $a_{K, O^{2}(K)}\left(K \backslash O^{2}(K)\right)=a_{H, O^{2}(H)}\left(K \backslash O^{2}(H)\right)=0$, or
(2) $a_{K, o^{2}(K)}\left(K \backslash O^{2}(K)\right) \geq 1$ and $H$ is not a generalized dihedral group, or
(3) $a_{H, O^{2}(H)}\left(H \backslash O^{2}(H)\right) \geq 1$ and $K$ is not a generalized dihedral group,
then $K \times H$ is a nongap group. Furthermore, the converse is also true if $\mathcal{P}\left(O^{2}(K)\right) \cap \mathcal{L}\left(O^{2}(K)\right)=\varnothing$ and $\mathcal{P}\left(O^{2}(H)\right) \cap \mathcal{L}\left(O^{2}(H)\right)=\varnothing$.

## References

[1] The GAP Group. GAP - Groups, Algorithms, and Programming, Version 4.4.12, 2008.
[2] E. Laitinen and M. Morimoto. Finite groups with smooth one fixed point actions on spheres. Forum Math., 10(4):479-520, 1998.
[3] M. Morimoto. Nontrivial $\mathcal{P}(G)$-matched G-related pairs for finite gap Oliver groups. J. Japan Math. Soc., to appear.
[4] M. Morimoto. Smith equivalent $\operatorname{Aut}\left(A_{6}\right)$-representations are isomorphic. Proc. Amer. Math. Soc., 136(10):36833688, 2008.
[5] M. Morimoto and K. Pawałowski. Smooth actions of finite Oliver groups on spheres. Topology, 42(2):395-421, 2003.
[6] M. Morimoto, T. Sumi, and M. Yanagihara. Finite groups possessing gap modules. In Geometry and topology: Aarhus (1998), volume 258 of Contemp. Math., pages 329-342. Amer. Math. Soc., Providence, RI, 2000.
[7] B. Oliver. Fixed point sets and tangent bundles of actions on disks and Euclidean spaces. Topology, 35(3):583615, 1996.
[8] K. Pawałowski and R. Solomon. Smith equivalence and finite Oliver groups with Laitinen number 0 or 1. Algebr. Geom. Topol., 2:843-895 (electronic), 2002.
[9] K. Pawałowski and T. Sumi. The Laitinen conjecture for finite solvable Oliver groups. Proc. Amer. Math. Soc., 137(6):2147-2156, 2009.
[10] C. U. Sanchez. Actions of groups of odd order on compact, orientable manifolds. Proc. Amer. Math. Soc., 54:445-448, 1976.
[11] P. A. Smith. New results and old problems in finite transformation groups. Bull. Amer. Math. Soc., 66:401-415, 1960.
[12] T. Sumi. Gap modules for direct product groups. J. Math. Soc. Japan, 53(4):975-990, 2001.
[13] T. Sumi. Gap modules for semidirect product groups. Kyushu J. Math., 58(1):33-58, 2004.
[14] T. Sumi. Finite groups possessing Smith equivalent, nonisomorphic representations. RIMS Kokyūroku, (1569):170-179, 2007. The theory of transformation groups and its applications (Kyoto, 2007).
[15] T. Sumi. Smith problem for a finite Oliver group with non-trivial center. RIMS Kokyūroku, (1612):196-204, 2008. Geometry of transformation groups and related topics (Kyoto, 2008).

Faculty of Design, Kyushu University, Shiobaru 4-9-1, Fukuoka, 815-8540, Japan E-mail address: sumi@design.kyushu-u.ac.jp


[^0]:    2000 Mathematics Subject Classification．57S17，20C15．
    Key words and phrases．real representation，Smith problem，Oliver nongap groups．

