SMITH SET FOR A NONGAP OLIVER GROUP

九州大学大学院芸術工学研究院 角

俊雄 (Toshio Sumi) Faculty of Design Kyushu University

1. INTRODUCTION

We study the Smith problem that two tangential representations are isomorphic or not for a smooth action on a homotopy sphere with exactly two fixed points ([11]). Two real G-modules U and V are called *Smith equivalent* if there exists a smooth action of G on a sphere Σ such that $S^G = \{x, y\}$ for two points x and y at which $T_x(\Sigma) \cong U$ and $T_y(\Sigma) \cong V$ as real G-modules which is a finite dimensional real vector space with a linear G-action. Let Sm(G), called a Smith set, be the subset of the real representation ring RO(G) of G consisting of the differences U - V of real G-modules U and V which are Smith equivalent. In many groups, Smith equivalent modules are not isomorphic. Let $\mathcal{P}(G)$ be the set of subgroups of G of prime power order, possibly 1. We also define a subset CSm(G) of Sm(G) consisting of the differences $U - V \in Sm(G)$ of real G-modules U and V such that for the sphere Σ appearing in the definition of Smith equivalence of U and V satisfies that Σ^P is connected for every $P \in \mathcal{P}(G)$. For any $U - V \in CSm(G)$, G-modules U and V are $\mathcal{P}(G)$ -matched pair, that is,

$$\operatorname{Res}_{P}^{G}U \cong \operatorname{Res}_{P}^{G}V$$

for any subgroup P of G of prime power order, possibly 1. Let RO(G) be the real representation ring and we denote by $RO(G)_{\mathcal{P}(G)}$ the subset of RO(G) consisting the differences of real $\mathcal{P}(G)$ matched pairs. Then CSm(G) is a subset of $RO(G)_{\mathcal{P}(G)}$.

Proposition 1.1.

$$\begin{cases} 0 \in CSm(G) & \text{if } G \text{ is not of prime power order} \\ CSm(G) = \emptyset & \text{if } G \text{ is of prime power order.} \end{cases}$$

In this paper, we discuss the Smith problem for an Oliver nongap group. Throughout this paper we assume a group is finite.

2. $RO(G)_{\mathcal{P}(G)}$ and induced virtual modules

We denote by $\pi(G)$ the set of all primes dividing the order |G| of G. For a prime p, we denote by $O^{p}(G)$, called the Dress subgroup of type p, the smallest normal subgroup of G with index a power of p:

$$O^{p}(G) = \bigcap_{L \trianglelefteq G, [G:L] = p^{*} \ge 1} L$$

Note that $O^p(G) = G$ if $p \notin \pi(G)$. Let $\mathcal{L}(G)$ be the set of subgroups of G containing some Dress subgroup.

²⁰⁰⁰ Mathematics Subject Classification. 57S17, 20C15.

Key words and phrases. real representation, Smith problem, Oliver nongap groups.

Let

$$LO(G) := (RO(G)_{\mathcal{P}(G)})^{\mathcal{L}(G)} = \bigcap_{p \in \pi(G)} \ker(\operatorname{fix}^{O^{p}(G)} : RO(G) \to RO(G/O^{p}(G)) \cap RO(G)_{\mathcal{P}(G)})$$

A group G is called *Oliver* if there is no series of subgroups

 $P \triangleleft H \triangleleft G$

such that *P* and *G*/*H* are of prime power order and *H*/*P* is cyclic. An Oliver group can be characterized as a group having a one fixed action on a sphere ([2]). A group *G* is called *gap* if there is a real *G*-module *W* such that $V^{O^p(G)} = 0$ for any prime *p* and

$$\dim V^P > 2 \dim V^h$$

for all pairs (P, H) of subgroups of G which satisfy that P is of prime power order and P < H. If G is a gap Oliver group, then LO(G) is a subset of CSm(G) ([8]). We remark that CSm(G) is not a subset of LO(G) in general (cf. [3]).

For an element not of prime power order, we call it an *NPP element*. We denote by a_G the number of real conjugacy classes of NPP elements of *G*.

Proposition 2.1. $RO(G)_{\mathcal{P}(G)}$ is a free abelian subgroup of RO(G) with rank a_G .

For a complex G-module ξ we denote by $\overline{\xi}$ whose character is the complex conjugate of the character of ξ .

Proposition 2.2. Let $p_1, p_2, ..., p_k$ be distinct primes each other and let $a_1, a_2, ..., a_k$ be positive integers. Put $G = C_{p_1^{a_1}} \times C_{p_2^{a_2}} \times \cdots \times C_{p_k^{a_k}}$, where $C_{p_j^{a_j}}$ is a cyclic group of order $p_j^{a_j}$. Then $RO(G)_{\mathcal{P}(G)}$ is spanned by the set of virtual real G-modules having characters as same as

$$\bigotimes_{j} (\mathbb{C} - \xi_j) + \bigotimes_{j} (\mathbb{C} - \overline{\xi}_j),$$

where ξ_j 's are irreducible complex $C_{p_j^{a_j}}$ -modules or zero and two of them are nonzero at least. In particular the rank of $RO(G)_{\mathcal{P}(G)}$ is equal to $((\prod_j p_j^{a_j} - 1) - \sum_j (p_j^{a_j} - 1))/2.$

This proposition can be extend to nilpotent groups instead of cyclic groups.

Theorem 2.3. Let $p_1, p_2, ..., p_k$ be distinct primes each other and P_j a nontrivial p_j -group for each j. Put $G = P_1 \times P_2 \times \cdots \times P_k$. Then the set of virtual real G-modules having characters as same as

$$\bigotimes_{j} (\dim_{\mathbb{C}}(\xi_{j})\mathbb{C}-\xi_{j}) + \bigotimes_{j} (\dim_{\mathbb{C}}(\xi_{j})\mathbb{C}-\overline{\xi}_{j}),$$

where ξ_j 's are irreducible complex P_j -modules or zero and two of them are nonzero at least, become a basis of $RO(G)_{\mathcal{P}(G)}$. In particular the rank of $RO(G)_{\mathcal{P}(G)}$ is equal to $((\prod_j q_j - 1) - \sum_j (q_j - 1))/2$, where q_j is the number of irreducible complex P_j -modules.

Theorem 2.4. Let $p_1, p_2, ..., p_k$ be distinct primes each other, P a nontrivial p_1 -group and C_j a nontrivial cyclic p_j -group for each $j \ge 2$. Put $G = P \times C_2 \times \cdots \times C_k$ which is an elementary group. Then $RO(G)_{\mathcal{P}(G)}$ is spanned by the set of virtual real G-modules $\operatorname{Ind}_E^G \eta$ for subgroups E and for virtual real E-modules η whose character is same as one of

$$\bigotimes_{j} (\mathbb{C} - \xi_j) + \bigotimes_{j} (\mathbb{C} - \overline{\xi}_j),$$

where ξ_i 's are 1-dimensional complex p_i -modules or zero and two of them are nonzero at least.

We denote by $\mathfrak{B}(G)$ the set of all virtual real *G*-modules as in Theorem 2.4 for an elementary group *G*.

CSm(G) is a subset of

$$RO(G)_{\mathcal{P}(G)}^{\{G\}} = \operatorname{ker}(\operatorname{fix}^G : RO(G) \to RO(G/G)) \cap RO(G)_{\mathcal{P}(G)}.$$

For a nilpotent group G, by fixing $X_0 \in \mathfrak{B}(G)$, the set consisting of $X - X_0$ for $X \in \mathfrak{B}(G)$, $X \neq X_0$ spans $RO(G)_{\mathcal{P}(G)}^{\{G\}}$.

Artin's induction theorem gives the following.

Theorem 2.5. The set

$$\bigcup_C \{ \operatorname{Ind}_C^G \eta \mid \eta \in \mathfrak{B}(C) \}$$

where C runs over all representative of conjugacy classes of cyclic subgroups of G not of prime power order spans the vector space $\mathbb{Q} \otimes_{\mathbb{Z}} RO(G)_{\mathcal{P}(G)}$ over the rational number field \mathbb{Q} . The set of differences of virtual modules of the above set spans $\mathbb{Q} \otimes_{\mathbb{Z}} RO(G)_{\mathcal{P}(G)}^{\{G\}}$.

The following theorem is related to Brauer's induction theorem.

Theorem 2.6. An virtual *G*-module $RO(G)_{\mathcal{P}(G)}$ is described as a linear combination (with integer coefficients) of virtual modules of

$$\bigcup_{E} \{ \operatorname{Ind}_{E}^{G} \eta \mid \eta \in \mathfrak{B}(E) \}$$

where E runs over all representatives of conjugacy classes of elementary subgroups E of G. Furthermore, $RO(G)_{\mathcal{P}(G)}^{(G)}$ is described as a linear combination (with integer coefficients) of differences of the above virtual modules.

Let $\overline{\text{NPP}}(G)$ be the set of all representatives of real conjugacy classes of NPP elements of G. For a normal subgroup N of G and $gN \in G/N$ we denote by $a_{G,N}(gN)$ the number of elements of $f_N^{-1}(gN)$, where $f_N \colon \overline{\text{NPP}}(G) \to G/N$ is a mapping induced by a canonical epimorphism $G \to G/N$. It holds that

$$a_G = \sum_{gN \in G/N} a_{G,N}(gN).$$

For a normal subgroup N of G let

$$RO(G)_{\mathcal{P}(G)}^{\{N\}} = \operatorname{ker}(\operatorname{fix}^N \colon RO(G) \to RO(G/N)) \cap RO(G)_{\mathcal{P}(G)}$$

We denote by G^{nil} the smallest normal subgroup of G by which a quotient group of G is nilpotent:

$$G^{\operatorname{nil}} = \bigcap_{p \in \pi(G)} O^p(G)$$

Proposition 2.7. Let p be a prime and N a normal subgroup of G. The rank of $RO(G)_{\mathcal{P}(G)}^{\{N\}}$ is less than or equal to

$$\sum_{N\in G/N} \max(a_{G,N}(gN)-1,0).$$

The rank of LO(G) is greater than or equal to

$$\sum_{gG^{\operatorname{nil}}\in G/G^{\operatorname{nil}})} \max(a_{G,G^{\operatorname{nil}}}(gG^{\operatorname{nil}})-1,0)$$

and in particular if G/G^{nil} is a p-group then the equality holds.

Theorem 2.8 ([4, Morimoto]). Let G be a finite group. $Sm(G) \subset RO(G)_{\mathcal{P}(G)}^{\{G^{\uparrow 2}\}}$ where $G^{\uparrow 2} = \bigcap_{[G:L] \leq 2} L$ is a normal subgroup of G.

Therefore, if G/G^{nil} is an elementary abelian 2-group then $CSm(G) \subset LO(G)$.

Theorem 2.9. Let N be a normal subgroup of G. Then $\mathbb{Q} \otimes_{\mathbb{Z}} RO(G)_{\mathcal{P}(G)}^{\{N\}}$ is spanned by the set of virtual modules X - Y such that

$$X, Y \in \bigcup_C \{ \operatorname{Ind}_C^G \eta \mid \eta \in \mathfrak{B}(C) \}$$

with $fix^{N}(X - Y) = 0$ in RO(G/N), where C runs over all representative of conjugacy classes of cyclic subgroups of G not of prime power order.

Theorem 2.10. Let N be a normal subgroup of G. An virtual G-module $RO(G)_{\mathcal{P}(G)}^{[N]}$ is described as a linear combination (with integer coefficients) of virtual modules X - Y such that

$$X, Y \in \bigcup_{E} \{ \operatorname{Ind}_{E}^{G} \eta \mid \eta \in \mathfrak{B}(E) \}$$

with fix^N(X - Y) = 0 in RO(G/N), where E runs over all representatives of conjugacy classes of elementary subgroups E of G.

3. WEAK GAP CONDITION

We say that a smooth G-manifold X satisfies the weak gap condition (WGC) if the conditions (WGC1)–(WGC4) all hold (cf. [5]).

- (WGC1) dim $X^P \ge 2 \dim X^H$ for every $P < H \le G, P \in \mathcal{P}(G)$.
- (WGC2) If dim $X^P = 2 \dim X^H$ for some $P < H \le G$, $P \in \mathcal{P}(G)$, then [H : P] = 2, dim $X^H > \dim X^K + 1$ for every $H < K \le G$, and X^H is connected.
- (WGC3) If dim $X^P = 2 \dim X^H$ for some $P < H \le G$, $P \in \mathcal{P}(G)$, and [H : P] = 2, then X^H can be oriented in such a way that the map $g: X^H \to X^H$ is orientation preserving for any $g \in N_G(H)$.
- (WGC4) If dim $X^P = 2 \dim X^H$ and dim $X^P = 2 \dim X^{H'}$ for some $P < H, P < H', P \in \mathcal{P}(G)$, then the smallest subgroup $\langle H, H' \rangle$ of G containing H and H' is not a large subgroup of G.

A real G-module V is called $\mathcal{L}(G)$ -free if dim $V^H = 0$ for each $H \in \mathcal{L}(G)$, which amounts to saying that dim $V^{O^p(G)} = 0$ for each prime $p \in \pi(G)$. For a finite group G, we define subgroups WLO(G) of the free abelian group LO(G) as follows.

 $WLO(G) = \{U - V \in LO(G) \mid U \text{ and } V \text{ both satisfy the weak gap condition}\}\$ A real *G*-module *W* is called *nonnegative* if (WGC1) holds for X = W. We denote by V(G) as

$$\mathbb{R}[G]_{\mathcal{L}(G)} = (\mathbb{R}[G] - \mathbb{R}) - \bigoplus_{p \in \pi(G)} (\mathbb{R}[G] - \mathbb{R})^{O^{p}(G)}.$$

Theorem 3.2 in [2] implies the following proposition.

Proposition 3.1. Let W be a real nonnegative G-module. For $X = W \oplus V(G)$, (WGC2) holds if G is a finite group with $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$ and and (WGC4) holds if G is an Oliver group.

Theorem 3.2. For an Oliver group G, it holds that WLO(G) is a subset of CSm(G).

More generally we obtain

Theorem 3.3. Let G be an Oliver group and let V_1, \ldots, V_k be real G-modules satisfying that $V_i - V_j \in WLO(G)$. Then there exist a real G-module W and a smooth action on a sphere Σ such that $\Sigma^G = \{x_1, \ldots, x_k\}$ and $V_i \oplus W$ is isomorphic to the tangential G-module $T_{x_i}(\Sigma)$ for any i.

4. LO(G) vs WLO(G)

In this section we consider the difference between LO(G) and WLO(G). Note that if G/G^{nil} is an elementary abelian 2-group then $WLO(G) \subset CSm(G) \subset LO(G)$.

We say that G is a gap group if G admits an $\mathcal{L}(G)$ -free positive G-module V, that is, dim $V^{O^{P}(G)} = 0$ for any prime $p \in \pi(G)$ and dim $V^{P} > 2 \dim V^{H}$ for any pair (P, H) of subgroups of G with $P \in \mathcal{P}(G), P < H$.

Theorem 4.1. Let G be a group with $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$. Suppose that for each $X \in LO(G)$ there are $\mathcal{L}(G)$ -free nonnegative G-modules U and V such that X = U - V. For each subgroup K of G with $K > O^2(G)$, $[K : O^2(G)] = 2$, if all elements x of $K \setminus O^2(G)$ of order 2 such that $C_K(x)$ is not a 2-group are not conjugate in K, then K is a gap group.

Theorem 4.2. Let G be an Oliver group. Let U and V be $\mathcal{L}(G)$ -free nonnegative G-modules with $U - V \in RO(G)_{\mathcal{P}(G)}$. There are $\mathcal{L}(G)$ -free G-modules X and Y such that they satisfy the weak gap condition and U - V = X - Y.

Thus we have immediately the following theorem.

Theorem 4.3. Let G be an Oliver group. Suppose that for each subgroup K of G with $K > O^2(G)$, $[K : O^2(G)] = 2$, if K is not a gap group then all elements x of $K \setminus O^2(G)$ of order 2 such that $C_K(x)$ is not a 2-group are conjugate in G. Then $LO(G) \subset CSm(G)$. Furthermore, if G/G^{nil} is an elementary abelian 2-group then LO(G) = CSm(G).

If K is an Oliver group with $|K| \le 2000$ and $[K : O^2(K)] = 2$, then K is a gap group or all elements x of $K \setminus O^2(K)$ of order 2 such that $C_K(x)$ is not a 2-group are conjugate in K. We have still no example of a group G so that $WLO(G) \ne LO(G)$.

Let $H = D_{2p_1} \times D_{2p_2} \times \cdots \times D_{2p_r}$ be a direct product group of dihedral groups D_{2p_j} , where $p_1, \ldots, p_r \ge 1$ are odd integers. Then $G \times H$ is a nongap group if G is a nongap group.

Theorem 4.4. Let G be an Oliver group as in Theorem 4.3 and let H be as above. It holds that $LO(G \times H)$ is a subset of $CSm(G \times H)$. Furthermore if G/G^{nil} is an elementary abelian 2-group, then $CSm(G \times H) = LO(G \times H)$.

5. PROJECTIVE GENERAL LINEAR GROUPS

We note that PGL(2, q) is isomorphic to the dihedral group D_6 for q = 2, the symmetric group S_4 for q = 3, the alternating group A_5 for q = 4, the symmetric group S_5 for q = 5, and nonsolvable for $q \ge 4$. The group PGL(2,q) is isomorphic to PSL(2,q) if q is a power of 2. If $q \ge 5$ is odd, PGL(2,q) has a perfect subgroup PSL(2,q) with index 2, which implies $[PGL(2,q) : O^2(PGL(2,q))] = 2$.

It is easy to see the rank of LO(PGL(2,q)). Note that rank $LO(G) = \max(a_G - 1, 0)$ if G is a perfect group.

Proposition 5.1. Suppose that q is odd.

rank
$$LO(PGL(2,q)) = \begin{cases} 0 & q = 3, 5, 7 \\ a_{PGL(2,q)} - 1 & q = 9, 17 \\ a_{PGL(2,q)} - 2 & otherwise \end{cases}$$

Remark 5.2. Suppose that q is an odd prime power integer.

- (1) PGL(2, q) is not a gap group if and only if q = 3, 5, 7, 9, 17.
- (2) PGL(2,q) is a Oliver group if and only if $q \ge 5$.
- (3) rank $LO(PGL(2,q)) = a_{C_{q+1}} 1$ if q = 9, 17.
- (4) rank $LO(PGL(2,q)) = a_{C_{q+1}} + a_{C_{q-1}} 2$ if $q \neq 3, 5, 7, 9, 17$.

Theorem 4.3 gives CSm(PGL(2,q)) = LO(PGL(2,q)). Furthermore, we obtain the following.

Theorem 5.3. Sm(PGL(2,q)) = LO(PGL(2,q)).

6. Small Groups

In this section we discuss by viewing from the order of a Sylow 2-subgroup of an Oliver group. If G is an Oliver group of odd order then G is a gap group and LO(G) is a subset of CSm(G).

Theorem 6.1. If G is an Oliver group whose order is divisible by 2 not by 4 then LO(G) is a subset of CSm(G).

Example 6.2. Let K be a finite abelian group of odd order whose rank is greater than 2. Let h be an automorphism on K which sends $k \in K$ to it's inverse k^{-1} . Put $G = \langle h, K \rangle$. Then G is an Oliver nongap group satisfying CSm(G) = LO(G).

Theorem 6.3. Let N be a normal subgroup of G. Suppose that $a_G \leq a_{G,N}(N) + 1$. The induction mapping $\operatorname{Ind}_N^G : LO(N) \otimes \mathbb{Q} \to LO(G) \otimes \mathbb{Q}$ is surjective.

From now on, we suppose that G is a finite Oliver group, $[G : G^{nil}] = 2$ and $a_G \ge 2$. Note that $a_{G,G^{nil}}(G \setminus G^{nil}) = a_G - a_{G,G^{nil}}(G^{nil})$. The above theorem yields the following.

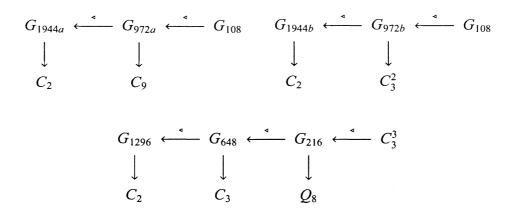
Theorem 6.4. If $a_G \leq a_{G,G^{nil}}(G^{nil}) + 1$ then LO(G) = WLO(G) = CSm(G).

So, we are interesting in the case when $a_{G,G^{nil}}(G \setminus G^{nil}) = a_G - a_{G,G^{nil}}(G^{nil}) \ge 2$.

Let \mathcal{F} be the set of isomorphism classes of finite Oliver nongap groups K such that $4 \mid |K|$, $[K : K^{nil}] = 2$, and $a_{K,K^{nil}}(K \setminus K^{nil}) \ge 2$. Note that |G| is divisible by 8 if |G| is divisible by 4 and less than or equal to 2000. The set of all representatives of elements in \mathcal{F} consists of 5 groups

 $G_{648}, PGL(2,9), G_{1296}, G_{1944a}, G_{1944b}.$

Here they are given as follows.



 G_{648} gives the isomorphism class of the smallest group in \mathcal{F} . G_{1296} has center C_2 and the quotient group by it's center is isomorphic to G_{704} . For these groups G, it holds that CSm(G) = Sm(G). $a_G = 4, 2, 10, 6, 6$ and $a_{G,G^{nil}}(G \setminus G^{nil}) = 3, 2, 4, 3, 3$ respectively. There are only five groups up to order 2000. However we have the following.

Proposition 6.5. There are infinitely many finite groups G such that $[G : G^{nil}] = 2$ and $a_{G,G^{nil}}(G \setminus G^{nil}) \ge 2$.

Problem 6.6. Is there a finite nongap group G and involutions x and y of $G \setminus O^2(G)$ such that $[G:G^{nil}] = 2$, x and y are not conjugate in G, and $C_G(x)$ and $C_G(y)$ are both not 2-groups.

There is no such a group if the order is less than or equal to 2000.

Proposition 6.7. Suppose that there is a finite nongap group satisfying the property in the above problem. Then there are infinitely many finite nongap groups satisfying the same property.

7. Direct product gap groups

In this section, we consider about when a direct product group is a gap group. First we remark that

Proposition 7.1 ([6, 12]). Let K be a finite group with $\mathcal{P}(K) \cap \mathcal{L}(K) = \emptyset$ and H be a 2-group. $K \times H$ is a gap group if and only if so is K.

We call a finite group G is a generalized dihedral group if $[G : O^2(G)] = 2$ and there is an involution $h \in G \setminus O^2(G)$ such that $hgh = g^{-1}$ for any $g \in O^2(G)$. A generalized dihedral group is a subgroup of certain direct product group of dihedral groups.

Proposition 7.2 ([13, Lemma 7.2]). Suppose $[K : K^{nil}] = 2$ and $\mathcal{P}(K) \cap \mathcal{L}(K) = \emptyset$. For an odd prime p and a nontrivial p-group H, $K \times H$ is a gap group if and only if K is not a generalized dihedral group.

Moreover we have the following.

Proposition 7.3. Suppose that $[K : K^{nil}] = 2$ and $\mathcal{P}(K) \cap \mathcal{L}(K) = \emptyset$. If $|\pi(H/[H, H])| \ge 2$, or $|\pi(H/[H, H])| = 1$ and K is not a generalized dihedral group then $K \times H$ is a gap group, where [H, H] is a commutator subgroup of H.

$$\kappa(K) = \bigcup_{x \in K \smallsetminus O^2(K)} \pi(\langle x \rangle)$$

 $\kappa(K)$ is a subset of $\pi(K)$ and if $K \neq O^2(K)$ then it contains 2.

Theorem 7.4. Suppose that K and H are nongap groups with $[K : K^{nil}] = [H : H^{nil}] = 2$. Let L be a unique subgroup of $K \times H$ with index 2 which is neither K nor H. Further suppose that $\mathcal{P}(L) \cap \mathcal{L}(L) = \emptyset$. The following claims are equivalent.

- (1) L is a gap group.
- (2) (i) $a_{K,O^2(K)}(K \setminus O^2(K)) \ge 1$ and there is a 2-element x of $H \setminus O^2(H)$ with $|x| \ge 4$, or (ii) $a_{H,O^2(H)}(H \setminus O^2(H)) \ge 1$ and there is a 2-element y of $K \setminus O^2(K)$ with $|y| \ge 4$, or (iii) $a_{K,O^2(K)}(K \setminus O^2(K)) \ge 1$, $a_{H,O^2(H)}(K \setminus O^2(H)) \ge 1$ and $|\kappa(K) \cup \kappa(H)| \ge 3$.

Corollary 7.5. Let K, H, and L be groups as in Theorem 7.4. If

- (1) $a_{K,O^2(K)}(K \setminus O^2(K)) = a_{H,O^2(H)}(K \setminus O^2(H)) = 0$, or
- (2) $a_{K,O^2(K)}(K \setminus O^2(K)) \ge 1$ and H is not a generalized dihedral group, or
- (3) $a_{H,O^2(H)}(H \setminus O^2(H)) \ge 1$ and K is not a generalized dihedral group,

then $K \times H$ is a nongap group. Furthermore, the converse is also true if $\mathcal{P}(O^2(K)) \cap \mathcal{L}(O^2(K)) = \emptyset$ and $\mathcal{P}(O^2(H)) \cap \mathcal{L}(O^2(H)) = \emptyset$.

References

- [1] The GAP Group. GAP Groups, Algorithms, and Programming, Version 4.4.12, 2008.
- [2] E. Laitinen and M. Morimoto. Finite groups with smooth one fixed point actions on spheres. Forum Math., 10(4):479-520, 1998.
- [3] M. Morimoto. Nontrivial $\mathcal{P}(G)$ -matched \mathfrak{S} -related pairs for finite gap Oliver groups. J. Japan Math. Soc., to appear.
- [4] M. Morimoto. Smith equivalent Aut(A₆)-representations are isomorphic. Proc. Amer. Math. Soc., 136(10):3683–3688, 2008.
- [5] M. Morimoto and K. Pawałowski. Smooth actions of finite Oliver groups on spheres. *Topology*, 42(2):395–421, 2003.
- [6] M. Morimoto, T. Sumi, and M. Yanagihara. Finite groups possessing gap modules. In Geometry and topology: Aarhus (1998), volume 258 of Contemp. Math., pages 329–342. Amer. Math. Soc., Providence, RI, 2000.
- [7] B. Oliver. Fixed point sets and tangent bundles of actions on disks and Euclidean spaces. *Topology*, 35(3):583-615, 1996.
- [8] K. Pawałowski and R. Solomon. Smith equivalence and finite Oliver groups with Laitinen number 0 or 1. *Algebr. Geom. Topol.*, 2:843-895 (electronic), 2002.
- [9] K. Pawałowski and T. Sumi. The Laitinen conjecture for finite solvable Oliver groups. Proc. Amer. Math. Soc., 137(6):2147-2156, 2009.
- [10] C. U. Sanchez. Actions of groups of odd order on compact, orientable manifolds. Proc. Amer. Math. Soc., 54:445-448, 1976.
- [11] P. A. Smith. New results and old problems in finite transformation groups. *Bull. Amer. Math. Soc.*, 66:401–415, 1960.
- [12] T. Sumi. Gap modules for direct product groups. J. Math. Soc. Japan, 53(4):975-990, 2001.
- [13] T. Sumi. Gap modules for semidirect product groups. Kyushu J. Math., 58(1):33-58, 2004.
- [14] T. Sumi. Finite groups possessing Smith equivalent, nonisomorphic representations. *RIMS Kokyūroku*, (1569):170–179, 2007. The theory of transformation groups and its applications (Kyoto, 2007).
- [15] T. Sumi. Smith problem for a finite Oliver group with non-trivial center. RIMS Kokyuroku, (1612):196–204, 2008. Geometry of transformation groups and related topics (Kyoto, 2008).

Faculty of Design, Kyushu University, Shiobaru 4-9-1, Fukuoka, 815-8540, Japan *E-mail address*: sumi@design.kyushu-u.ac.jp