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1. INTRODUCTION

We study the Smith problem that two tangential representations are isomorphic or not for a
smooth action on a homotopy sphere with exactly two fixed points ([11]). Two real G-modules
$U$ and $\nabla$ are called Smith equivalent if there exists a smooth action of $G$ on a sphere $\Sigma$ such that
$S^{G}=\{x,y\}$ for two points $x$ and $y$ at which $T_{x}(\Sigma)\cong U$ and $T_{y}(L^{\neg})\cong V$ as real G-modules which
is a finite dimensional real vector space with a linear G-action. Let $Sm(G)$ , called a Smith set, be
the subset of the real representation ring $RO(G)$ of $G$ consisting of the differences $U-V$ of real
G-modules $U$ and $V$ which are Smith equivalent. In many groups, Smith equivalent modules are
not isomorphic. Let $\mathcal{P}(G)$ be the set of subgroups of $G$ of prime power order, possibly 1. We also
define a subset $CSm(G)$ of $Sm(G)$ consisting of the difterences $U-V\in Sm(G)$ of real G-modules
$U$ and $\nabla$ such that for the sphere $\Sigma$ appearing in the definition of Smith equivalence of $U$ and $\nabla$

satisfies that $\Sigma^{P}$ is connected for every $P\in \mathcal{P}(G)$ . For any $U-V\in CSm(G)$ , G-modules $U$ and $V$

are $\mathcal{P}(G)$-matched pair, that is,
${\rm Res}_{P}^{G}U\cong{\rm Res}_{P}^{G}V$

for any subgroup $P$ of $G$ of prime power order, possibly 1. Let $RO(G)$ be the real representation
ring and we denote by $RO(G)_{f^{\supset}(G)}$ the subset of $RO(G)$ consisting the differences of real $\mathcal{P}(G)-$

matched pairs. Then $CSm(G)$ is a subset of $RO(G)_{p(G)}$ .

Proposition 1.1.

$\{\begin{array}{ll}0\in CSm(G) if G is not ofprime power orderCSm(G)=\emptyset if G is ofprime power order\end{array}$

In this paper, we discuss the Smith problem for an Oliver nongap group. Throughout this paper
we assume a group is finite.

2. $RO(G)_{l^{\supset}(G)}$ AND INDUCED VIRTUAL MODULES

We denote by $\pi(G)$ the set of all primes dividing the order $|G|$ of $G$ . For a prime $p$ , we denote
by $O^{p}(G)$ , called the Dress subgroup of type $p$ , the smallest normal subgroup of $G$ with index a
power of $p$ :

$O^{p}(G)= \bigcap_{L\triangleleft G,[G:L]=p>1}...L$
.

Note that $O^{P}(G)=G$ if $p\not\in\pi(G)$ . Let $\mathcal{L}(G)$ be the set of subgroups of $G$ containing some Dress
subgroup.
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Let

$LO(G):=(RO(G)_{f(G)}))^{\underline{/}(G)}= \bigcap_{p\in\pi(G)}ker(fix^{O’’(G)}:RO(G)arrow RO(G/O^{P}(G))\cap RO(G)_{7(G)})$ .

A group $G$ is called Oliver if there is no series of subgroups
$P\triangleleft H\triangleleft G$

such that $P$ and $G/H$ are of prime power order and $H/P$ is cyclic. An Oliver group can be charac-
terized as a group having a one fixed action on a sphere ([2]). A group $G$ is called gap if there is a
real G-module $W$ such that $V^{O^{l^{J}}(G)}=0$ for any prime $p$ and

$\dim V^{P}>2\dim V^{H}$

for all pairs $(P, H)$ of subgroups of $G$ which satisfy that $P$ is of prime power order and $P<H$ . If
$G$ is a gap Oliver group, then $LO(G)$ is a subset of $CSm(G)$ ([8]). We remark that $CSm(G)$ is not
a subset of $LO(G)$ in general (cf. [3]).

For an element not of prime power order, we call it an $NPP$ element. We denote by $a_{G}$ the
number of real conjugacy classes of NPP elements of $G$ .

Proposition 2.1. $RO(G)_{l(G)})$ is afree abelian subgroup ofRO$(G)$ with rank $a_{G}$ .

For a complex G-module $\xi$ we denote by $\overline{\xi}$ whose character is the complex conjugate of the
character of $\xi$ .

Proposition 2.2. Let $p_{1},p_{2},$ $\ldots,p_{k}$ be distinct primes each other and let $a_{1},$ $a_{2},$ $\ldots,$ $a_{k}$ be positive
integers. Put $G=C_{p_{1}^{cr_{1}}}\cross C_{p_{2}^{a}}2\cross\cdots\cross C_{p_{k}^{\ell r}}k$ , where $C_{p_{f}^{a_{j}}}$ is a cyclic group oforder $p_{j}^{a_{/}}$ . Then $RO(G)_{\mathcal{P}(G)}$

is spanned by the set ofvirtual real G-modules having characters as same as

$\bigotimes_{j}(\mathbb{C}-\xi_{j})+\bigotimes_{j}(\mathbb{C}-\overline{\xi}_{j})$
,

where $\xi_{j}$ ’s are irreducible complex $C_{p_{j}^{a_{j}}}$ -modules or zero and two ofthem are nonzero at least. $In$

particular the rank of$RO(G)_{p(G)}$ is equal to $(( \prod_{j}p_{j}^{a_{j}}-1)-\sum_{j}\omega_{j}^{a’}-1))/2$.

This proposition can be extend to nilpotent groups instead of cyclic groups.

Theorem 2.3. Let $p_{1},$ $p_{2},$ $\ldots,p_{k}$ be distinct primes each other and $P_{j}$ a nontrivial $p_{j}$-group for
each $j$. Put $G=P_{1}\cross P_{2}\cross\cdots\cross P_{k}$ . Then the set ofvirtual real G-modules having characters as
same as

$\bigotimes_{j}(\dim_{\mathbb{C}}(\xi\cdot)\mathbb{C}-\xi_{j})+\bigotimes_{j}(\dim_{\mathbb{C}}(\xi_{j})\mathbb{C}-\overline{\xi}_{j})$
,

where $\xi_{j}’s$ are irreducible complex $P_{j}$-modules or zero and two of them are nonzero at least,
become a basis of $RO(G)_{\mathcal{F}(G)})$ . In particular the rank of $RO(G)_{r(G)}$ is equal to $(( \prod_{j}q_{J}\cdot-1)-$

$\sum_{j}(q_{j}-1))/2_{j}$ where $q_{j}$ is the number of irreducible complex $P_{j}$ -modules.

Theorem 2.4. Let $p_{1},$ $p_{2},$ $\ldots,$ $p_{k}$ be distinct primes each other, $P$ a nontrivial $p_{1}$ -group and $C_{j}$ a
nontrivial cyclic $p_{j}$-groupfor each $j\geq 2$ . Put $G=P\cross C_{2}\cross\cdots\cross C_{k}$ which is an elementary group.
Then $RO(G)_{f(G)}$ is spanned by the set of virtual real G-modules $Ind_{E}^{G}\eta$ for subgroups $E$ andfor
virtual real E-modules $\eta$ whose character is same as one of

$\bigotimes_{j}(\mathbb{C}-\xi_{\dot{}})+\bigotimes_{j}(\mathbb{C}-\overline{\xi}_{j})$
,

where $\xi_{j}’s$ are l-dimensional complex $p_{j}$-modules or zero and $!wo$ ofthem are nonzero at least.
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We denote by $\mathfrak{B}(G)$ the set of all virtual real G-modules as in Theorem 2.4 for an elementary
group $G$ .

$CSm(G)$ is a subset of
$RO(G)_{\mathcal{P}(G)}^{\{G|}=ker(fix^{G}:RO(G)arrow RO(G/G))\cap RO(G)_{\mathcal{F}^{J}(G)}$.

For a nilpotent group $G$ , by fixing $X_{0}\in \mathfrak{B}(G)$ , the set consisting of $X-X_{0}$ for $X\in \mathfrak{B}(G),$ $X\neq X_{0}$

spans $RO(G)_{\mathcal{P}(G)}^{\{G\}}$ .
Artin’s induction theorem gives the following.

Theorem 2.5. The set
$\bigcup_{c}\{Ind_{c}^{G}\eta|\eta\in \mathfrak{B}(C)\}$

where $C$ runs over all representative ofconjugacy classes ofcyclic subgroups of $G$ not ofprime
power order spans the vector space $\mathbb{Q}\otimes_{Z}RO(G)_{\mathcal{P}(G)}$ over the rational numberfield $\mathbb{Q}$ . The set of
differences ofvirtual modules ofthe above set spans $\mathbb{Q}\otimes_{\mathbb{Z}}RO(G)_{P(G)}^{\{G\}}$ .

The following theorem is related to Brauer’s induction theorem.

Theorem 2.6. An virtual G-module $RO(G)_{P(G)}$ is described as a linear combination (with integer
coefficients) ofvirtual modules of

$\bigcup_{E}\{Ind_{E}^{G}\eta|\eta\in \mathfrak{B}(E)\}$

where $E$ runs over all representatives ofconjugacy classes ofelementary subgroups $E$ ofG. Fur-
thermore, $RO(G)_{P(G)}^{|G\}}$ is described as a linear combination (with integer coefficients) ofdifJerences
ofthe above virtual modules.

Let $\overline{NPP}(G)$ be the set of all representatives of real conjugacy classes of NPP elements of $G$ .
For a normal subgroup $N$ of $G$ and $gN\in G/N$ we denote by $a_{G,N}(gN)$ the number of elements
of $f_{N}^{-1}(gN)$ , where $f_{N}:\overline{NPP}(G)arrow G/N$ is a mapping induced by a canonical epimorphism $Garrow$

$G/N$. It holds that
$a_{G}= \sum_{gN\in G/N}a_{G,N}(gN)$

.

For a normal subgroup $N$ of $G$ let
$RO(G)_{\mathcal{P}(G)}^{|N\}}=ker(fix^{N}:RO(G)arrow RO(G/N))\cap RO(G)_{\mathcal{F}(G)})$ .

We denote by $G^{ni1}$ the smallest normal subgroup of $G$ by which a quotient group of $G$ is nilpotent:

$G^{ni1}= \bigcap_{p\in n(G)}O^{p}(G)$

Proposition 2.7. Let $p$ be a prime and $N$ a normal subgroup ofG. The rank ofRO$(G)_{\mathcal{F}(G)}^{(N\}})$ is less
than or equal to

$\sum_{gN\in G/N}\max(a_{G,N}(gN)-1,0)$
.

The rank ofLO$(G)$ is greater than or equal to

$\sum_{gG^{ni1}\in G/G^{ni1})}\max(a_{G,G^{ni1}}(gG^{ni1})-1,0)$

and in particular if $G/G^{nil}$ is a p-group then the equality holds.
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Theorem 2.8 ([4, Morimoto]). Let $G$ be a finite group. $Sm(G)\subset RO(G)_{7(G)}^{|G^{2}\}})$ where $G^{()2}=$

$\bigcap_{[G\cdot L]\leq 2}L$ is a normal subgroup of $G$ .

Therefore, if $G/G^{ni1}$ is an elementary abelian 2-group then $CSm(G)\subset LO(G)$ .

Theorem 2.9. Let $N$ be a normal subgroup ofG. Then $\mathbb{Q}\otimes_{Z}RO(G)_{\mathcal{P}(G)}^{|N|}$ is spanned by the set of
virtual modules $X-Y$ such that

$X,$
$Y \in\bigcup_{c}\{Ind_{c}^{G}\eta|\eta\in \mathfrak{B}(C)\}$

with fix$N(X-Y)=0$ in $RO(G/N)$, where $C$ runs over all representative ofconjugacy classes of
cyclic subgroups of $G$ not ofprime power order.

Theorem 2.10. Let $N$ be a normal subgroup ofG. An virtual G-module $RO(G)_{7(G)}^{\{N|})$ is described
as a linear combination (with integer coefficients) ofvirtual modules $X-Y$ such that

$X,$
$Y \in\bigcup_{E}\{Ind_{E}^{G}\eta|\eta\in \mathfrak{B}(E)\}$

with $fix^{N}(X-Y)=0$ in $RO(G/N)$, where $E$ runs over all representatives ofconjugacy classes of
elementary subgroups $E$ of$G$ .

3. WEAK GAP CONDmON

We say that a smooth G-manifold $X$ satisfies the weak gap condition (WGC) if the conditions
(WGCI)-(WGC4) all hold (cf. [5]).

(WGC I) $\dim X^{P}\geq 2\dim X^{H}$ for every $P<H\leq G,$ $P\in \mathcal{P}(G)$ .
(WGC2) If $\dim X^{P}=2\dim X^{H}$ for some $P<H\leq G,$ $P\in \mathcal{P}(G)$ , then $[H : P]=2,$ $\dim X^{H}>$

$\dim X^{K}+1$ for every $H<K\leq G$ , and $X^{H}$ is connected.
(WGC3) If $\dim X^{P}=2\dim X^{H}$ for some $P<H\leq G,$ $P\in P(G)$ , and $[H : P]=2$ , then $X^{H}$

can be oriented in such a way that the map $g:X^{H}arrow X^{H}$ is orientation preserving
for any $g\in N_{G}(H)$ .

(WGC4) If $\dim X^{P}=2\dim X^{H}$ and $\dim X^{P}=2\dim X^{H’}$ for some $P<H,$ $P<H’,$ $P\in \mathcal{P}(G)$ ,
then the smallest subgroup $\langle H,$ $H’\rangle$ of $G$ containing $H$ and $H’$ is not a large subgroup
of $G$ .

A real G-module $V$ is called $\mathcal{L}(G)$-free if $\dim\nabla^{H}=0$ for each $H\in \mathcal{L}(G)$ , which amounts to
saying that $\dim\nabla^{O^{\rho}(G)}=0$ for each prime $p\in\pi(G)$ . For a finite group $G$ , we define subgroups
$mo(G)$ of the free abelian group $LO(G)$ as follows.

$WLO(G)=\{U-V\in LO(G)|U$ and $V$ both satisfy the weak gap condition $|$

A real G-module $W$ is called nonnegative if (WGC I) holds for $X=W$.
We denote by $V(G)$ as

$\mathbb{R}[G]_{\perp(G)}=(\mathbb{R}[G]-\mathbb{R})-\bigoplus_{p\in\pi(G)}(\mathbb{R}[G]-\mathbb{R})^{O^{p}(G)}$ .

Theorem 3.2 in [2] implies the following proposition.

Proposition 3.1. Let $W$ be a real nonnegative G-module. For $X=W\oplus\nabla(G)$, (WGC2) holds if $G$

is afinite group with $\mathcal{P}(G)\cap \mathcal{L}(G)=\emptyset$ and and (WGC4) holds if $G$ is an Oliver group.

Theorem 3.2. For an Oliver group $G$, it holds that $t\dagger LO(G)$ is a subset of$CSm(G)$.
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More generally we obtain

Theorem 3.3. Let $G$ be an Oliver group and let $\nabla_{1},$

$\ldots,$
$\nabla_{k}$ be real G-modules $satis/jjing$ that

$\nabla_{i}-\nabla_{j}\in mo(G)$ . Then there exist a real G-module $W$ and a smooth action on a sphere $\Sigma$ such
that $\Sigma^{G}=\{x_{1}, \ldots, x_{k}\}$ and $V_{i}\oplus W$ is isomorphic to the tangential G-module $T_{X_{l}}(\Sigma)$ for any $i$.

4. $LO(G)$ vs $mo(G)$

In this section we consider the difference between $LO(G)$ and $mo(G)$ . Note that if $G/G^{ni1}$ is
an elementary abelian 2-group then $WLO(G)\subset CSm(G)\subset LO(G)$ .

We say that $G$ is a gap group if $G$ admits an $\mathcal{L}(G)$-free positive G-module $\nabla$, that is, $\dim\nabla^{O^{p}(G)}=$

$0$ for any prime $p\in\pi(G)$ and $\dim\nabla^{P}>2\dim\nabla^{H}$ for any pair $(P, H)$ of subgroups of $G$ with
$P\in \mathcal{P}(G),$ $P<H$ .

Theorem 4.1. Let $G$ be a group with $P(G)\cap \mathcal{L}(G)=\emptyset$ . Suppose thatfor each $X\in LO(G)$ there
are.$\mathcal{L}(G)$-free nonnegative G-modules $U$ and $\nabla$ such that $X=U-V$. For each subgroup $K$ of $G$

with $K>O^{2}(G),$ $[K : O^{2}(G)]=2$, ifall elements $xofK\backslash O^{2}(G)$ oforder 2 such that $C_{K}(x)$ is not
a 2-group are not conjugate in $K$, then $K$ is a gap group.

Theorem 4.2. Let $G$ be an Oliver group. Let $U$ and $\nabla$ be $\mathcal{L}(G)$-free nonnegative G-modules with
$U-\nabla\in RO(G)_{\mathcal{P}(G)}$ . There are $\mathcal{L}(G)$ -free G-modules $X$ and $Y$ such that they satisffi the weak gap
condition and $U-\nabla=X-Y$.

Thus we have immediately the following theorem.

Theorem 4.3. Let $G$ be an Oliver group. Suppose thatfor each subgroup $K$ of$G$ with $K>O^{2}(G)$ ,
$[K : O^{2}(G)]=2$ , if $K$ is not a gap group then all elements $x$ of $K\backslash O^{2}(G)$ oforder 2 such that
$C_{K}(x)$ is not a 2-group are conjugate in G. Then $LO(G)\subset CSm(G)$ . Furthermore, if $G/G^{ni1}$ is an
elementary abelian 2-group then $LO(G)=CSm(G)$.

If $K$ is an Oliver group with $|K|\leq 2000$ and $[K : O^{2}(K)]=2$ , then $K$ is a gap group or all
elements $x$ of $K\backslash O^{2}(K)$ of order 2 such that $C_{K}(x)$ is not a 2-group are conjugate in $K$ . We have
still no example of a group $G$ so that $mo(G)\neq LO(G)$ .

Let $H=D_{2p_{1}}\cross D_{2p_{2}}\cross\cdots\cross D_{2p_{r}}$ be a direct product group of dihedral groups $D_{2p},$ , where
$p_{1},$ $\ldots$ , $p_{r}\geq 1$ are odd integers. Then $G\cross H$ is a nongap group if $G$ is a nongap group.

Theorem 4.4. Let $G$ be an Oliver group as in Theorem 4.3 and let $H$ be as above. It holds that
$LO(G\cross H)$ is a subset of $CSm(G\cross H)$ . Furthermore if $G/G^{nil}$ is an elementary abelian 2-group,
then $CSm(G\cross H)=LO(G\cross H)$.

5. PROJECTIVE GENERAL LINEAR GROUPS

We note that $PGL(2, q)$ is isomorphic to the dihedral group $D_{6}$ for $q=2$ , the symmetric group
$S_{4}$ for $q=3$ , the altemating group $A_{5}$ for $q=4$ , the symmetric group $S_{5}$ for $q=5$ , and nonsolvable
for $q\geq 4$ . The group $PGL(2, q)$ is isomorphic to $PSL(2,q)$ if $q$ is a power of 2. If $q\geq 5$

is odd, $PGL(2, q)$ has a perfect subgroup $PSL(2, q)$ with index 2, which implies $[PGL(2, q)$ :
$O^{2}(PGL(2, q))]=2$ .

It is easy to see the rank of $LO(PGL(2, q))$ . Note that rank $LO(G)= \max(a_{G}-1,0)$ if $G$ is a
perfect group.
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Proposition 5.1. Suppose that $q$ is odd.

rank $LO(PGL(2, q))=\{\begin{array}{ll}0 q=3,5,7a_{PGL(2,q)}-1 q=9,17a_{PGL(2,q)}-2 otherwise\end{array}$

Remark 5.2. Suppose that $q$ is an oddprime power integer

(1) $PGL(2, q)$ is not a gap group ifand only if$q=3,5,7,9,17$ .
(2) $PGL(2, q)$ is $a$ Oliver group ifand only if$q\geq 5$ .
(3) rank $LO(PGL(2, q))=a_{C_{q+1}}-1$ if$q=9,17$ .
(4) rank $LO(PGL(2, q))=a_{C_{q+1}}+a_{C_{q- 1}}-2$ if$q\neq 3,5,7,9,17$ .

Theorem 4.3 gives $CSm(PGL(2, q))=LO(PGL(2, q))$ . Furthermore, we obtain the following.

Theorem 5.3. $Sm(PGL(2, q))=LO(PGL(2, q))$.

6. SMALL GROUPS

In this section we discuss by viewing from the order of a Sylow 2-subgroup of an Oliver group.
If $G$ is an Oliver group of odd order then $G$ is a gap group and $LO(G)$ is a subset of $CSm(G)$ .

Theorem 6.1. $IfG$ is an Oliver group whose order is divisible by 2 not by 4 then $LO(G)$ is a subset
of$CSm(G)$ .

Example 6.2. Let $K$ be afinite abelian group ofodd order whose rank is greater than 2. Let $h$ be
an automorphism on $K$ which sends $k\in K$ to it ’s inverse $k^{-1}$ . Put $G=\langle h,$ $K\rangle$ . Then $G$ is an Oliver
nongap group satisf $ingCSm(G)=LO(G)$.

Theorem 6.3. Let $N$ be a normal subgroup ofG. Suppose that $a_{G}\leq a_{G,N}(N)+1$ . The induction
mapping $Ind_{N}^{G}$ : $LO(N)\otimes \mathbb{Q}arrow LO(G)\otimes \mathbb{Q}$ is surjective.

From now on, we suppose that $G$ is a finite Oliver group, $[G : G^{ni1}]=2$ and $a_{G}\geq 2$ . Note that
$a_{G,G^{ni1}}(G\backslash G^{ni1})=a_{G}-a_{G,G^{ni1}}(G^{ni1})$. The above theorem yields the following.

Theorem 6.4. If$a_{G}\leq a_{G.G^{ni1}}(G^{ni1})+1$ then $LO(G)=mo(G)=CSm(G)$.

So, we are interesting in the case when $a_{G,G^{ni1}}(G\backslash G^{ni1})=a_{G}-a_{G,G^{\mathfrak{n}i1}}(G^{ni1})\geq 2$ .
Let $F$ be the set of isomorphism classes of finite Oliver nongap groups $K$ such that 4 $||K|$ ,

$[K : K^{ni1}]=2$ , and $a_{K.K^{n11}}(K\backslash K^{ni1})\geq 2$ . Note that $|G|$ is divisible by 8 if $|G|$ is divisible by 4 and
less than or equal to 2000. The set of all representatives of elements in $F$ consists of 5 groups

$G_{648},$ $PGL(2,9),$ $G_{1296},$ $G_{1944a},$ $G_{1944b}$ .

Here they are given as follows.

$G_{108}arrow^{\triangleleft}C_{3}^{3}$ $G_{648}arrow^{\triangleleft}G_{324}arrow^{\triangleleft}G_{108}$

$\downarrow$
$\downarrow$ $\downarrow$

$C_{2}^{2}$ $C_{2}$ $C_{3}$
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$G_{1944a}arrow^{\triangleleft}G_{972a}arrow^{\triangleleft}G_{108}$

$\triangleleft$

$G_{1944b}arrow G_{972b}arrow G_{108}$

$\downarrow$ $\downarrow$
$\downarrow$ $\downarrow$

$C_{2}$ $C_{9}$ $C_{2}$ $C_{3}^{2}$

$G_{1296}arrow^{\triangleleft}G_{648}arrow^{\triangleleft}G_{216}arrow^{\triangleleft}C_{3}^{3}$

$\downarrow$ $\downarrow$ $\downarrow$

$C_{2}$ $C_{3}$ $Q_{8}$

$G_{648}$ gives the isomorphism class of the smallest group in $r$. $G_{1296}$ has center $C_{2}$ and the
quotient group by it’s center is isomorphic to $G_{704}$ . For these groups $G$ , it holds that $CSm(G)=$
$Sm(G)$ . $a_{G}=4,2,10,6,6$ and $a_{G,G^{ni1}}(G\backslash G^{ni1})=3,2,4,3,3$ respectively. There are only five
groups up to order 2000. However we have the following.

Proposition 6.5. There are infinitely manyfinite groups $G$ such that $[G : G^{ni1}]=2$ and $a_{G,G^{\mathfrak{n}i1}}(G\backslash$

$G^{ni1})\geq 2$ .

Problem 6.6. Is there a finite nongap group $G$ and involutions $x$ and $y$ of $G\backslash O^{2}(G)$ such that
$[G : G^{ni1}]=2,$ $x$ andy are not conjugate in $G$, and $C_{G}(x)$ and $C_{G}(y)$ are both not 2-groups.

There is no such a group if the order is less than or equal to 2000.

Proposition 6.7. Suppose that there is afinite nongap group satisffiing the property in the above
problem. Then there are infinitely manyfinite nongap groups satisfying the same property.

7. DIRECT PRODUCT GAP GROUPS

In this section, we consider about when a direct product group is a gap group. First we remark
that

Proposition 7.1 ([6, 12]). Let $K$ be afinite group with $\mathcal{P}(K)\cap \mathcal{L}(K)=\emptyset$ and $H$ be a 2-group.
$K\cross H$ is a gap group ifand only ifso is $K$.

We call a finite group $G$ is a generalized dihedral group if $[G : O^{2}(G)]=2$ and there is an
involution $h\in G\backslash O^{2}(G)$ such that $hgh=g^{-1}$ for any $g\in O^{2}(G)$ . A generalized dihedral group is
a subgroup of certain direct product group of dihedral groups.

Proposition 7.2 ([13, Lemma 7.2]). Suppose $[K : K^{ni1}]=2$ and $P(K)\cap \mathcal{L}(K)=\emptyset$ . For an odd
prime $p$ and a nontrivial p-group $H,$ $K\cross H$ is a gap group ifand only if $K$ is not a generalized
dihedral group.

Moreover we have the following.

Proposition 7.3. Suppose that $[K : K^{ni1}]=2$ and $\mathcal{P}(K)\cap.\mathcal{L}(K)=\emptyset$ . $If|\pi(H/[H,H])|\geq 2$ , or
$|\pi(H/[H,H])|=1$ and $K$ is not a generalized dihedral group then $K\cross H$ is a gap group, where
$[H, H]$ is a commutator subgroup of$H$.
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If $K$ or $H$ is a gap group then so is $K\cross H$ . We put

$\kappa(K)=\bigcup_{x\in K\backslash O^{2}(K)}\pi(\langle x\rangle)$
.

$\kappa(K)$ is a subset of $\pi(K)$ and if $K\neq O^{2}(K)$ then it contains 2.

Theorem 7.4. Suppose that $K$ and $H$ are nongap groups with $[K : K^{ni1}]=[H : H^{\mathfrak{n}i1}]=2$ . Let
$L$ be a unique subgroup of $K\cross H$ with index 2 which is neither $K$ nor H. Further suppose that
$\mathcal{P}(L)\cap L(L)=\emptyset$ . Thefollowing claims are equivalent.

(1) $L$ is a gap group.
(2) (i) $a_{K.O^{2}(K)}(K\backslash O^{2}(K))\geq 1$ and there is a 2-element $x$ of$H\backslash O^{2}(H)$ with $|x|\geq 4$ , or

(ii) $a_{H,O^{2}(H)}(H\backslash O^{2}(H))\geq 1$ and there is a 2-element $y$ of$K\backslash O^{2}(K)$ with $[\gamma|\geq 4$ . or
(iii) $a_{K,O^{2}(K)}(K\backslash O^{2}(K))\geq 1,$ $a_{H,O^{2}(H)}(K\backslash O^{2}(H))\geq 1and|\kappa(K)\cup\kappa(H)|\geq 3$ .

Corollary 7.5. Let $K,$ $H$, and $L$ be groups as in Theorem 7.4. If
(1) $a_{K,O^{2}(K)}(K\backslash O^{2}(K))=a_{H,O^{2}(H)}(K\backslash O^{2}(H))=0$, or
(2) $a_{K,O^{2}(K)}(K\backslash O^{2}(K))\geq 1$ and $H$ is not a generalized dihedral group, $or$

(3) $a_{H,O^{2}(H)}(H\backslash O^{2}(H))\geq 1$ and $K$ is not a generalized dihedral group,
then $K\cross H$ is a nongap group. Furthermore, the converse is also true $if\mathcal{P}(O^{2}(K))\cap \mathcal{L}(O^{2}(K))=\emptyset$

and $\mathcal{P}(O^{2}(H))\cap \mathcal{L}(O^{2}(H))=\emptyset$ .
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