Lurie's Topological Quantum Field Theory Transformation Group, RIMS, 2009/08/20 Norihiko Minami Nagoya Institute of Technology

1. INTRODUCTION

- [CTFT] Jacob Lurie, On the Classification of Topological Field Theories (Draft), May 1, 2009, 111pages,
- [GMTW] math/0605249 The homotopy type of the cobordism category. Soren Galatius, Ib Madsen, Ulrike Tillmann, Michael Weiss

In [CTFT], a part of the proof [GMTW] of the Mumford Conjecture (= the Madsen-Weiss Theorem) for a closed oriented manifold Σ_g of dimension n = 2:

— Mumford Conjecture = Madsen-Weiss Theorem –

The map induced by the Miller-Morita-Mumford classes

$$\mathbb{Q}[\kappa_1,\kappa_2,\ldots]\to H^*(BDiff(\Sigma_g);\mathbb{Q})$$

is an isomorphism in degrees $\leq n(g)$ with $\lim_{g \to \infty} n(g) = \infty$.

(1) For a general closed oriented manifold M of dimension n, construct

$$BDiff(M) \to \Omega^n |\operatorname{Bord}_n^{SO(n)}|$$

(2) (Cobordism hypothesis, Group-Completed Version) For a topological group G with a continuous homomorphism $\chi: G \to O(n)$,

 $|\mathbf{Bord}_n^G| \simeq (QS^0)_{hG}.$

In particular,

$$|\mathbf{Bord}_n^{SO(n)}| \simeq \Omega^\infty \left(\Sigma^n BSO(n)^{-\zeta_n} \right)$$

where ζ_n is the universal rank *n* vector bundle over BSO(n).

An outline of the proof of the Munford conjecture -

(1) Specializing to the case $M = \Sigma_g$, factorize as

 $BDiff(\Sigma_g) \to Y_g$

a connected component inclusion $\Omega^2 | \mathbf{Bord}_2^{SO(2)} |$

- (2) (The Harer stability) $BDiff(\Sigma_g) \to Y_g$ is an n(g)-equivalence with $\lim_{g \to \infty} n(g) = \infty$.
- (3) $\Omega^2 |\operatorname{Bord}_2^{SO(2)}| \simeq \Omega^\infty (BSO(2)^{-\zeta_2}) \simeq \Omega^\infty (\mathbb{C}P_{-1}^\infty)$ is easy to understand homotopy theoretically (Galatius).

In this paper, I shall present a short introduction to some higher categorical aspect of the cobordism hypothesis presented in [CTFT], in an OHP presentation style. I claim no originality here, but I intended to convey the readers with at least a rough outline of [CTFT]. Of course, I am entirely responsible for any possible mistakes and confusions here. Also, I hope to come back with a sequel with more details.

Fortunately, Lurie's own lecture series on this subject is available as video files on the web:

http://lab54.ma.utexas.edu:8080/video/lurie.html

So, just google "Jacob Lurie video" to locate this web site!

2. What is the Cobordism Hypothesis?

A very general form of the cobordism hypothesis is the following:

Cobordism Hypothesis for (X,ζ) -manifolds (Theorem 2.4.18) –

- C: a symmetric monoidal (∞, n) -category with duals; C^{\sim} : its underlying ∞ -groupoid (= $(\infty, 0)$ -category), obtained by discarding all of the noninvertible morphisms [CTFT, 2.4.4];
 - T^{\sim} : a topological space s.t. $\mathcal{C}^{\sim} \cong \pi_{\leq \infty} T^{\sim}$, as an ∞ -groupoid;
- (X, ζ) : a CW complex X and its n dimensional vector bundle with an inner product;

 $X \to X$: its associated princial O(n)-bundle of orthonormal frames in ζ ;

 \implies \exists an equivalence of $(\infty, 0)$ -categories:

$$\operatorname{Fun}^{\otimes}\left(\operatorname{Bord}_{n}^{(X,\zeta)},\mathcal{C}\right)\simeq\operatorname{Hom}_{O(n)}\left(\tilde{X},T^{\sim}\right)$$

Natual questions concerning the cobordism hypthesis

- (a) What is an (∞, n) -category?
- (b) What is a (symmetric monoidal) functor between (symmetric monoidal) (∞, n) -categories?
- (c) What is the (∞, n) -category $\mathbf{Bord}_n^{(X,\zeta)}$?
- (d) What does it mean for a symmetric monoidal (∞, n) -category to have duals?
- (e) How can we deduce $|\mathbf{Bord}_n^G| \simeq (QS^0)_{hG}$ from the cobordism hypothesis?

3. What is an (∞, n) -category?

- A rough definition of (∞, n) -category -

An (∞, n) -category is a higher category, where all the "strictness" are dropped and only "up to coherent isomorphisms", in which all k-morphism are invertible for k > n.

- A fundamental *n*-groupoid of a topological space X -

For each $0 \leq n \leq \infty$, one can define an *n*-category $\pi_{\leq n}X$, called the fundamental n-groupoid of X:

- The objects of $\pi_{\leq n} X$ are the points of X.
- Given a pair of objects $x, y \in X$, a 1-morphism in $\pi_{\leq n} X$ from x to y is a path in X from x to y.
- Given a pair of objects $x, y \in X$ and a pair of 1-morphisms $f; g: x \to y$, a 2-morphism from f to g in $\pi \leq n X$ is a homotopy of paths in X (which is required to be fixed at the common endpoints x and y).
- An *n*-morphism in $\pi_{\leq n} X$ is given by a homotopy between homotopies between . . . between paths between points of X. Two such homotopies determined the same *n*-morphism in $\pi_{\leq n} X$ if they are homotopic to one another (via a homotopy which is fixed on the common boundaries).

- A rough inductive definition of (∞, n) -category -

- $(\infty, 0)$ -category = ∞ -groupoid
- "=" topological space (∞, n) -category consists of the following data:
 - a collection of objects X, Y, Z, \ldots
 - for pairs of objects $X, Y \in \mathcal{C}$, an $(\infty, n-1)$ -category $\operatorname{Hom}_{\mathcal{C}}(X, Y)$
 - composition law
 - Associativity (with units) (up to coherent isomorphism)

- Examples of (∞, n) -categories -

- For a topological space X, its fundamental ∞ -groupoid $\pi_{\leq \infty} X$ is an $(\infty, 0)$ -category;
- An $(\infty, n-1)$ -category is an (∞, n) -category;
- An *n*-category is an (∞, n) -category by considering only identity kmorphisms for k > n;

There is an adjunction:

$$\begin{aligned} & \operatorname{Fun}_{n-\operatorname{category}}(h_n\mathcal{D},\mathcal{C}) &\cong & \operatorname{Fun}_{(\infty,n)-\operatorname{category}}(\mathcal{D},i\mathcal{C}) \\ & h_n: \{(\infty,n)-\operatorname{category}\} \xrightarrow{} \{n-\operatorname{category}\}:i \end{aligned}$$

 $\mathcal{D} \xrightarrow{h_n} h_n \mathcal{D}$ *iC* (only identity k-morphisms for k > n) $\prec \dots \downarrow C$,

where, for an (∞, n) -category \mathcal{D} , $h_n \mathcal{D}$ is the homotopy *n*-category of \mathcal{D} , given by

- For k < n, the k-morphisms of $h_n \mathcal{D}$ are the k-morphisms of \mathcal{D} .
- The *n*-morphisms of $h_n \mathcal{D}$ are given by isomorphism classes of *n*morphisms in \mathcal{D} .

- What is an $(\infty, 0)$ -category supposed to be?

 $(\infty, 0)$ -category is a topological space, or a Kan complex \implies the object of the classical homotopy theory.

What is an $(\infty, 1)$ -category supposed to be?

Must satisfy the following conditions:

- Both (∞, 0)-category (i.e. a topological space or a Kan complex) and a strict 1-category (i.e. an ordinary category) are (∞, 1)-categories
- For every objects X, Y, Hom(X, Y) is an $(\infty, 0)$ -category (i.e. a topological space or a Kan complex).

Actually, there are many different approaches to define an $(\infty, 1)$ -category, such as a topological category, a simplicial category, a quasi-category, a Segal category, a complete Segal space.

However, these are all essentaily the same concepts, and there is a diagram of right Quillen equivalences

where

- The category of simplicial sets Set_{\triangle} has the Joyal model structure, whose fibrant objects are nothig but quasi categories.
- Cat_{Δ} is the category of simplicial categories.
- Fun(△^{op}, Set_△) is the category of all bisimplicial sets with the complete Segal model structure
- $Seg_{Set_{\Delta}}$ is the category of preSegal categories: i.e. bisimplicial sets $X_{\bullet,\bullet}$ with the property that the 0th column $X_{\bullet,0}$ is a constant simplicial set.

The original idea of Rezk and Barwick -

Understand iductively w.r.t. n, by expressing an (∞, n) -category by $(\infty, n-1)$ -categories:

They compared the following two objects:

• (∞, n) -category \mathcal{C}

• simplicial $(\infty, n-1)$ -category C_{\bullet} with the <u>Segal condition</u>: For each $k \ge 0$, the canonical map

 $\mathcal{C}_k \to \mathcal{C}_1 \times_{\mathcal{C}_0} \mathcal{C}_1 \times_{\mathcal{C}_0} \cdots \times_{\mathcal{C}_0} \mathcal{C}_1$

is an equivalence of $(\infty, n-1)$ -categories.

 $-(\infty, n) \mathcal{C} \implies \text{simplicial } (\infty, n-1) \mathcal{C}_{\bullet} \text{ with Segal } -$

Given an (∞, n) -category C, construct a simplicial $(\infty, n-1)$ C_{\bullet} with the Segal condition by

- $C_0 := (\infty, 0)$ -category (and so an $(\infty, n-1)$ -category) extracted from C, by discarding all of the noninvertible morphisms in C at all levels.
- $C_1 := (\infty, n-1)$ -category whose obejects are given by triples $(X \in C_0, Y \in C_0, f \in \operatorname{Map}_{\mathcal{C}}(X, Y))$, where, for each pair of objects $X, Y \in \mathcal{C}$, $\operatorname{Map}_{\mathcal{C}}(X, Y)$ is an $(\infty, n-1)$ -category, depending functorially on the pair $X, Y \in C_0$.
- $C_k := (\infty, n-1)$ -category whose obejects are given by (2k+1)-tuples

 $(X_0 \in \mathcal{C}_0, X_1 \in \mathcal{C}_0, \cdots, X_k \in \mathcal{C}_k,$

 $f_1 \in \operatorname{Map}_{\mathcal{C}}(X_0, X_1), \cdots, f_k \in \operatorname{Map}_{\mathcal{C}}(X_{k-1}, X_k)),$

The collection of (∞; n-1)-categories {C_k}_{k≥0} forms a simplicial (∞, n-1)-category C_• satisfying the Segal condition.

- simplicial $(\infty, n-1) \mathcal{C}_{\bullet}$ with Segal $\implies (\infty, n) \mathcal{C}$ -

Given a simplicial $(\infty, n-1)$ category \mathcal{C}_{\bullet} satisfying the Segal condition, construct an (∞, n) -category \mathcal{C} by

• The objects of \mathcal{C} are the objects of \mathcal{C}_0 :

 $\operatorname{Ob}(\mathcal{C}) = \operatorname{Ob}(\mathcal{C}_0)$

• Given a pair of objects $X; Y \in C_0$, the $(\infty, n-1)$ -category of maps $\operatorname{Map}_{\mathcal{C}}(X, Y)$ is given by the fiber product $\{X\} \times_{C_0} C_1 \times_{C_0} \{Y\}$:

 $\operatorname{Map}_{\mathcal{C}}(X,Y) = \{X\} \times_{\mathcal{C}_0} \mathcal{C}_1 \times_{\mathcal{C}_0} \{Y\}$

• Given a sequence of objects $X_0, \ldots, X_k \in \mathcal{C}_0$, the composition law

$$\operatorname{Map}_{\mathcal{C}}(X_0, X_1) \times \cdots \operatorname{Map}_{\mathcal{C}}(X_{k-1}, X_k) \to \operatorname{Map}_{\mathcal{C}}(X_0, X_k)$$

is given by the composite map

$$\operatorname{Map}_{\mathcal{C}}(X_{0}, X_{1}) \times \cdots \operatorname{Map}_{\mathcal{C}}(X_{k-1}, X_{k})$$

$$= (\{X_{0}\} \times c_{0} C_{1} \times c_{0} \{X_{1}\}) \times \cdots (\{X_{k-1}\} \times c_{0} C_{1} \times c_{0} \{X_{k}\})$$

$$\xleftarrow{\simeq} C_{k} \times c_{0} \times \cdots \otimes c_{0} (\{X_{0}\} \times \cdots \{X_{k}\})$$

$$\rightarrow \{X_{0}\} \times c_{0} C_{1} \times c_{0} \{X_{k}\} = \operatorname{Map}_{\mathcal{C}}(X_{0}, X_{k})$$

A bad news: a motivation of "completeness"

Although the composite

$$(\infty, n) \rightarrow$$
 simplicial $(\infty, n-1) \rightarrow (\infty, n)$
 $\mathcal{C} \mapsto \qquad \qquad \mathcal{C}_{\bullet} \qquad \mapsto \mathcal{C}'$

is an equivalence: $\mathcal{C} \simeq \mathcal{C}'$, the composite

simplicial
$$(\infty, n-1) \rightarrow$$
 $(\infty, n) \rightarrow$ simplicial $(\infty, n-1)$
 $\mathcal{C}_{\bullet} \mapsto \qquad \qquad \mathcal{C} \qquad \mapsto \mathcal{C}'_{\bullet}$

is <u>NOT</u> an equivalence $C_{\bullet} \not\simeq C'_{\bullet}$ in general, for C may have more invertaible morphisms than C_0 and $C_0 \not\simeq C'_0$.

• An *n-fold simplicial space* is an *n*-fold simplicial object in the category of topological spaces and continuous maps:

$$\Delta^{op} \times \cdots \Delta^{op} \to Top$$

- We will say that a map $X \to Y$ of *n*-fold simplicial spaces is a *weak homotopy equivalence* if the induced map $X_{k_1,\ldots,k_n} \to Y_{k_1,\ldots,k_n}$ is a weak homotopy equivalence of topological spaces, for every sequence of nonnegative integers $k_1, \ldots, k_n \ge 0$.
- A commutative diagram of topological spaces

is said to be a *homotopy pullback square* (or a *homotopy Cartesian diagram*) if

$$W \to X \times_Z Y \to X \times_Z^R Y := X \times_Z Z^{[0,1]} \times_Z Y$$

is a weak homotopy equivalence.

• A diagram of *n*-fold simplicial spaces:

is a homotopy pullback square if, for every sequence of nonnegative integers $k_1; \ldots; k_n \ge 0$, the induced square

is a homotopy pullback square.

• We will say that an *n*-fold simplicial space X is <u>essentially constant</u> if there exists a weak homotopy equivalence of *n*-fold simplicial spaces $X' \to X$, where X' is a constant functor.

- The case n = 1: the Complete Segal Space -

- Let X_{\bullet} be a simplicial space. We say that X_{\bullet} is a <u>Segal space</u> if the following condition is satisfied:
 - For every pair of integers $m, n \ge 0$, the diagram

is a homotopy pullback square.

• Let X_{\bullet} be a Segal space, and let

$$\delta: X_0 \to X_1$$

be the "degeneracy map" induced by the unique nondecreasing functor $\{0,1\} \rightarrow \{0\}$. For every point x in X_0 , the morphism $[\delta(x)]$ in the homotopy category hX_{\bullet} coincides with the identity map $\mathrm{id}_x : x \rightarrow x$. In particular,

 $\delta(x)$ is invertible for each $x \in X_0$.

• Let X_{\bullet} be a Segal space, and let $Z \subseteq X_1$ denote the subset consisting of the invertible elements (this is a union of path components in X_1 ; we will consider Z as endowed with the subspace topology). We will say that X_{\bullet} is *complete* if the map

$$\delta: X_0 \to Z$$

is a weak homotopy equivalence.

• $(\infty, 1)$ -category is a complete Segal space.

An (∞, n) -category is defined by generalizing "complete Segal space"

An $(\infty; n)$ -category is an *n*-fold complete Segal space.

- Definition of a *n*-fold (complete) Segal space -

Let n > 0, and let X be an n-fold simplicial space. Regard X as a simplicial object X. in the category of (n-1)-fold simplicial spaces. X is said to be an <u>n-fold Segal space</u> if the following conditions are satisfied:

(A1) For every $0 \le k \le m$, the diagram

is a homotopy pullback square (of (n-1)-fold simplicial spaces).

- (A2) The (n-1)-fold simplicial space X_0 is essentially constant.
- (A3) Each of the (n-1)-uple simplicial spaces X_k is an (n-1)-fold Segal space.

We will say that an *n*-fold Segal space X is <u>complete</u> if it satisfies the following additional conditions:

- (A4) Each of the (n-1)-dimensional Segal spaces X_n is complete (we regard this condition as vacuous when n = 1).
- (A5) Let Y_{\bullet} be the simplicial space described by the formula $Y_k = X_{k;0;\ldots 0}$; note that condition (A3) guarantees that Y_{\bullet} is a Segal space. Then Y_{\bullet} is complete.

- Completion -

• If X is an n-fold Segal space, then there is a universal example of a map $X \to X'$

in the homotopy category of *n*-fold simplicial spaces, such that X' is an *n*-fold complete Segal space, i.e. an (∞, n) -category. We will refer to X' as the *completion* of X.

 $(\infty, n) \rightarrow \text{simplicial } (\infty, n-1)$

• Intuitively, the completion is a refinement of the composition:

simplicial $(\infty, n-1) \rightarrow$

$$\mathcal{C} \mapsto \mathcal{C} \mapsto \mathcal{C}'$$

• The completion may be interpreted as a *"localization"* in an appropriate sense.

4. What is a (symmetric monoidal) functor between (symmetric monoidal) (∞, n) -categories?

• Let C and D be (∞, n) -categories. There exists another (∞, n) -category Fun(C; D)

of functors from C to D. The (∞, n) -category Fun(C; D) is characterized up to equivalence by the following universal property: for every (∞, n) categoy C', there is a bijection between

the set of isomorphism classes of functors

 $\mathcal{C}' \to \operatorname{Fun}(\mathcal{C}; \mathcal{D})$

and

the set of isomorphism classes of functors

 $\mathcal{C}' \times \mathcal{C} \to \mathcal{D}.$

• The collection of all (small) (∞, n) -categories can be organized into a (large) $(\infty, n+1)$ -category $Cat_{(\infty,n)}$, with mapping objects given by

$$\operatorname{Map}_{Cat_{(\infty;n)}}(\mathcal{C},\mathcal{D}) = \operatorname{Fun}(\mathcal{C};\mathcal{D})$$

• Suppose that C and D are symmetric monoidal (∞, n) -categories. Then we can also define an (∞, n) -category

 $\operatorname{Fun}^{\otimes}(\mathcal{C};\mathcal{D})$

of symmetric monoidal functors from C to D.

5. What is the (∞, n) -category $\mathbf{Bord}_n^{(X,\zeta)}$?

We should first explain Atiyah's topological field theory...

- The symmetric monoidal category $\mathbf{Cob}(n)$ -

For $n \in \mathbb{N}$, define the symmetric monoidal category $\mathbf{Cob}(n)$ by:

- (1) An **object** of Cob(n) is a closed oriented (n-1)-manifold M.
- (2) Given a pair of objects $M, N \in \mathbf{Cob}(n)$, a *morphism* from M to N in $\mathbf{Cob}(n)$ is a bordism from M to N: that is, an oriented *n*-dimensional manifold B equipped with an orientation-preserving diffeomorphism

$$\partial B \simeq \overline{M} \prod N.$$

Here \overline{M} denotes the manifold M equipped with the opposite orientation.

We regard two bordisms B and B' as defining the same morphism in $\operatorname{Cob}(n)$ if there is an orientation-preserving diffeomorphism $B \simeq B'$ which extends the evident diffeomorphism $\partial B \simeq \overline{M} \coprod N \simeq \partial B'$ between their boundaries.

(3) For any object $M \in \mathbf{Cob}(n)$, <u>the identity map</u> id_M is represented by the product bordism

$$B = M \times [0; 1].$$

(4) <u>Composition of morphisms</u> in Cob(n) is given by gluing bordisms together. More precisely, suppose we are given a triple of objects $M, M', M'' \in Cob(n)$, and a pair of bordisms

 $B: M \to M', B': M' \to M'',$

the composition $B' \circ B$ is defined to be the morphism represented by the manifold

$$B \prod_{M'} B'.$$

(5) <u>The tensor product operation</u> for the symmetric monoidal structure

 \otimes : $\mathbf{Cob}(n) \times \mathbf{Cob}(n) \to \mathbf{Cob}(n)$

is given by the disjoint union of manifolds.

(6) <u>The unit object</u> for the symmetric monoidal structure of $\overline{Cob(n)}$ is

Ø,

the empty set (regarded as a manifold of dimension (n-1)).

– Atiyah's topological field theory –

Let k be a field. A <u>topological field theory</u> of dimension n is a symmetric monoidal functor

 $Z: \mathbf{Cob}(n) \to \mathbf{Vect}(k),$

where Vect(k) is the usual symmetric monoidal category of vector spaces over k.

- A couple of problems of the topological field theory -

- Not interesting enough for those interested in BDiff(M), especially those interested in the Mumford conjecture!
- Not easy to understand for large n, because the structure of a n-dimensional manifold tends to become complicated as n becomes larger!

- For the first problem: encode the group of diffeos! -

For $n \in \mathbb{N}$, define the topological symmetric monoidal category $\operatorname{Cob}_t(n)$ by topologically enriching $\operatorname{Cob}(n)$:

- The objects of $\mathbf{Cob}_t(n)$ are closed oriented manifolds of dimension (n-1).
- Given a pair of objects $M, N \in \mathbf{Cob}_t(n)$, we let $\mathrm{Hom}_{\mathbf{Cob}_t(n)}(M, N)$ denote the classifying space $\mathcal{B}(M, N)$ of bordisms from M to N:

$$\operatorname{Hom}_{\operatorname{Cob}_{\ell}(n)}(M,N) := \mathcal{B}(M,N) = BC,$$

where C is a topological category s.t.

- objects are oriented bordisms B from M to N,
- for every pair of bordisms B and B', the collection of (orientationpreserving) diffeomorphisms

 $\operatorname{Hom}_C(B;B')$

has a topology (the topology of uniform convergence of all derivatives) such that the composition maps are continuous.

In particular,

 $\pi_0 \operatorname{Hom}_{\operatorname{Cob}_t(n)}(M, N) = \operatorname{Hom}_{\operatorname{Cob}(n)}(M, N).$

Now, for any closed oriented manifold M of dimension n,

 $BDiff(M) \xrightarrow{\text{connected component inclusion}} \mathcal{B}(\emptyset, \emptyset)$

 $= \operatorname{Hom}_{\operatorname{Cob}_{t}(n)}(\emptyset, \emptyset)$

does show up in $\mathbf{Cob}_t(n)$, and we may instead consider a topological symmetric monoidal functor

 $\overline{Z}: \mathbf{Cob}_t(n) \to \mathcal{C},$

where C is some topological symmetric monoidal category...

- For the second problem: take into account lower dim.! Like a CW decorportion of a CW complex or a pants decomposition of a surface, any n-dimensional manifold is composed of very simple n - k-dimensional manifolds (0 < k < n) \implies Take into account lower dimensional manifolds: Suppose given a pair of nonnegative integers $k \leq n$, a k-category $\operatorname{Cob}_k(n)$ is given by • The objects of $\operatorname{Cob}_k(n)$ are closed oriented (n-k)-manifolds • Given a pair of objects $M, N \in \mathbf{Cob}_k(n)$, a 1-morphism from M to N is a bordism from M to N: that is, a (n - k + 1)-manifold B equipped with a diffeomorphism $\partial B \simeq \overline{M} \mid N.$ • Given a pair of objects $M, N \in \mathbf{Cob}_k(n)$ and a pair of bordisms $B, B': M \to N, a 2$ -morphism from B to B' is a bordism from B to B', which is required to be trivial along the boundary: in other words, a manifold with boundary $\overline{B} \coprod_{M \coprod \overline{N}} \left((\overline{M} \coprod N) \times [0,1] \right) \coprod_{\overline{M} \coprod N} B'$ • A k-morphism in $\mathbf{Cob}_k(n)$ is an n-manifold X with corners, where the structure of ∂X is determined by the source and target of the morphism. Two *n*-manifolds with (specified) corners X and Y deter-

Two *n*-manifolds with (specified) corners X and Y determine the same *n*-morphism in $\operatorname{Cob}_k(n)$ if they differ by an orientation-preserving diffeomorphism, relative to their boundaries.

• Composition of morphisms (at all levels) in $Cob_k(n)$ is given by gluing of bordisms.

Then,

- $\mathbf{Cob}_0(n)$ may be identified with the set of of diffeomorphism classes of closed, oriented *n*-manifolds.
- $\mathbf{Cob}_1(n) = \mathbf{Cob}(n)$
- Objects and morphisms of $\mathbf{Cob}(n)$ can be regarded as (n-1)morphisms and *n*-morphisms of $\mathbf{Cob}_n(n)$. We may therefore
 regard $\mathbf{Cob}_n(n)$ as an elaboration of $\mathbf{Cob}(n)$ obtained by considering also "lower" morphisms corresponding to manifolds of
 dimension < n-1.

So, we may instead consider a symmetric monoidal functor of n-categories

$$\overline{Z}: \mathbf{Cob}_n(n) \to \mathcal{C},$$

where C is some symmetric monoidal *n*-category...

- A good news! \mathbf{Bord}_n -Using an (∞, n) -category **Bord**_n, we may simultaneously elaborate both ٠ $\operatorname{Cob}_t(n)$ and $\operatorname{Cob}_n(n)$. Thus, $Bord_n$ may solve the two problems: (1) Not interesting; (2) Not easy; of $\operatorname{Cob}(n)$. • Symmetric monoidal $(\infty; n)$ -category $Bord_n$ is described informally as follows: - The *objects* of $Bord_n$ are 0-manifolds. - The 1-morphisms of Bord_n are bordisms between 0-manifolds. - The 2-morphisms of Bord_n are bordisms between bordisms between 0-manifolds. - The n-morphisms of $Bord_n$ are bordisms between bordisms between \ldots between bordisms between 0-manifolds (in other words, nmanifolds with corners). - The (n+1)-morphisms of Bord_n are diffeomorphisms (which reduce to the identity on the boundaries of the relevant manifolds). The (n+2)-morphisms of Bord_n are isotopies of diffeomorphisms. . . . \mathbf{Bord}_n endowed with The (∞, n) -category is а symmetric monoidal structure, given by disjoint unions of manifolds. h_n (Bord_n) = Cob_n(n). The precise definition of $Bord_n$ is given as the completion of a *n*-fold Segal space $PBord_n$, which is defined using more sophisticated geometric argument... (X,ζ) -structure -

Let X be a topological space and let ζ be a real vector bundle on X of rank n. Let M be a manifold of dimension m ≤ n. An (X, ζ)-structure on M consists of the following: A continuous map f : M → X. An isomorphism of vector bundles

 $T_M \oplus \mathbb{R}^{n-m} \simeq f^* \zeta.$

- $\operatorname{Bord}_n^{(X,\zeta)}$ -

A n-fold Segal space PBord^(X,ζ) is constructed just like PBord_n, by using manifolds with (X, ζ)-structures..

 $\operatorname{Bord}_n^{(X,\zeta)} \stackrel{\text{Definition}}{=:}$ the completion of

the *n*-fold Segal space $P\mathbf{Bord}_n^{(X,\zeta)}$

• Thus, $\mathbf{Bord}_n^{(X,\zeta)}$ is an (∞, n) -category, and we may consider a symmetric monoidal functor between (∞, n) -categories

 $\tilde{Z}: \mathbf{Bord}_n^{(X,\zeta)} \to \mathcal{C},$

or even better, the (∞, n) -category

 $\operatorname{Fun}^{\otimes}\left(\operatorname{\mathbf{Bord}}_{n}^{(X,\zeta)},\mathcal{C}
ight),$

where \mathcal{C} is some symmetric monoidal (∞, n) -category.

• When C is a symmetric monoidal (∞, n) -category with duals, the cobordism hypothesis claims an equivalence of $(\infty, 0)$ -categories:

 $\operatorname{Fun}^{\otimes}\left(\operatorname{\mathbf{Bord}}_{n}^{(X,\zeta)},\mathcal{C}\right)\simeq\operatorname{Hom}_{O(n)}\left(\tilde{X},T^{\sim}\right)$

6. What does it mean for a symmetric monoidal (∞, n) -category to have duals?

- From Atiyah's TFT to (∞, n) -category -

• For any symmetric monoidal functor $Z: \operatorname{Cob}(2) \to \operatorname{Vect}(k),$

$$Z(S^1) \in \mathrm{Ob}\left(\mathbf{Vect}(k)\right)$$

is always a finite dimensional k-vector space.

• This is a formal consequence of the fact that

$$X:=Z(S^1), \quad X^ee:=Z(\overline{S^1})$$

are dual vector spaces of each other. To show this fact, use the obvious bordisms to produce the k-linear maps

$$ev_X: X \otimes X^{\vee} \to k$$

 $coev_X: k \to X^{\vee} \otimes X,$

s.t.

$$\operatorname{id}_{X} : X \xrightarrow{\operatorname{id}_{X} \otimes coev_{X}} X \otimes X^{\vee} \otimes X \xrightarrow{ev_{X} \otimes \operatorname{id}_{X}} X$$
$$\operatorname{id}_{X^{\vee}} : X^{\vee} \xrightarrow{coev_{X} \otimes \operatorname{id}_{X^{\vee}}} X^{\vee} \otimes X \otimes X^{\vee} \xrightarrow{\operatorname{id}_{X^{\vee}} \otimes ev_{X}} X$$

This characterization allows us to define the concept of *have a dual* for an object of a monoidal category.

- We would like to generalize the concept of "finite dimensionality" of Ob(Vect(k)) to an appropriate concept for an object of an (∞, n)-category, by defining an analogue of "dual" for an (∞, n)-category.
- For a monoidal category C, define a category BC by
 - $\operatorname{Ob}(B\mathcal{C}) = \{*\}.$
 - $-\operatorname{Hom}_{B\mathcal{C}}(*,*)=\operatorname{Ob}\mathcal{C}$
 - The composition

 $\operatorname{Hom}_{B\mathcal{C}}(*,*) \times \operatorname{Hom}_{B\mathcal{C}}(*,*) \to \operatorname{Hom}_{B\mathcal{C}}(*,*)$

is induced by the monoidal structure of \mathcal{C} .

Then,

an object $x \in Ob C$ has a dual \iff a morphism $x \in Hom_{BC}(*,*)$ has an adjoint

• For an (∞, n) -category C, we can also define an $(\infty, n + 1)$ -category BC just as above. Then, we define an concept of "have adjoint" for an $(\infty, n + 1)$ -category s.t.

 \mathcal{C} has duals $\stackrel{\text{def.}}{\longleftrightarrow} B\mathcal{C}$ has adjoints

• **Bord**^{$(x,\zeta)}_n has duals given by the manifold with opposite orientation.</sup>$

7. How can we deduce $|\mathbf{Bord}_n^G| \simeq (QS^0)_{hG}$?

Formal reduction of $|\mathbf{Bord}_n^G| \simeq (QS^0)_{hG}$ from CH

Specialize to the case:

 \mathcal{C} : a symmetric monoidal $(\infty, 0)$ -category with duals \implies \exists a topological space T s.t. (:: \mathcal{C} is $(\infty, 0)$ -category): $\mathcal{C} \cong \pi_{<\infty}T$; (: \mathcal{C} is symmetric monoidal): T is a E_{∞} -space; (:: C with duals): $\pi_0(T)$ is an abelian group. \implies T is an infinite loop space, and as infinite loop space with O(n)-actions: $T \simeq \operatorname{Map}_{\operatorname{infinite loop}}(QS^0, T),$ where the O(n)-action is through Ω^n in $T \simeq \Omega^n T(n)$ on the left, and is ONLY through QS^0 on the right. $\implies \widetilde{\operatorname{For}} \operatorname{Bord}_n^G := \operatorname{Bord}_n^{(BG, EG \times_G \mathbb{R}^n \to BG)}$ wtih $\widetilde{BG} = EG \times_G O(n),$ the $(\infty, 0)$ -category $|\text{Bord}_n^G|$, obtained from the symmetric monoidal (∞, n) -category with duals **Bord**^G_n by inverting all higher morphisms, also yields an infinite loop space, which we also denote by $|\mathbf{Bord}_n^G|.$ \implies For any infinite loop space T with $\mathcal{C} = \pi_{\leq \infty} T$, $\operatorname{Map}_{\operatorname{infinite loop}}\left(|\operatorname{Bord}_{n}^{G}|, T\right)$ $= \operatorname{Fun}^{\otimes} \left(|\operatorname{\mathbf{Bord}}_{n}^{G}|, \mathcal{C} \right) \stackrel{\vee}{=} \stackrel{\mathcal{C}: = (\infty, 0) - \operatorname{category}}{=} \operatorname{Fun}^{\otimes} \left(\operatorname{\mathbf{Bord}}_{n}^{G}, \mathcal{C} \right)$ $\stackrel{{}_{\sim} CH}{\simeq} \operatorname{Hom}_{O(n)}(EG \times_G O(n), T) = \operatorname{Hom}_G(EG, T)$ = Hom_G $(EG, Map_{infinite loop}(QS^0, T))$ = $\operatorname{Map}_{\operatorname{infinite loop, } G}(EG \times QS^0, T)$ $= \operatorname{Map}_{\text{infinite loop}}(EG \times_G QS^0, T)$ $= \operatorname{Map}_{infinite loop}((QS^0)_{hG}, T)$ $\implies |\mathbf{Bord}_n^G| \simeq (QS^0)_{hG}$