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1. Introduction

About 500 years ago
Leonard da Vinci observed

turbulent flow of water and
drew a sketch showing that
turbulence was comprised of

lots of vor ti ces (Fig 1 ) .

Turbulence is still one of the Fig. 1 Sketch of turbulence
by $Da$ Vinci.

important unresolved probl eln $s$

in nature, while lt is very difficult to understand
because turbulence is very coin plicated and nonlinear
phenomena. The concept of $||$ vortex $11$ may be a key
issue, but it is not

straightforward to identify
vortices in a usual classica]

fluid and to know the relation
between turbulence and

vortices. $[)$

On the other hand, in
the field of low temperature

physics, turbulence5 of
superfluid helium has been

Flg. 2 Quantum turbulence.
studied for these 50 yearS. The lines show the cores
Liquid helium enters the of quantized vortices.

superfluid state below 2.17 $K$ because of Bose-Einstein
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condensation of helium atoin $s$ . Th $1S$ state is subject to
severe constraints of quantum mechanics The most
important feature is that circulation of every vortex is
quantized by the quantuin $h/m$ , where $h$ is Planck’s
constant and $m$ is the mass of an atom Such a vortex is
called quantized vortex, being a stable topological
defect Even in superfluid heliuin occurs turbulence,
which is comprised of quantized vortices and called
quantum turbulence (Fig. 2).

Recently there have been growing interests on
quantum turbu $lence$ .

$2$ ) Since qu antum turbu lenc $e$

consists of definite elements (quantized vortices), lt is
expected to give a prototype of turbulence much
simpler than conventiona] classical turbulence and to
make a breakthrough for the great mystery of nature I
wi] $]$ discuss this fascinating topic brief $1y$ .

2. Bose-Einstein condensation, superfluidity, and quantized
vortices

This section reviews briefly the backgrounds of low
temperature physics necessary for understanding this article.
2.1 Bose-Einstein condensation

Quantum mechanics, which has developed since the
beginning of the 20th century, has changed drastical $1y$ our
natural ph ilosophy Quantum mechanics ls often thought to

give the physica] laws at in icroscopic scales, but this
understanding is not necessarily correct. Quantum mechanics
actually obeys the physical laws even at macroscopic scales.
Such a fie $1d$ is quantuin statistical In echanics.

The essence of quantum mechanics is the duality of
particle-picture and wave-picture Let’s consider an ideal
atomic gas. At relatively high temperatures, the statistics of
the atoms obeys the classical Maxwe11-Boltzman distribution
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and each atom behaves like a particle. As the temperature ls

reduced, however, the thermal de Broglie wavelength is

increased to become coin parable to the mean distance between

atoms Then each atoin becoin es to behave like a wave, and the

statistics changes to the quantuin Fermi-Dirac or Bose-Einstein

distribution depending on whether the atoin is a Fermion or a
Boson If the atoms are Bosons and the system is cooled

below a critical tein perature $T_{BEC}$ , they cause Bose-Einstein

condensation in which these atoin $s$ occupy the same
single-particle ground state 3) the critical temperature is
given by

$\gamma_{ll?}^{223}$

$T_{BE^{\backslash }C}$ .
$=3.3\overline{r\iota k_{B}}$

(1)

where the relevant qu a $n$ tit ies are th $e$ particle mass $m$ , the

number density $n$ , the Planck constant $h=2\pi\hslash$ , and the

Boltzman constant $k_{B}$ .

Then matter-waves of atoms become coherent to make a
macroscopic wave function (the order parameter)
$\Psi(r)=\sqrt{|\tau_{0}(r)}\exp(i\theta(r))$ extending over the whole volume of the

system, and the assein blage of these atoms is called a
Bose-Einstein condensate (BEC) Thus quantum mechanics

appears at macroscopic scales through Bose-Einstein

condensation.

Bose-Einstein condensation was theoretically predicted
by Einstein in 1925. However, nobody knew in those days a
system in which Bose-Einstein condensation occurs actually.

2.2 Liquid helium and superfludity

Independently of these studies in quantum statistical
mechanics, the field of low temperature physics has developed
since the beginning of 20th century Low temperature physics

is generally believed to start with the first liquefaction of 4He
at 4.2 $K$ by $O$ nne $s$ in 1908. $S$ ub $sequ$ ently, $O$ nne $s$ observ $ed$

superconductivity in mercury in 1911. Onnes noticed the
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anoma $1y$ of heat capacity of liquid heliuin at the $\lambda$ point

$T_{\}}.=2.17K$ too In 1938 Kapitza et $a[$ . observed that Iiquid 4He
becomes inviscid below the point and called this striking

phenomenon superfluidity.

London proposed theoretical]y in 1938 that the $\lambda$ transition
is caused by Bose-Einstein condensation of 4He atoms When

TBEC of Eq (1) is evaluated for the mass and density

appropriate to liquid 4He at saturated vapor pressure, one
obtains TBEC of approximately 3 1 $3K$ , which is close to

$T_{\lambda}=2.17$ K.

2.3 Two-fluid model and a quantized vortex

In order to explain various hydrodynamic phenomena of

superfluidity, Tisza and Landau introduced the two-fluid model.

According to the two-fluid model, the system consists of an
inviscid superfluid (density $p_{s}$ ) and a viscous norin al fluid
(density $p_{n}$ ) with two independent velocity fie $lds$ $v_{s}$ and $v_{n}$ .

The mixing ratio of the two fluids depends on temperature. As

the temperature is reduced below the $\lambda$ point, the ra tio of the

superfluid component increases, and the entire fluid becomes a
superfluid below approximately lK The Bose-condensed

system exhibits the $\ln$ acroscop lc wave function
$\Psi(r)=\sqrt{n_{0}(r)}e\iota p(i\theta(r))$ as an order parameter The superfluid

velocity field is given by $v_{s}(r)=(h/m)\nabla\theta(r)$ with boson $\iota n$ ass $m$ ,

representing the potential flow. Since the macroscopic wave
function should be single-valued for the space coordinate $r$ ,

the circulation $\Gamma=\phi v_{s}(r)\cdot clr$ for an arbitrary closed loop in the

fluid ls quantized by the quantu $m$ $\kappa=h/m$ . A vortex with

such quantized circulation is called a quantized vortex. Any

rotational $\iota n$ otion of a super fluid is sustained only by

quantized vortices A quantized vortex was predicted by

Feynman 4) and observed experimental $1y$ in helium by Vinen.

A quantized vortex ls a topological defect characteristic of

a Bose–Einstein condensate and is different from a vortex in a
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classical viscous fluid. First, the circulation is quantized,

which is contrary to a classical vortex that can have any value

of circulation. Second, a quantized vortex is a vortex of

inviscid superflow Thus, lt cannot decay by the viscous

diffusion of vorticity that occurs in a classical fluid. Third,

the core of a quantized vortex ls very thin, on the order of the

coherence length, which is only a few angstroms in superfluid

$ $\wedge$ 4$He. Since the vortex core is very thin and does not decay

by diffusion, it is always possible to identify the position of a
quantized vortex in the fluid These properties make a
quantized vortex more stable and definite than a classical

vortex.

2.4 Early studies on superfluid turbulence
Early experimenta] studies on superfluid turbulence focused

primarily on thermal counterflow, in which the normal fluid
and superfluid flow in opposite directions. The flow is driven

by an injected heat current, and it was found that the

superflow becomes dissipative when the relative velocity

between the two fluids exceeds a critical value. Feynman

proposed that this ls a superfluid turbulent state consisting of

a tangle of quantized vortices4). Vinen later confirmed

Feynman’s findings experiin entally by showing that the

dissipation comes from the mutual friction between vortices
and the normal Subsequently, severa] experimental studies

have examined superfluid turbulence (ST) in thermal

counterflow systems and have revealed a variety of physical

phenomenon Since the dynain ics of quantized vortices is
nonlinear and non-local, it has not been easy to understand

vortex dynamics observations quantitatively. Schwarz clarified
the picture of ST consisting of tangled vortices by a numerical
simulation of the quantized vortex filament mode 1 in the
thermal counterflow 5). However, since the thermal counterflow

has no analogy to conventional fluid dynamics, this study was
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not helpful in clarifying the relationship between ST and

classical turbulence (CT). Superfluid turbuIence is often called

quantum turbulence (QT), which eln phasizes the fact that it is

comprised of quantized vortices.

3. Classical turbulence and quantum turbulence

Before considering QT, we briefly review classical fluid

dynamics and the statistical properties of CT $|)$ , then compare
CT and QT.

3.1 Statistical properties of classical turbulence

C $]$ assical viscous fluid dynamics is described by the

Navier–Stokes equation:

$\frac{d’}{dt}v(r,t)+v(r,t)\cdot\nabla v(r,t)=-\frac{1}{\rho}\nabla P(r,t)+v\nabla^{2}(r,t)$ (2)

where $v(r,t)$ ls the velocity of the fluid, $P(r,t)$ is the pressure,

$p$ is the density of the fluid, and $v$ is the kinematic viscosity.

The flow of this fluid can be characterized by the ratio of the

second term of the left-hand side of Eq. (2), hereinafter

referred to as the inertia 1 term, to the second term of the

right-hand side, hereinafter called the viscous term. This ratio

is the Reynolds number $R=\overline{v}D/v$ , where $\overline{v}$ and $D$ are the

characteristic velocity of the flow and the characteristic scale,

respectively When $\overline{v}$ increases to allow the Reynolds number

to exceed a critical value, the system changes from a laminar

state to a turbulent state, in which the flow is highly

complicated and contains many eddies.

Such turbulent flow ls known to show characteristic
statistica] behavior 6) We assume a steady state of fu 11 $y$

developed turbulence of an incompressible classica] fluid. The

energy is injected into the fluid at a rate of $\epsilon$ , the scale of

which is comparable to the system size in the

energy-containing range In the inertial range, this energy is

transferred to smaller scales without being dissipated. In this
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range, the systein ls locally hoin ogeneous and isotropic, which

leads to the statistics of the energy spectrum known as the

Kolmogorov law:
$E(k)=C\epsilon^{2}$ 3k-53 (3)

Here, the energy spectrum $E(k)$ is defined as $E= \int dkE(k)$ , where

$E$ is the kinetic energy per unit in ass and $k$ is the wavenumber

from the Fourier transformation of the velocity field. The

spectrum of Eq. (3) is easi $1y$ derived by assuming that $E(k)$ is

locally determined by only the energy flux $\epsilon$ and $k$ . The energy

transferred to smaller scales in the energy-dissipative range is

dissipated at the Kolmogorov wavenuin ber $k_{!\iota},$ $=(\epsilon/v^{3})^{1/4}$ th rough

the viscosity of the fluid with diss. ipation rate $\epsilon$ , which is

equal to the energy flux in the inertial range The Ko]mogorov

constant $C$ is a dimensionless parain eter of order unity. The
Kolmogorov spectrum is confirmed experimentally and

numerically in turbulence at high Reynolds numbers. The

inertial range is thought to be sustained by the self-similar

Richardson cascade in which large eddies are broken up into

smaller eddies through many vortex reconnections In CT,

however, the Richardson cascade ls not completely understood

because it is impossible to definitely identify each eddy.

3.2 Classical turbulence and quantuin turbulence

Comparing QT and CT reveals definite differences.

Turbulence in a classical viscous fluid appears to be comprised

of vortices, as pointed out by da Vinci However, these

vortices are unstable, repeated]y appearing and disappearing.

Moreover, the circulation is not conserved and ls not identical

for each vortex. Quantum turbulence consists of a tangle of

quantized vortices that have the sain $e$ conserved circulation.

Looking back at the history of science, reduct ion $ism$ , which

tries to understand the nature of coin plex things by reducing

them to the interactions of their parts, has played an extremely
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important role The success of solid state physics owes much

to reductionism In contrast, conventional fluid physics is not
reducib]e to elements, and thus does not enjoy the benefits of

reductionism However, quantuin turbulence is different, being

reduced to quantized vortices. Thus reductionism ls applicable

to quantum turbulence. Consequently, QT should lead to a
simpler model of turbulence than CT.

3.3 Research trends of quantum hydrodyna mics

Based on these considerations, research into quantum

hydrodynamics has opened up new directions since the mld
$1990s$ . One new direction has occurred in the fie $1d$ of low
temperature physics by studying superfluid helium. It started

with the attempt to understand the relationship between QT and
CT 7). Recent experimenta] and numerical studies support a
Kolmogorov spectrum in QT Following these studies, QT

research on super fluid helium has moved to important topics

such as the dissipation process at very low temperatures, QT

created by vibrating structures, and visualization of QT 7).

Another new direction is the realization of Bose-Einstein
condensation in trapped atoin ic gases in 1995, which has

stimulated intense experimenta] and theoretica] activity 3 $)$

As proof of the existence of superfluidity, quantized vortices

have been created and observed in atomic BECs, and numerous
efforts have been devoted to a nuin ber of fascina ting problein $s$

$7)$ Atomic BECs have several advantages over superfluid

helium The most important ls that modern optical techniques

enable one to direct $1y$ contro] condensates and visualize

quantized vortices. A series of experiments on BECs clearly

show the properties of quantum hydrodynamics.

4. Quantized vortices in a rotating BEC

This section describes the typical phenomenon of quantum

hydrodynamics of atomic BECs, name $1y$ the vortex lattice
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formation in arotating BEC. What happens lf we rotate a

cylindrical vessel with a classical viscous fluid inside? Even if

the fluid is initially at rest, lt starts to rotate and eventually

reaches a steady rotation with the sain $e$ rotational speed as the

vessel In that case, one can say that the system contains a

vortex that mimics solid-body rotation. A rotation of arbitrary

angular velocity can be sustained by a single vortex.

However, this does not occur in a quantum fluid. .Because of

quantization of circulation, superfluids respond to rotation,

not with a single vortex, but with a lattice of quantized

vortices. Feynman noted that in uniform rotation with angular

velocity $\Omega$ the rot of the superfluid velocity ls the circulation

per unit area, and since the rot is $2\Omega$ , a lattice of quantized

vortices with number density $;z_{0}=rotv_{s}/\kappa=2\Omega/\kappa$ $(^{||}$ Feynman’ $s$

rule $\dagger 1$ ) arranges itself parallel to the rotation axis
$\yen$ cite {Feynman}. Such experiments were performed for

$\sup erfluid$ 4He: Packard et al. visualized vortex lattices on the

rotational axis by trapping electrons along the cores.
This idea has also been applied to atomic BECs. Several

groups have observed vortex lattices in rotating BECs. Among

them, Madison et al. directly observed nonlinear processes

such as vortex nucleation and lattice forin ation in a rotating

87Rb BEC 8).

By sudden application of a rotation along the trapping

potential, an initially axisymin etric condensate undergoes a

collective quadrupole oscillation to an elliptical]y deformed

condensate This oscillation continues for a few hundred
mi]liseconds with gradual]y decreasing amplitude. Then the

axial symmetry of the condensate ls recovered and vortices

enter the condensate through its surface, eventua]ly settling

into a lattice configuration.

This observation has been reproduced by a simulation of the

Gross-Pitaevskii (GP) equation for the macroscopic wave
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function $\Psi(r,t)$ . The corresponding GP equation in a frame

rotanng with frequency $\Omega=\Omega\overline{z}$ is given by

$(i- \gamma)\hslash\frac{d’\Psi(r,t)}{\theta t}=[-\frac{h^{2}}{2m}\nabla^{2}+V_{ex}(r)+g|\Psi(r,t)|^{2}-\Omega L_{z}]\Psi(r,t)$. (4)

Here $V_{ex}$ is a trapping potential, and $L\overline{=}-i\hslash(x\theta_{y}-y\theta_{X})$ is the

angular momentum along the rotational axis The interparticle

potential is approximated by a short-range interaction
$V\approx g\delta(r-r’)$ . The term $\gamma$ indicates phenomenological dissipation.

Figure 3 shows the profile of the condensate density

$|\Psi(r)|^{2}$ and the phase $\theta(r)$ when there is a quantized vortex in a

trapped BEC The density has a hole representing the vortex

core. The phase has a branch cut between $0$ and $2\pi$ , and the

edge of the branch cut corresponds to the vortex core around

which the phase rotates by $2\pi$ as the superflow circulates. One

can therefore clear $1y$ identify the vortex both in the density

and the phase.

A typical two-dimensional numerical simulation of Eq (4) for

(a) (b)

Fig.3 Profile of (a) the condensate density and (b) the phase of the

macroscopic wavefunction when there is a quantized vortex in a

trapped BEC. The value of the phase varies continuous $Iy$ from $0$

(red) to $2\pi$ (blue).

54



the vortex lattice formation is shown in Fig. 4 9), where the

condensate density and the phase are displayed together We

first prepare an equilibrium condensate trapped in astationary

potential When we apply a rotation, the condensate

becomes elliptic and performs a quadrupole oscillation [Fig.

$4(a)]$ . Then, the boundary surface of the condensate becomes

unstable and generates ripples that propagate along the surface

[Fig. $4(b)$ ]. As stated previously, it is possible to identify

quantized vortices in the phase profile also. As soon as the

rotation starts, many vortices appear in the low-density region

outside of the condensate [Fig. $4(a)$ ]. Since quantized vortices

are excitations, their nucleation increases the energy of the

system Because of the low density in the outskirts of the
condensate, however, their nucleation contributes little to the

energy and angular morn entum. Since these vortices outside of

the condensate are not observed in the density profile, they are

called $||ghost$ vortices $1\dagger$ . Their movement toward the

Thomas-Ferin $i$ surface excites ripples [Flg. $4(b)$ ]. It is not easy
for these ghost vortices to enter the condensate, because that

would increase both the energy and angular moin entum Only

some vortices enter the condensate cloud to become $||real$

vorticesl wearing the usual density profile of quantized

vortices [Fig. $4(d)$ ], eventually forming a vortex lattice [Fig. 4
(e) and $(f)]$ . The number of vortices forming a lattice is given

by $||Feynman^{\uparrow}s$ rule $||$ . The nuin eri cal resu lts agree
quantitatively with these observations.

Note the essence’ of the dynain ics. The initial state has

no vortices in the absence of rotation The final state is a

vortex lattice corresponding to rotationa] frequency $\Omega$ . In

order to go from the initial to the final state, the system makes

use of as many excitations as possible, such as vortices,

quadruple oscillation, and surface waves. We refer the readers

to Ref. 9 for details.
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(a) (b) (c)

(d) (e) (t)

Fig. 4Dyna 面mics of vortex latticc $f$.ormatl on in a rotating BEC Thc

figure simultan $eoUS1y$ shows both lhe condensate density and phase.

They are bird $|s$ -eye picturcs of the distribut $1on$ of the condensate

density, and the co $1or$ shows thc phaso continuously from $0$ (red) to

$2\mathfrak{n}$ (blue). The graphs are at (a) $t=63$ ms, (b) 305 ms, (c) 350 ms, (d)

410 ms, (e) 450 ms, and (f) 850 ms after the start of the rotation.

5. Energy spectra of quantum turbulence

Most older experiin ental studies on QT were devoted to

therma] counterflow. Since this flow has no classical analogue,

these studies do not contribute greatly to the understanding of

the $relationsh\dot{i}p$ between CT and QT Since the mid $1990s$ ,

important experimenta], numerica] theo $i^{}$ etical studies on QT

that did not focus on thermal counterflow have been published
7 $)$

. Here we will describe energy spectra of QT at zero

temperature.

No experimental studies have addressed this issue

directly, although a few numerical studies have been conducted.

The first study was performed by Nore et al. using the GP

model $|0)$ . They solved the GP equation numerically starting
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fr $om$ Taylor–Green vortices, a $nd$ followed the time

development The quantized vortices become tangled and the

energy spectra of the incompressible kinetic energy seemed to

obey the Kolmogorov law for a short period, although the

energy spectra eventually deviated from the Kolmogorov law.

The second study was performed by the vortex filament model
11) and the third study was performed by the modified GP

model 12,13). Here we will discuss briefly the third work.

The Ko]mogorov spectra were confirmed for both

decaying $|2)$ a nd ste a dy13) QT by the modified GP model The

normalized GP equation is

$i \frac{d’}{\partial t}\Phi(x,t)=[-\nabla^{2}-\mu+g|\Phi(x,t)|^{2}]\Phi(x,t)$ (5)

which determines the dynamics of the macroscopic wave

$\Phi(x,r)=f(x,t)\exp[i\phi(x,r)]$ . The condensate density is $|\Phi(x,r)|^{2}=f(x,t)^{2}$ ,

and the superfluid velocity is given by $v(\chi,f)=2\nabla\phi(x,t)$ . The

vorticity $\omega(x,t)=1^{-}Otv(x,t)$ vanishes everywhere in a
single-connected region of the fluid and thus all rotational

flow is carried by quantized vortices. In the core of each
vortex, $\Phi(x,r)$ vanishes so that the circulation around the core
is quantized by $4\pi$ . The vortex core size is given by the

healing length $\xi=1/f\sqrt{g}$ .

Note that the hydrodynain ics described by the GP model

ls compressible The tota] number of condensate particles is

$N= \int dx|\Phi(x,t)|^{2}$ and the total energy is

$E(t)= \frac{1}{N}\int cL\iota’\Phi^{*}(x,t)[-\nabla^{2}+\frac{g}{2}f(x,t)^{2}]\Phi(x,t)$ , (6)

which is represented by the suin of the interaction energy $E_{in\uparrow}(t)$ ,

the quantum energy $E_{q}(t)$ , and the kinetic energy $E_{ki,l}(t)$
$\mathfrak{l}0)_{:}$

$E_{int}(t)= \frac{g}{2N}\int dxf(x,t)^{4}$ , $E_{q}(t)= \frac{1}{N}\int dx[\nabla f\cdot(x,[)]^{\urcorner}-,$ $E_{Ai,I}(t)= \frac{]}{N}\int dx[f(x,r)\nabla\phi(x,t)]^{2}$ . $(7)$
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The kinetic energy is furthermore divided into a compressible
part $E_{k\iota}^{c},,(t)$ due to coin pressib]e excitations and an
incompressible part $E_{k\iota’\prime}^{l}(t)$ due to vortices. If the Kolmogorov

spectrum is observed, the spectrum should be that for the

incompressible kinetic energy.

Nore et al. tried to obtain the Kolin ogorov spectrum from
the pure GP equation, not succeeding $|0)$ . The failure would be

attributable to the following reasons. Note that the situation
they studied was decaying turbulence. Although the tota]

energy $E(t)$ was conserved, $E_{k,,\prime}^{l}(t)$ decreased with increasing
$E_{k_{l1}}^{c},(t)$ . This was because many compressible excitations were
created through repeated vortex reconnections and disturbed
the Richardson cascade of quantized vortices even at large

scales.

Kobayashi and Tsubota overcame the difficulties of Nore

{ $\yen$ it et al. } and obtained the Kolmogorov spectra in QT and

clearly revealed the energy cascade $|2,$ $|3)$ . They performed
numerica] ca]culation for the Fourier transformed GP equation
with dissipation:

$(i- \tilde{\gamma}(k))\frac{d’}{\partial t}\tilde{\Phi}(k,t)=[k^{2}-\{\iota(t)]\tilde{\Phi}(k,t)+\frac{g}{V^{\underline{7}}}\sum_{k_{1}.k_{\underline{7}}}\tilde{\Phi}(k_{1},t)\tilde{\Phi}^{*}(k_{2},t)\tilde{\Phi}(k-k_{1}+k_{2},t)$ (8)

Here, $\tilde{\Phi}(k,t)is$ the spatial Fourier component of $\Phi(x,t)$ and $\nabla$ is

the system volume The dissipation should have the form
$\tilde{\gamma}(k)=\gamma_{0}\theta(k-2\pi/\xi)with$ the step function $\Theta$ , which dissipates only

the excita.tions sln aller than $\xi$ . This form of dissipation can be

justified by the coupled analysis of the GP equation for the
macroscopic wave function and the Bogoliubov–de Gennes

equations for therin al excitations.
First, Kobayashi and Tsubota confirmed the Kolmogorov

spectra for decaying turbulence $|2)$ . To obtain a turbulent
state, they started the calculation froin an initial configuration
in which the density was uniform and the phase of the wave
function had a random spatial distribution. The initial wave
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function was dynamically unstable and soon developed into

fully developed turbulence with $\ln$ any quantized vortex loops.

The spectrum $E_{kin}^{j}(k,t)$ of the incompressible kinetic energy was

then found to obey the Kohn ogorov ] aw.

A more elaborate analysis of steady QT was perforin ed

by introducing energy injection at large scales as well as
energy dissipation at small scales 13). Energy injection at large

scales was effected by moving a random potential $V(x,t)$ .

Numerically, Kobayashi et al. placed random numbers between
$0$ an $dV_{0}$ in spa $c$ e-tim $e$ $(X,t)$ a $t$ in $te$ rvals of $X_{0}$ fo $r$ spa $ce$ and $T_{0}$

for time and connected them smoothly using a four-dimensional

spline interpolation The moving random potential exhibited

a Gaussian two-point correlation:

$\{V$ $( x,t)V(x’)t’)\}=V_{0}^{\sim}\exp[-\frac{(x-x’)^{\gamma}\wedge}{2X_{0}^{\sim}}-\frac{(t-t’’)^{\sim}}{2T_{0}^{2}}]$ (9)

This moving random potentia] had a characteristic spatia] scale

of $X_{0}$ . Small vortex loops were first nucleated by the random

potential, growing to the scale of $X_{0}$ by its motion subjected to

Eq (9). The vortex loops were then cast into the Richardson

cascade. If steady QT ls obtained by the balance between the

energy injection and the dissipation, lt should have an
energy-containing range of $k<2\pi/X_{0}$ , a $n$ inertial range of
$2\pi/X_{0}<k<2\pi/\xi$ , and an energy-dissipative range of $2\pi/\xi<k$ .

A typical simulation of steady turbulence was performed

for $V_{0}=50,$ $X_{0}=4$ , and $T_{0}=6.4\cross 10^{-2}$ . The dynamics started from

the uniform wave function Figure 5 shows the time
deve 1 opment of each energy co lit ponent The moving random

potential nucleates sound waves as well as vortices, but both
figures show that the incompressible kinetic energy $E_{ij_{7}}^{l},(t)$ due
to vortices is dominant in the tota] kinetic energy $E_{ki_{\mathfrak{l}}},(t)$ . The

four energies are ahn ost constant for $t>25$ , and steady QT was
obtained.
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$t$ $t$

(a) (b)

Flg.5 Results of numerical simulation of the GP equation with energy
injection at large scales and energy dissipation at small scales. Time
development of the total energy $E(t)$ , the kineti $c$ energy $E_{ki_{1}},(t)$ , the
compressible kinetic energy $E_{k\iota}^{c},,$ $(t)$ , and the incompressible kinetic
energy $E_{ki}^{1},,$ $(t)$ at (a) the $i_{11}$ itial stage and (b) a Iater stage. The

system ls found to be statistically steady at the later stage.

Such a steady QT enables us to investigate the energy
cascade. Here, we expect an energy flow in wavenumber space

similar to that in Fig. 6 The upper half of the diagrain shows

the kinetic energy $E_{(\cdot j_{l}}’$, of quantized vortices, and the lower

half shows the kinetic energy $E_{(\cdot j_{1}}$, of compressible excitations.

In the energy-containing range $k<2\pi/X_{0}$ , the system receives

incompressible kinetic energy from the moving random

potential. During the Richardson cascade process of quantized

vortices, the energy flows froin sma] $]$ to large $k$ in the inertial

range $2\pi/X_{0}<k<2\pi/\xi$ . In the energy-dissipative range $2\pi/\xi<k$ ,

the incompressible kinetic energy transforms to compressible

kinetic energy through reconnections of vortices or the

disappearance of small vortex loops. The moving random

potential also creates long-wavelength co $\ln$ pressib ] $e$ sound

waves, which are another source of compressible kinetic
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Fig. 6 Schematic diagram of the flow of the incompressible kinetic

energy $E_{ki}^{i},$, (upper half of diagram) and compressib]e kinetic energy
$E_{ki}^{c},$, (lower ha $1f$ ) in wavenumber space in the steady turbulence by

the GP equation $\yen$ cite. The energy is injected in the

energy-containing range through the moving random potential,

leading to nucleation of vortices in $E_{ki_{l}}^{i}$, and formation of sound

waves in $E_{ki}(,,$
$.$

$]l1$ $E_{ki_{1}}^{i}$, the energy is trasferred in the inertial-range

through the Richardson cascade of quantized vortices with the energy
flux $\Pi$ , then dissipated with the rate $\epsilon$ in the energy-dissipative

range by the dissipative term of $\gamma$ .

energy and also produce an interaction with vortices However,

the effect of sound waves is weak because $E_{kin}^{i}$ is much larger

than $E_{ki_{l}}^{c},$ , as shown in Fig. 5.

This cascade can be confirmed quantitatively by

checking whether the energy dissipation rate $\epsilon$ of $E_{kin}^{i}$ 1 $S$

comparab]e to the flux of energy $\Pi$ through the Richardson

cascade in the inertial range Although the details are
described in Ref 13, $\Pi$ is found to be approximately

independent of $k$ and coin parable to $\epsilon$ . As shown in Fig. 7, the

energy spectrum ls quantitatively consistent with the

Kolmogorov law in the inertial range $2\pi/X_{0}<k<2\pi/\xi$ . It is

interesting to focus on Richardson cascade Richardson
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cascade ls only conceptua] in CT,

wh il $e$ it ls genuine in QT $il1$

which vortices are identified

definitely. Actually we observe

lots of events of the splitting of

a vortex into smaller vortices in

the turbulence state The

situation is more difficult to

understand in CT. This is one of

the reasons why we believe that

QT is simper than CT.

6. Conclusions

In this article, we have

reviewed recent research on
quantum hydrodynamics and

turbulence in $\sup erfluid$ helium

and atomic BECs Quantum

turbulence has been long studied

in superfluid helium, while lt is

realized experimenta $11y$ in

atomic BECs too very lately.

Research on QT ls current]y one

$\log k$

Fig.7 Energy spectrum $E_{kin}^{i}(k)$

for the steady state QT The

points are from an ensemble

average of 50 randomly selected

states at $t>25$ . The solid line is
the Kolmogorov $\mathfrak{l}aw$ . The

inertial range corresponds to

$2\pi/X_{0}<k<2\pi/\xi$ , in which the

spectrum obeys the Kolmogorov

law The Kolmogorov constant
$C\approx O.55$ is lower than the usual

value $C\approx 1.4$ , the reason of

which ls not known.

of the most important branches in low-temperature physics,

attracting the attention of $\ln$ any scientists QT is comprised

of quantized vortices as definite elements, which differs

greatly from conventional turbulence. Thus, investigation of

QT may lead to a breakthrough in understanding one of the

great mysteries of nature since the era of da Vinci. There are
many related topics not addressed in this article, regarding

which we refer the readers to other review articles 2, 7)
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