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1 Introduction

In this paper, we consider the following nonlinear Schrodinger equation with
inhomogeneous nonlinearity.

iup = —Au ~ b(x)|[uP u, (r,1) e RN, (1.1)

where N > 1, u: R¥*! — C is an unknown function, p € (1,1 +4/N) and b(z)
is a smooth function which satisfies

0 < inf b(x) = lim b(x) < sup b(x) =1.
T€RN ] —>< reRN

A standing wave is a solution of equation (1.1) with the form u(z,t) =
e*'¢(x). In this case, ¢ satisfies the following partial differential equation.

—A¢ +wd - b(2)|olf ‘o =0, reRV. (1.2)

The flow of equation (1.1) conserves the LZ-norm and the following func-
tional, which we call the energy.
E(u) = l/ (Vul? dr — ! /b(;r.)[ulp'H dx
2 Jr P+1Jg o

The well-posedness of equation (1.1) is well known. See for example [2].

Proposition 1. For every ug € H'(R™). there exists a solution v € C(R; H'(R"))
of (1.1) such that

(a) w(x,0) = ug(x) for 2 € RN,
(b) E(u(t)) = E(uo). u(t)ll2 = lluall L2 for t € R.

Equation (1.1) appears in various regions of physics such as nonlinear optics,
plasma physics and Bose-Einstein condensation (BEC). In the context of BEC,
the ground states are considered to describe the physical properties of Bose gas
in low temperature. Here, a ground state is a standing wave which minimizes
the energy functional £ under the constraint of the L2-norm. Note that by the
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Lagrange multiplier method, the ground state satisfies (1.2) for some w € R.
For the case b = 1, it is known that the ground state is unique ([5, 9]), and if
1 <p <1+44/N, it is stable ([1]). For the case b = |x|™? 3 € (0,2), N >3, it
is proved that the ground state is stable ([4]).

We now state prepare the notations.

Definition 1. Set
Goi= {u€ H'(RY) | |lullz = a, £(u) = £},
where
E, =inf {E(v) | c € H'R"), ||v||L2 = a}.
In this paper, we call the elements of G.. the ground states.

For the case, b is a radial symmetric function, we can consider a minimizer
of £ under the constraint v € H}(R") and [ju||;. = o, where

HYRVN) := {ue H'(RY) | wis radially symmetric} .
Definition 2. Set
Gor = {u€ HNRY) | |lu|lLz = o, E(u) = Ba,},
where
Ea, =inf {£(c) | 0 € H/®RY), [Jells = a}.
In this paper, we call the elements of G, ., . the radial minimizers.

We investigate the concentration and stability of ground states and radial
minimizers.

Definition 3. We say that the G, (resp. G, ., ) concentrates for sufficiently large
a if the elements of G, (Gn .. ) satisfies the following: For arbitrary € > 0, there
ezists an o > 0 such that for every o« > v, and every ¢ € G, (Go,r), there
exists yo,» € RY such that

/ || dae < = / [¢|? do = sa®.
5= Ya.ul>2 Jrn

We call yo.p € RN, the concentration center.

Definition 4. We say that G, (resp. Go.r) is stable if the following property is
satisfied: For arbitrary ¢ > 0, there exists an 0, > 0 such that for every ug € H?
with

inf uy — ¢ < (5,...
x:ega(gc._,)n o=l <0

the solution of equation (1.1) with «w(0). = wg satisfies

su inf u(t) — v < £,
z.>guego(ga.,.)n () = llan

If Go (Go.r) is not stable. we say G, (G...) is unstable.



The existence, concentration and stability of G, is well known.

Proposition 2. For a > 0. G, # @ and G, is stable. Further, G, concentrates
for suffictently large a and the concentration center converges to some mazximum
point of b.

Remark 1. For the existence of ground states, see Proposition 8.3.6 of [2]. For
the stability result, see [1] and for the concentration result, see [13].

The purpose of this paper is to investigate the stability and concentration
for the elements of G, ;.

Proposition 3. Let b radially symmetric. Then for o > 0, we have G, # 0.
Remark 2. Proposition 3 can be proved as the existence of ground states.
We first study the case N > 2.

Theorem 1. Let N > 2. Then G,, concentrates for sufficiently large o and the
concentration center is 0. Further, if 0 is a nondegenerate minimum point (Tesp.
mazimumn point), then for sufficiently lurge o« > 0, Go.r s stable (unstable).

Thus, we see that the concentration result holds but the stability result some
times fails for the case of radial minimizers. For the case N = 1, we see that
also the concentration result sometimes fails.

Theorem 2. Let N =1.

(i) If1 2 b(0) > 2-(P=1/2 then G, concentrates for sufficiently large o and
the concentration center is 0. Further. if 0 is a nondegenerate minimum
point (resp. marimum point), then for sufficiently large a > 0, Gor is
stable (unstable).

(i) If0 < b(0) < 2--1/2 then G, is unstable and does not concentrate for
suffictently large .

The plan of this paper is as follows. In section 2, we rescale our problem.
In section 3 and 4, we prove Theorems 1 and 2 respectively. The proof of the
concentration result of Theorem 1 relies on the radial lemma due to Strauss [14].
For the proof of the concentration result of Theorem 2, we use the concentration
compactness method due to Lions {10, 11]. For the stability result, we use
the abstract theory developed by Grillakis, Shatah and Strauss [7] and for the
instability result, we use the result of [12] for N > 2 and [6] for the case N = 1.

2 Preliminary

We rescale our problem. Take ¢ € H!(R™) with [|¢||,2 = 1. Then, we have

1 . ab"l r
' —a?l = 512 oy — bix)|oPt dae ) .
Elad) = a (2./RIV(,)| 1 })+1A)(l)|¢| dl)

Next, set ¢o(x) = N 24(a2), where A = 4—24/{’—(']7—1_%—) Then, we have

1/ o 1 _
Ealagy) = a?124 (—2- ‘/[R (V)% de — p—_ﬁ/mb(a Ar)|g|PH? da:) .
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Therefore, we set
14(9) == 1 / Vo) de — L / bla™A2)|p|PH! da
“ C2 JR ) p+1. R ’
and

Toy = HYRM) | 16lle: = 1. 1a() = inf In(¥ }
ari={o € BN [ llolle =1 L) = inf 1)

Thus, we obtain
ga,r = {(-}'(:)r_} 1 ¢ € Ia,r} .

We also define the following functional:

1 ,2 b / ,
== 512 dy — —— Py
jx.l)(¢) 2 /5; |V¢)| [ p+ 1 R I(rl)l 2

Then, it is well known that there exists a unique positive radial minimizer ¢y 3
of I » under the constraint |{¢||2, = 3. That is

Z r,b = € H,l RN H12, = 3. I () = inf Ioc )
e {¢ (R 11911k = 5. Tocr() 14112 3 28, pe H) ()
= {cvop|ceC, |¢|=1}.

Remark 3. The uniqueness of positive radial solution of equation (1.2) in the
case b(x) = b > 0 is proved by Kwong [9]. Further, letting ¢ ., be the unique
positive radial solution of equation (1.2) in the case b(x) = b > 0, we have

1 . . . . . .
b (T) = wi=T ¢ (w/22), where ¢ is the unique positive radial solution of
—Agy + ¢y — bef =0, = € RN,

Therefore, we see -=||¢p..|[2. > 0 for 1 < p < 1+ 4/N. This implies the
uniqueness of the radial minimizer up to constant phase.

We now calculate the value
I b(¥0,8) = inf {Ic p(¢) | ¢ € H (RY), [|¢]12. = 3} .
Lemma 1. Let

Jx = inf Ix.](ll) = lx.l("e':f’l,l_) < 0.

lull 2=1

Then

24
]x‘b('z;’.vb__;) = hHp-1 ,)’1+A.]x,

2(p—1)

where A = TTNG-D) > 0.



Proof.
. 1 [ o 2 b +1
Ico(¥n,3) = inf - IVo|? dz — —— '¢]P da
» f (bGH,le”“’" 7_2:,3 2 Jr 1

3 ( /|V¢(2 da — f’ﬁ__/ [P+ dm).
Hd’“L?‘l

Now, setting ¢(x) = (b/’i‘%_l)‘-NNZP-”gp((b,ri‘%“l)3~ﬁzll’—liar), we have ||¢||L2 =
[|#llL> and

3o .
l/ |v¢|2d:.;_bi_ / [P+ de = (bB"T) TG I ().
2 Jr p+1 Jg '

Thus, we have

i 1
19f I p(u) =07 NPTy 3 + 2R 1)_]
Hullf =
L

0

We further prepare some compactness results. To show the concentration
result of Theorem 1, we use the following lemma due to Strauss [14].

Lemma 2. Let N > 2. Then every « € H] is almost everywhere equal to a
function U, continuous for « # 0, such that

U (@) < Cnlal ST fully for o] 2 Ch,

where C'y depends only on the dimension N.

To show Theorem 2, we prepare two concentration compactness lemmas,
which are slight modifications of the concentration conpactness lemma due to
Lions [10, 11} (See also [2]).

Lemma 3. Let {u,,} C H!(R) be such that

unllez = 1, sup |[|Vuy,||L2 < oc. (2.1)
neN
Set
o= llm lim mf/ ity |2 dr. (2.2)
= mmx S

Then, there exists a subsequence {uy, } that satisfies the following.

(i) If i = 1, then there exists a v € H}(R) such that u,, — u in LP(R) for
p € (2, 00].
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(ii) There exist {vi}, {wk +} and {w, .} C H}(R) such that

suppig 4 C (0,00), suppw; - C (—oc,0),
suppvy N suppiy 4 = suppey Nsuppwy,— = 0,
|’1’1~" + l'wk,+| + ‘wk,—l < I'u'nkl

op] [y + len gy + [lwe ey < v o

|

- 1 ~ 1 -
loeliZe = 7 llenslEe = 50— 7) lhow-|3s = 50 = 7)

lign inf/ (IVun, > = [Vor? = [Vaog 4|2 = [Vaog,-[?) 2 0

/(l'“-nkl” — |kl = Jaon 4 | = Jeex, - |7)

Jorall2 < p < .

-0, (k> )

Lemma 4. Let {u,} satisfy (2.1). Define ji as (2.2) and

= lim liminf sup / [tty, |2 dax.
Jo—y|<t

t—oc n—ax yek.

Assume i = 0. Then, 0 < p < 1/2 and there exists a subsequence {un,} that
satisfies the following.

(i) If p = 1/2, then there exist u € H}(R) and yx > 0 such that y, — oo
and X4+(- — Yk )tn, (- — yr) — v in LP(R) for p € [2, 00|, where x4 € C>
satisfies 0 < x4 < 1, suppx+ C {0.0¢) and x4 (2z) =1 forxz > 1.

(ii) If =0, then u,, — 0 in L? for p € (2, o).
(iii) There exist {vi +}. {vi.-}. {wir+} and {wy -} C H}(R) such that

SuUppek,4+, suppwy 4 C (0, 0c¢), suppug,—, suppwy, - C (—00,0),
suppey 4 Nsuppy, 4 = suppey - Nsuppwy - = 0,

o]+ [k |+ [k, 4| + k| < |

ok + 1y + ok =+ lere s + e < {lay < ln g

i . _ 1 -
lews (172 = 1, |lwr 2|7 — 5(1 - 1)

likm inf/ (|Vun, |2 = Ve 42 = [Veor 2 = [Vawg 4|2 = Vg - |?) 20

/(I-u.nk[” — ek 4P = e - [F = e 4P = |wg - |F)| = 0, (kK — o)
Jorall2 < p < oc.
3 Proof of Theorem 1

Let ¥50),1 € Zoc rb(0).15 ¥b(0).1 > 0. We show that the rescaled radial minimizers
converge to Yp(0)y,1-
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Lemma 5. Let N > 2 and b radially symmetric. Let ¢, € I, with ¢, > 0,
where o, — 00 as n — oo. Then {¢,} s a minimizing sequence of I p)
under the constraint |[¢||L2 = 1. In particular. ¢, — ¢p0)1-

Proof. We calculate I, y0)(¢n)-

1
Ic poy(Pn) = §/m [Von[* dir — on [P da
< Iun(‘i)n / |b(a ')_b0)|‘¢ 1p+l
< 1, (Tr’l"l)(()).l) + 1)_+—1 /R [b(a;, a) = b(0)||@n|"! da
< I, b(n)('*/’b(()) 1)

b [ 20 = U0 (P + onialP*) i

where A = Z%%Qﬂ > 0. Now, for arbitrary = > 0, there exists R, > 0 such

that |b(z) — b(0)| < < for |z| < R,. Therefore. we have

/ [b(c;, A2) — b(0)||¢w0y,1 P! da < = / [epoy. [PH dx —+—/ [0y [P
R JR

|z]>0: Re

Further, for sufficiently large «,,, we have

1 / ]
[épya [P < =
P+ 1 [x|>a3 R, ©

Thus, we obtain

b(asAx) — bO)|wp 1 [PF de — 0, n —
P+1/ml (ayAx) — bO)||wpoya [PH de Ch— oo

Next, using the fact that ¢, is a radial minimizer of 1, ., we see that I, (¢,) <
0. Combining this to Gagliardo-Nirenberg’s inequality, we see that ||¢, ||y is
uniformly bounded. Therefore, by Lemma 2. we have

/ Ib(asdz) — bO)||dn Pt  dar < - / [on P dar + C / I i P
R JR l|>afd R
< Cr 4 Clag R ) T

Since 1 — 1\'_12 £r1) < 0, we see that

p+1 /lb(a” ¢) = WOl I+ dor = 0, 1 — o0.

Therefore, we see that ¢, is a minimizing sequence of I y0). O
We now prove Theorem 1.

Proof of Theorem 1. Let u,, € G, with a,, — oc as n — oc. Then, there exists
¢w € I, such that

alth. V%,,,(a‘%.r) = uy (),
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) 1/2
where A = ﬁgl’)—l). We compute (_]M»__ |0, |2 (l;r) .

3
( / |2y, |2 da:)
|x|>e

]
o]
~ N
Y
3
~
N

. 3 2
< (/ "‘.&"f’b((‘)),l - ¢"12 dﬂf) + o (/ liL'b(O),l ‘2 dm) \
RN |z| >l

where p(g),1 is the positive radial minimizer of I p(o) under the constraint
[l#]lr2 = 1. Since ¢n — Yp).1 in L?(R"), we have

2
</ [ — (;),»,,|2 (’l:l') < —g1/2
R 2

2(p—1)
I-N(p—1)

vz
/ |'<,.~’L’|2 dx < Ze¥?,
|2 >0 2

for sufficiently large n. Therefore, we have the concentration result.

We next show the stability for the case 0 is a nondegenerate minimum point
of b. For this case, modifying the result of Grossi [8], we see that for large
a > 0, the radial minimizer is unique up to constant phase. Therefore, the
radial minimizer must correspond to the ground state with a penalizer which
was introduced in [3]. Since this ground state is stable, we see that also the
radial minimizer is stable.

Finally for the proof of the instability for the case 0 is a nondegenerate
maximum point of b, see [12]. a

INA

for sufficiently large n. Further, since > 0 and &, — 00, we see

4 Proof of Theorem 2

Proof of Theorem 2 (i). Let u, € G, with v, > 0 and o, — o0 as n — oo.
Then, there exists ¢, € Z,, such that

ap=i 2(p-1)
CY17+ sor ¢n ((Y';TW 'T) = Un (ﬂ;)‘

Since ||¢n|lz2 = 1 and sup,, ||V, || 2 < oc, we apply Lemma 3 to {¢,}. Asin
the proof of Theorem 1, if we can show ¢, — )1 in H!'(R), where Yb(0),1
is the minimizer of I p0) = I under the constraint [[u[[ 2 = 1, we have the
concentration result. Further, the stability and instability follows as in the proof
of Theorem 1.

Therefore, it suffices to show ¢, — )1 in H'(R). Now, let

t—2C 11—

i = lim lim inf / {r,f)‘,.,|2(l;r.
)<t
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We show 1 = 1. If i = 1, we have a subsequence ¢,, and ¢ such that ¢,,, — ¢
in LP, p € [2,00]. Thus, we have |{¢||,> =1 and

I po)(®) < liminfloc o) (s )

llm 1nf< PN /]b(() (a;32)||dn, |PH! dx)

IN

k—o>c

IN

liz inf (Im (Gowoy1) + / 1(0) — b{ay 42) o, [+ m)
< Ix.b(())("f»‘b(())) + hlnll_fc\f / “’(0)__ I’(‘-’;_"if")‘(ld’nk‘p*'l + W’b(O),l |p+1) dz
= Ib0)(¥0)1)

where A = 2_(_51’{!712 Therefore, from the definition of ¢y, and the uniqueness

of the radial minimizer of I y(0). we see that ¢,, — ¥p),1 in H(R).

Therefore, it suffices to show i = 1. Suppose i@ < 1. Then, by Lemma 3,
there exist {vi}, {wk +} and {wy _} and we have

llm mf ]O," ((p,,,‘) > limsup (1,_1,,‘_ () + Toe 2 (g 1) + Ixyl(wky_)) )

k— o

We claim limsup, _ o la,, (vk) 2 bO) T+ J ., where A = _ﬁé’_;pll Indeed,
since |vg| < |un, |, taking arbitrary = > 0, there exists R > 0 such that

lim sup / log]? de < ¢.
k—o>c J|x|>R.

Therefore, we have

limsup la,, (vk) 2 limsup (Ix.!)(())("l~) —/ |b(exy;, ) = b(0)Jow [P+ da
| <R

k—oc h—>

— / [b(ex “‘a.z‘) — b(O)Hvk|p+] dr ).
Jle|> R,

Furhter, since sup,, [[oxll= < Cisupy |lonllgr < Casupy ||énllar < C3, we
have

/ [b(ex” A.r) — ’)(O)Hl’/\.ll)*’l dr < 2(7-'_‘?_15,
fx|>Re
and taking a,,, sufficiently large, we have
/ |b(a;‘j"‘;r) —b(O)||er [P dr < r‘/ [o |P'H dz < Cs.
|| < Re R

Therefore, we obtain

b AR
liminf L, (éu) 2 | bO)FF I+ 42 (—) Joc.
k—oc k 2



On the other hand, we have
hkn—lrlorclf ]af"k (¢311k) S. h]\ll_l,l’)l;lf IO‘"k (ﬁ"b((l)) = b(O) r-1 Joc .
Therefore, since J.. < 0, we have

. 24 (1 -‘ﬁ-)1+"4
b(O) pd S 2.4(1 _ ﬁ1+.4)'

1—ji)l+4

Since, = < 1, we obtain

b(0) <2757

However we have assumed b(0) > 2~ Y3 | Therefore, this is a contradiction. O

Proof of Theorem 2 (ii). Let u,, € G,, with v, > 0 and o, — o0 as n — oo.
Then, there exists ¢, € Z,, » such that

Lp) 2(p-1)
an "G (an”TT 2) = up(x).

We first show i = 0. Suppose 1t > 0. Then as in the proof of Theorem 2 (i),
using Lemma 3, we have

24 1-p e
k-—c Tk 2

where A = 2—(51’_"—1,11 On the other hand. take xy > 0 to satisfy b(xzg) = 1 and set

pr(x) =ty ('1;':1’1/2(.‘17 — n,;?k o) + Ya/2(e + Cz;?kill())) ,

where 9 is the minimizer of I ; under the constraint ||u||2, =1/2 and t; > 1,
tpy — 1 as k — oc is taken so that ||¢n|lr2 = 1. By a simple calculation, we
have

,{_131; o, (en) =274 . (4.1)

Since Iank (¢m,) < IOM (¢r) and Jo < 0, we have

2.4 1-—p 4
bO)P T T 42 ( 5 > > 274, (4.2)

However, (4.2) implies

y— 1

b(0) > 27 7
Thus, we have contradiction since we are assuming b(0) < 2- 7,
Therefore, we have 1t = 0. We use Lemma 4. Suppose, 4 = 0. Then, by

Lemma 4 (ii), we have liminf,_ I, (¢v,) 2 0, so it contradicts to

2

liminf I, (¢vn,) <liminfl,, (¢r) <O.
k—oc ke [ k
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Suppose 0 < s < 1/2. Then calculating as the proof of Theorem 2 (i) and using
Lemima 4 instead of Lemma 3, we obtain

. . f 144 1 — 2” 1+4
hl‘rrlgé Ia, (@n,) 2 | 210 +2 5 Joe -

However, this implies liminf, . I, (¢y,) > limk_.x I, (¥k) and we have a
contradiction. Therefore, we have p = 1/2.

By Lemma 4, there exist ¢ and y, > 0 such that x4 (- — yx)dn, (- = Yr) — @
in LP(R) for p € [2.0c]. Thus, we see that ||x+(- — yk)én, (- — y&)|[F. — 1/2.
We claim x4 (- — yx) b, (- — yr) = 11,2 in H'(R), where ¢, 1/ is the positive
radial minimizer of I, under the constraint ||¢|2; = 1/2. To show this, it
suffices to show

Icai(x+(— yk)‘f)vu(' - yi)) — Ix.l("r"j’l.l/Z) = 2_(1+A)Joc-

Now, suppose there exists £ > 0 such that

1 7 N
P+ 1 R(l - b(’luﬁ"’))(;')l,’-,:l dir > 5p.
Then, we have
lim I 1(px) = lim I, (¥1)
k—oc Jim
2

liminf /.., (¢n,)
e

I

' 1
lim mf (]xl((p,,‘) -+ m /';(1 - b(x/o:;?k))¢),,k d't)

k—x

v

21 1(w1a/2) + <0

= lim I.a1(¥1) + -0
k—oc

Therefore, we have

lim
k—ocp+1

/lk(l — l)(J‘/(t;?L_))q*')z:tl dr = 0.
Thus, since iz = 0, we have
liminf Joc 1 (x4 (- = 1)@, (- — y1)) = liminf Ioc 1 (X4 ¢n,.)
k—oc k—oc
= liminf =/« 1 (¢n, )
i —oc 2

H H 1 ; 1 P A  p+1 .
= liminf 3 (1 (@) + 577 J 1 = blr/ o ))om de

1
l' —jt\ =4
k_l_{l;Q ,.k_(v—l)

= Ixca(v1.1/2)

IA

Therefore, we see that x (- — yi)on, (- —yix) — ¢ in H!. Since yr — 00, we see
that ¢, cannot concentrate around some point.
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The instability follows from the fact that ¢, ~ ¢y 1/2(- —yx) +41.1/2(: +yi).

We see that there exists two directions which is tangent to the hypersurface
{¢ € H'(R) | ||¢]|L2 = o} and decreases the energy. Using this fact, by [6], we
can show the linear instability of w,, and the instability follows from the linear
instability. 0
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