Concentration and Stability of standing waves of nonlinear Schrödinger equation with inhomogeneous nonlinearity

Masaya Maeda

Department of Mathematics, Graduate School of Science, Kyoto University, Sakyo-ku Kyoto, 606-8502, Japan

1 Introduction

In this paper, we consider the following nonlinear Schrödinger equation with inhomogeneous nonlinearity.

$$iu_t = -\Delta u - b(x)|u|^{p-1}u, \ (x,t) \in \mathbb{R}^{N+1},$$
 (1.1)

where $N \ge 1$, $u: \mathbb{R}^{N+1} \to \mathbb{C}$ is an unknown function, $p \in (1, 1+4/N)$ and b(x) is a smooth function which satisfies

$$0 < \inf_{x \in \mathbb{R}^N} b(x) = \lim_{|x| \to \infty} b(x) \le \sup_{x \in \mathbb{R}^N} b(x) = 1.$$

A standing wave is a solution of equation (1.1) with the form $u(x,t) = e^{i\omega t}\phi(x)$. In this case, ϕ satisfies the following partial differential equation.

$$-\Delta\phi + \omega\phi - b(x)|\phi|^{p-1}\phi = 0, \ x \in \mathbb{R}^N.$$
 (1.2)

The flow of equation (1.1) conserves the L^2 -norm and the following functional, which we call the energy.

$$\mathcal{E}(u) := \frac{1}{2} \int_{\mathbb{R}} |\nabla u|^2 \, dx - \frac{1}{p+1} \int_{\mathbb{R}} b(x) |u|^{p+1} \, dx.$$

The well-posedness of equation (1.1) is well known. See for example [2].

Proposition 1. For every $u_0 \in H^1(\mathbb{R}^N)$, there exists a solution $u \in C(\mathbb{R}; H^1(\mathbb{R}^N))$ of (1.1) such that

(a)
$$u(x,0) = u_0(x)$$
 for $x \in \mathbb{R}^N$.

(b)
$$\mathcal{E}(u(t)) = \mathcal{E}(u_0)$$
, $||u(t)||_{L^2} = ||u_0||_{L^2}$ for $t \in \mathbb{R}$.

Equation (1.1) appears in various regions of physics such as nonlinear optics, plasma physics and Bose-Einstein condensation (BEC). In the context of BEC, the ground states are considered to describe the physical properties of Bose gas in low temperature. Here, a ground state is a standing wave which minimizes the energy functional \mathcal{E} under the constraint of the L^2 -norm. Note that by the

Lagrange multiplier method, the ground state satisfies (1.2) for some $\omega \in \mathbb{R}$. For the case $b \equiv 1$, it is known that the ground state is unique ([5, 9]), and if $1 , it is stable ([1]). For the case <math>b = |x|^{-\beta}$, $\beta \in (0, 2)$, $N \geq 3$, it is proved that the ground state is stable ([4]).

We now state prepare the notations.

Definition 1. Set

$$\mathcal{G}_{\alpha} := \left\{ u \in H^1(\mathbb{R}^N) \mid ||u||_{L^2} = \alpha, \ \mathcal{E}(u) = E_{\alpha} \right\},\,$$

where

$$E_{\alpha} = \inf \left\{ \mathcal{E}(v) \mid v \in H^1(\mathbb{R}^N), ||v||_{L^2} = \alpha \right\}.$$

In this paper, we call the elements of \mathcal{G}_{α} , the ground states.

For the case, b is a radial symmetric function, we can consider a minimizer of \mathcal{E} under the constraint $u \in H^1_r(\mathbb{R}^N)$ and $\|u\|_{L^2} = \alpha$, where

$$H^1_r(\mathbb{R}^N) := \left\{ u \in H^1(\mathbb{R}^N) \ \middle| \ u \text{ is radially symmetric} \right\}.$$

Definition 2. Set

$$\mathcal{G}_{\alpha,r} := \left\{ u \in H_r^1(\mathbb{R}^N) \mid ||u||_{L^2} = \alpha, \ \mathcal{E}(u) = E_{\alpha,r} \right\},\,$$

where

$$E_{\alpha,r} = \inf \{ \mathcal{E}(v) \mid v \in H_r^1(\mathbb{R}^N), ||v||_{L^2} = \alpha \}.$$

In this paper, we call the elements of $\mathcal{G}_{\alpha,r}$, the radial minimizers.

We investigate the concentration and stability of ground states and radial minimizers.

Definition 3. We say that the \mathcal{G}_{α} (resp. $\mathcal{G}_{\alpha,r}$) concentrates for sufficiently large α if the elements of \mathcal{G}_{α} ($\mathcal{G}_{\alpha,r}$) satisfies the following: For arbitrary $\varepsilon > 0$, there exists an $\alpha_{\varepsilon} > 0$ such that for every $\alpha > \alpha_{\varepsilon}$ and every $\phi \in \mathcal{G}_{\alpha}$ ($\mathcal{G}_{\alpha,r}$), there exists $y_{\alpha,\phi} \in \mathbb{R}^N$ such that

$$\int_{|x-y_{\alpha,\phi}|>\varepsilon} |\phi|^2 \, dx < \varepsilon \int_{\mathbb{R}^N} |\phi|^2 \, dx = \varepsilon \alpha^2.$$

We call $y_{\alpha,\phi} \in \mathbb{R}^N$, the concentration center.

Definition 4. We say that \mathcal{G}_{α} (resp. $\mathcal{G}_{\alpha,r}$) is stable if the following property is satisfied: For arbitrary $\varepsilon > 0$, there exists an $\delta_{\varepsilon} > 0$ such that for every $u_0 \in H^1$ with

$$\inf_{v \in \mathcal{G}_{\alpha}(\mathcal{G}_{\alpha,r})} \|u_0 - v\|_{H^1} < \delta_{\varepsilon},$$

the solution of equation (1.1) with $u(0) = u_0$ satisfies

$$\sup_{t>0} \inf_{v\in\mathcal{G}_{\alpha}(\mathcal{G}_{\alpha,r})} \|u(t) - v\|_{H^1} < \varepsilon.$$

If \mathcal{G}_{α} ($\mathcal{G}_{\alpha,r}$) is not stable, we say \mathcal{G}_{α} ($\mathcal{G}_{\alpha,r}$) is unstable.

The existence, concentration and stability of \mathcal{G}_{α} is well known.

Proposition 2. For $\alpha > 0$, $\mathcal{G}_{\alpha} \neq \emptyset$ and \mathcal{G}_{α} is stable. Further, \mathcal{G}_{α} concentrates for sufficiently large α and the concentration center converges to some maximum point of b.

Remark 1. For the existence of ground states, see Proposition 8.3.6 of [2]. For the stability result, see [1] and for the concentration result, see [13].

The purpose of this paper is to investigate the stability and concentration for the elements of $\mathcal{G}_{\alpha,r}$.

Proposition 3. Let b radially symmetric. Then for $\alpha > 0$, we have $\mathcal{G}_{\alpha} \neq \emptyset$.

Remark 2. Proposition 3 can be proved as the existence of ground states.

We first study the case $N \geq 2$.

Theorem 1. Let $N \geq 2$. Then \mathcal{G}_{α} concentrates for sufficiently large α and the concentration center is 0. Further, if 0 is a nondegenerate minimum point (resp. maximum point), then for sufficiently large $\alpha > 0$, $\mathcal{G}_{\alpha,r}$ is stable (unstable).

Thus, we see that the concentration result holds but the stability result some times fails for the case of radial minimizers. For the case N=1, we see that also the concentration result sometimes fails.

Theorem 2. Let N = 1.

- (i) If $1 \ge b(0) > 2^{-(p-1)/2}$, then $\mathcal{G}_{\alpha,r}$ concentrates for sufficiently large α and the concentration center is 0. Further, if 0 is a nondegenerate minimum point (resp. maximum point), then for sufficiently large $\alpha > 0$, $\mathcal{G}_{\alpha,r}$ is stable (unstable).
- (ii) If $0 < b(0) < 2^{-(p-1)/2}$, then \mathcal{G}_{α} is unstable and does not concentrate for sufficiently large α .

The plan of this paper is as follows. In section 2, we rescale our problem. In section 3 and 4, we prove Theorems 1 and 2 respectively. The proof of the concentration result of Theorem 1 relies on the radial lemma due to Strauss [14]. For the proof of the concentration result of Theorem 2, we use the concentration compactness method due to Lions [10, 11]. For the stability result, we use the abstract theory developed by Grillakis, Shatah and Strauss [7] and for the instability result, we use the result of [12] for $N \geq 2$ and [6] for the case N = 1.

2 Preliminary

We rescale our problem. Take $\phi \in H^1_r(\mathbb{R}^N)$ with $||\phi||_{L^2} = 1$. Then, we have

$$\mathcal{E}(\alpha\phi) = \alpha^2 \left(\frac{1}{2} \int_{\mathbb{R}} |\nabla \phi|^2 dx - \frac{\alpha^{p-1}}{p+1} \int_{\mathbb{R}} b(x) |\phi|^{p+1} dx \right).$$

Next, set $\phi_{\alpha}(x) = \alpha^{AN/2}\phi(\alpha^A x)$, where $A = \frac{2(p-1)}{4-N(p-1)}$. Then, we have

$$\mathcal{E}_{\alpha}(\alpha\phi_{\alpha}) = \alpha^{2+2A} \left(\frac{1}{2} \int_{\mathbb{R}} |\nabla \phi|^2 dx - \frac{1}{p+1} \int_{\mathbb{R}} b(\alpha^{-A}x) |\phi|^{p+1} dx \right).$$

Therefore, we set

$$I_{\alpha}(\phi) := \frac{1}{2} \int_{\mathbb{R}} |\nabla \phi|^2 dx - \frac{1}{p+1} \int_{\mathbb{R}} b(\alpha^{-A}x) |\phi|^{p+1} dx,$$

and

$$\mathcal{I}_{\alpha,r} := \left\{ \phi \in H^1_r(\mathbb{R}^N) \ \big| \ ||\phi||_{L^2} = 1, \ I_{\alpha}(\phi) = \inf_{||\psi||_{L^2} = 1, \psi \in H^1_r(\mathbb{R}^N)} I_{\alpha}(\psi) \right\}.$$

Thus, we obtain

$$\mathcal{G}_{\alpha,r} = \left\{ \alpha \phi_{\alpha} \mid \phi \in \mathcal{I}_{\alpha,r} \right\}.$$

We also define the following functional:

$$I_{\infty,b}(\phi) := \frac{1}{2} \int_{\mathbb{R}} |\nabla \phi|^2 dx - \frac{b}{p+1} \int_{\mathbb{R}} |\phi|^{p+1} dx.$$

Then, it is well known that there exists a unique positive radial minimizer $\psi_{b,\beta}$ of $I_{\infty,b}$ under the constraint $||\phi||_{L^2}^2 = \beta$. That is

$$\mathcal{I}_{\infty,r,b,\beta} := \left\{ \phi \in H^1_r(\mathbb{R}^N) \mid ||\phi||^2_{L^2} = \beta, \ I_{\infty,b}(\phi) = \inf_{||\varphi||^2_{L^2} = \beta, \varphi \in H^1_r} I_{\infty,b}(\varphi) \right\}$$
$$= \left\{ c\psi_{b,\beta} \mid c \in \mathbb{C}, \ |c| = 1 \right\}.$$

Remark 3. The uniqueness of positive radial solution of equation (1.2) in the case $b(x) \equiv b > 0$ is proved by Kwong [9]. Further, letting $\phi_{b,\omega}$ be the unique positive radial solution of equation (1.2) in the case $b(x) \equiv b > 0$, we have $\phi_{b,\omega}(x) = \omega^{\frac{1}{p-1}}\phi_b(\omega^{1/2}x)$, where ϕ_b is the unique positive radial solution of

$$-\Delta\phi_b + \phi_b - b\phi_b^p = 0, \ x \in \mathbb{R}^N.$$

Therefore, we see $\frac{d}{d\omega}||\phi_{b,\omega}||_{L^2}^2 > 0$ for 1 . This implies the uniqueness of the radial minimizer up to constant phase.

We now calculate the value

$$I_{\infty,b}(\psi_{b,\beta}) = \inf \{ I_{\infty,b}(\phi) \mid \phi \in H^1_r(\mathbb{R}^N), \ ||\phi||^2_{L^2} = \beta \}.$$

Lemma 1. Let

$$J_{\infty} = \inf_{\|u\|_{L^2}=1} I_{\infty,1}(u) = I_{\infty,1}(\psi_{1,1}) < 0.$$

Then

$$I_{\infty,b}(\psi_{b,\beta}) = b^{\frac{2A}{p-1}}\beta^{1+A}J_{\infty},$$

where
$$A = \frac{2(p-1)}{4-N(p-1)} > 0$$
.

Proof.

$$I_{\infty,b}(\psi_{b,\beta}) = \inf_{\phi \in H^1_{*}, ||\phi||_{L^{2}}^{2} = \beta} \left(\frac{1}{2} \int_{\mathbb{R}} |\nabla \phi|^{2} dx - \frac{b}{p+1} \int_{\mathbb{R}} |\phi|^{p+1} dx \right)$$
$$= \beta \inf_{||\phi||_{L^{2}} = 1} \left(\frac{1}{2} \int_{\mathbb{R}} |\nabla \phi|^{2} dx - \frac{b\beta^{\frac{p-1}{2}}}{p+1} \int_{\mathbb{R}} |\phi|^{p+1} dx \right).$$

Now, setting $\phi(x) = (b\beta^{\frac{p-1}{2}})^{\frac{N}{1-N(p-1)}} \varphi((b\beta^{\frac{p-1}{2}})^{\frac{2}{4-N(p-1)}}x)$, we have $||\varphi||_{L^2} = ||\phi||_{L^2}$ and

$$\frac{1}{2} \int_{\mathbb{R}} |\nabla \phi|^2 dx - \frac{b\beta^{\frac{p-1}{2}}}{p+1} \int_{\mathbb{R}} |\phi|^{p+1} dx = (b\beta^{\frac{p-1}{2}})^{\frac{4}{4-N(p-1)}} I_{\infty,1}(\varphi).$$

Thus, we have

$$\inf_{||u||_{L^2}^2=\beta}I_{\infty,b}(u)=b^{\frac{4}{4-N(p-1)}}\beta^{1+\frac{2(p-1)}{4-N(p-1)}}J_{\infty}.$$

We further prepare some compactness results. To show the concentration result of Theorem 1, we use the following lemma due to Strauss [14].

Lemma 2. Let $N \geq 2$. Then every $u \in H^1_r$ is almost everywhere equal to a function U, continuous for $x \neq 0$, such that

$$|U(x)| \le C_N |x|^{-\frac{(N-1)}{2}} ||u||_{H^1} \text{ for } |x| \ge C_N,$$

where C_N depends only on the dimension N.

To show Theorem 2, we prepare two concentration compactness lemmas, which are slight modifications of the concentration compactness lemma due to Lions [10, 11] (See also [2]).

Lemma 3. Let $\{u_n\} \subset H^1_r(\mathbb{R})$ be such that

$$||u_n||_{L^2} = 1, \sup_{n \in \mathbb{N}} ||\nabla u_n||_{L^2} < \infty.$$
 (2.1)

Set

$$\widetilde{\mu} = \lim_{t \to \infty} \liminf_{n \to \infty} \int_{|x| \le t} |u_n|^2 dx. \tag{2.2}$$

Then, there exists a subsequence $\{u_{n_k}\}$ that satisfies the following.

(i) If $\widetilde{\mu} = 1$, then there exists $a \ u \in H^1_r(\mathbb{R})$ such that $u_{n_k} \to u$ in $L^p(\mathbb{R})$ for $p \in [2, \infty]$.

(ii) There exist
$$\{v_k\}$$
, $\{w_{k,+}\}$ and $\{w_{k,-}\}\subset H^1_r(\mathbb{R})$ such that

$$\sup w_{k,+} \subset (0,\infty), \ \sup w_{k,-} \subset (-\infty,0),$$

$$\sup v_k \cap \sup w_{k,+} = \sup v_k \cap \sup w_{k,-} = \emptyset,$$

$$|v_k| + |w_{k,+}| + |w_{k,-}| \le |u_{n_k}|$$

$$||v_k||_{H^1} + ||w_{k,+}||_{H^1} + ||w_{k,-}||_{H^1} \le ||u_{n_k}||_{H^1}$$

$$||v_k||_{L^2} \to \widetilde{\mu}, \ ||w_{k,+}||_{L^2}^2 \to \frac{1}{2}(1-\widetilde{\mu}) \ ||w_{k,-}||_{L^2}^2 \to \frac{1}{2}(1-\widetilde{\mu})$$

$$\lim_{k \to \infty} \int \left(|\nabla u_{n_k}|^2 - |\nabla v_k|^2 - |\nabla w_{k,+}|^2 - |\nabla w_{k,-}|^2 \right) \ge 0$$

$$\left| \int \left(|u_{n_k}|^p - |v_k|^p - |w_{k,+}|^p - |w_{k,-}|^p \right) \right| \to 0, \ (k \to \infty)$$

for all $2 \le p \le \infty$.

Lemma 4. Let $\{u_n\}$ satisfy (2.1). Define $\widetilde{\mu}$ as (2.2) and

$$\mu := \lim_{t \to \infty} \liminf_{n \to \infty} \sup_{y \in \mathbb{R}} \int_{|x-y| < t} |u_n|^2 dx.$$

Assume $\widetilde{\mu} = 0$. Then, $0 \le \mu \le 1/2$ and there exists a subsequence $\{u_{n_k}\}$ that satisfies the following.

- (i) If $\mu = 1/2$, then there exist $u \in H_r^1(\mathbb{R})$ and $y_k > 0$ such that $y_k \to \infty$ and $\chi_+(\cdot y_k)u_{n_k}(\cdot y_k) \to u$ in $L^p(\mathbb{R})$ for $p \in [2, \infty]$, where $\chi_+ \in C^\infty$ satisfies $0 \le \chi_+ \le 1$, supp $\chi_+ \subset [0, \infty)$ and $\chi_+(x) = 1$ for $x \ge 1$.
- (ii) If $\mu = 0$, then $u_{n_k} \to 0$ in L^p for $p \in (2, \infty]$.
- (iii) There exist $\{v_{k,+}\}, \{v_{k,-}\}, \{w_{k,+}\} \text{ and } \{w_{k,-}\} \subset H^1_r(\mathbb{R}) \text{ such that }$

$$\sup v_{k,+}, \ \sup w_{k,+} \subset (0,\infty), \ \sup v_{k,-}, \ \sup w_{k,-} \subset (-\infty,0),$$

$$\sup v_{k,+} \cap \sup w_{k,+} = \sup v_{k,-} \cap \sup w_{k,-} = \emptyset,$$

$$|v_{k,+}| + |v_{k,-}| + |w_{k,+}| + |w_{k,-}| \le |u_{n_k}|$$

$$||v_{k,+}||_{H^1} + ||v_{k,-}||_{H^1} + ||w_{k,+}||_{H^1} + ||w_{k,-}||_{H^1} \le ||u_{n_k}||_{H^1}$$

$$||v_{k,+}||_{L^2} \to \widetilde{\mu}, \ ||w_{k,+}||_{L^2} \to \frac{1}{2}(1-\widetilde{\mu})$$

$$\lim_{k \to \infty} \int (|\nabla u_{n_k}|^2 - |\nabla v_{k,+}|^2 - |\nabla v_{k,-}|^2 - |\nabla w_{k,+}|^2 - |\nabla w_{k,-}|^2) \ge 0$$

$$\left| \int (|u_{n_k}|^p - |v_{k,+}|^p - |v_{k,-}|^p - |w_{k,+}|^p - |w_{k,-}|^p) \right| \to 0, \ (k \to \infty)$$

for all $2 \le p \le \infty$.

3 Proof of Theorem 1

Let $\psi_{b(0),1} \in \mathcal{I}_{\infty,r,b(0),1}$, $\psi_{b(0),1} > 0$. We show that the rescaled radial minimizers converge to $\psi_{b(0),1}$.

Lemma 5. Let $N \geq 2$ and b radially symmetric. Let $\phi_n \in \mathcal{I}_{\alpha_n}$ with $\phi_n > 0$, where $\alpha_n \to \infty$ as $n \to \infty$. Then $\{\phi_n\}$ is a minimizing sequence of $I_{\infty,b(0)}$ under the constraint $||\phi||_{L^2} = 1$. In particular, $\phi_n \to \psi_{b(0),1}$.

Proof. We calculate $I_{\infty,b(0)}(\phi_n)$.

$$\begin{split} I_{\infty,b(0)}(\phi_n) &= \frac{1}{2} \int_{\mathbb{R}} |\nabla \phi_n|^2 \, dx - \frac{b(0)}{p+1} \int_{\mathbb{R}} |\phi_n|^{p+1} \, dx \\ &\leq I_{\alpha_n}(\phi_n) + \frac{1}{p+1} \int_{\mathbb{R}} |b(\alpha_n^{-A}x) - b(0)| |\phi_n|^{p+1} \, dx \\ &\leq I_{\alpha_n}(\psi_{b(0),1}) + \frac{1}{p+1} \int_{\mathbb{R}} |b(\alpha_n^{-A}x) - b(0)| |\phi_n|^{p+1} \, dx \\ &\leq I_{\infty,b(0)}(\psi_{b(0),1}) \\ &+ \frac{1}{p+1} \int_{\mathbb{R}} |b(\alpha_n^{-A}x) - b(0)| \left(|\phi_n|^{p+1} + |\psi_{b(0),1}|^{p+1}\right) \, dx, \end{split}$$

where $A = \frac{2(p-1)}{4-N(p-1)} > 0$. Now, for arbitrary $\varepsilon > 0$, there exists $R_{\varepsilon} > 0$ such that $|b(x) - b(0)| < \varepsilon$ for $|x| < R_{\varepsilon}$. Therefore, we have

$$\int_{\mathbb{R}} |b(\alpha_n^{-A}x) - b(0)| |\psi_{b(0),1}|^{p+1} dx \le \varepsilon \int_{\mathbb{R}} |\psi_{b(0),1}|^{p+1} dx + \int_{|x| > \alpha_n^{A} R_{\varepsilon}} |\psi_{b(0),1}|^{p+1}.$$

Further, for sufficiently large α_n , we have

$$\frac{1}{p+1} \int_{|x| > \alpha_n^A R_{\varepsilon}} |\psi_{b(0),1}|^{p+1} \le \varepsilon.$$

Thus, we obtain

$$\frac{1}{p+1} \int_{\mathbb{R}} |b(\alpha_n^{-A} x) - b(0)| |\psi_{b(0),1}|^{p+1} dx \to 0, \ n \to \infty$$

Next, using the fact that ϕ_n is a radial minimizer of I_{α_n} , we see that $I_{\alpha_n}(\phi_n) < 0$. Combining this to Gagliardo-Nirenberg's inequality, we see that $||\phi_n||_{H^1}$ is uniformly bounded. Therefore, by Lemma 2, we have

$$\int_{\mathbb{R}} |b(\alpha_n^{-A} x) - b(0)| |\phi_n|^{p+1} dx \leq \varepsilon \int_{\mathbb{R}} |\phi_n|^{p+1} dx + C \int_{|x| > \alpha_n^A R_{\epsilon}} |x|^{-\frac{(N-1)(p+1)}{2}} dx \\
\leq C \varepsilon + C (\alpha_n R_{\epsilon})^{1 - \frac{(N-1)(p+1)}{2}}.$$

Since $1 - \frac{(N-1)(p+1)}{2} < 0$, we see that

$$\frac{1}{p+1} \int_{\mathbb{R}} |b(\alpha_n^{-A} x) - b(0)| |\phi_n|^{p+1} dx \to 0, \ n \to \infty.$$

Therefore, we see that ϕ_n is a minimizing sequence of $I_{\infty,b(0)}$.

We now prove Theorem 1.

Proof of Theorem 1. Let $u_n \in \mathcal{G}_{\alpha_n}$ with $\alpha_n \to \infty$ as $n \to \infty$. Then, there exists $\phi_n \in \mathcal{I}_{\alpha_n}$ such that

$$\alpha_n^{1+NA/2}\phi_n(\alpha^A x) = u_n(x),$$

where $A = \frac{2(p-1)}{4-N(p-1)}$. We compute $\left(\int_{|x|>\epsilon} |u_n|^2 dx\right)^{1/2}$.

$$\left(\int_{|x|>\varepsilon} |u_n|^2 dx \right)^{\frac{1}{2}} = \alpha \left(\int_{|x|>\varepsilon\alpha^A} |\phi_n|^2 dx \right)^{\frac{1}{2}} \\
\leq \alpha \left(\int_{\mathbb{R}^N} |\psi_{b(0),1} - \phi_n|^2 dx \right)^{\frac{1}{2}} + \alpha \left(\int_{|x|>\varepsilon\alpha^A} |\psi_{b(0),1}|^2 dx \right)^{\frac{1}{2}},$$

where $\psi_{b(0),1}$ is the positive radial minimizer of $I_{\infty,b(0)}$ under the constraint $||\phi||_{L^2} = 1$. Since $\phi_n \to \psi_{b(0),1}$ in $L^2(\mathbb{R}^N)$, we have

$$\left(\int_{\mathbb{R}} |\psi - \phi_n|^2 dx\right)^{1/2} < \frac{1}{2}\varepsilon^{1/2}$$

for sufficiently large n. Further, since $\frac{2(p-1)}{4-N(p-1)}>0$ and $\alpha_n\to\infty$, we see

$$\left(\int_{|x|>\varepsilon\alpha_n^A} |\psi|^2 dx\right)^{1/2} < \frac{1}{2}\varepsilon^{1/2},$$

for sufficiently large n. Therefore, we have the concentration result.

We next show the stability for the case 0 is a nondegenerate minimum point of b. For this case, modifying the result of Grossi [8], we see that for large $\alpha > 0$, the radial minimizer is unique up to constant phase. Therefore, the radial minimizer must correspond to the ground state with a penalizer which was introduced in [3]. Since this ground state is stable, we see that also the radial minimizer is stable.

Finally for the proof of the instability for the case 0 is a nondegenerate maximum point of b, see [12].

4 Proof of Theorem 2

Proof of Theorem 2 (i). Let $u_n \in \mathcal{G}_{\alpha_n}$ with $u_n > 0$ and $\alpha_n \to \infty$ as $n \to \infty$. Then, there exists $\phi_n \in \mathcal{I}_{\alpha_n}$ such that

$$\alpha_n^{1 + \frac{p-1}{5-p}} \phi_n(\alpha_n^{\frac{2(p-1)}{5-p}} x) = u_n(x).$$

Since $||\phi_n||_{L^2}=1$ and $\sup_n ||\nabla \phi_n||_{L^2}<\infty$, we apply Lemma 3 to $\{\phi_n\}$. As in the proof of Theorem 1, if we can show $\phi_n\to \psi_{b(0),1}$ in $H^1(\mathbb{R})$, where $\psi_{b(0),1}$ is the minimizer of $I_{\infty,b(0)}=I_{\infty}$ under the constraint $||u||_{L^2}=1$, we have the concentration result. Further, the stability and instability follows as in the proof of Theorem 1.

Therefore, it suffices to show $\phi_n \to \psi_{b(0),1}$ in $H^1(\mathbb{R})$. Now, let

$$\widetilde{\mu} = \lim_{t \to \infty} \liminf_{n \to \infty} \int_{|x| < t} |\phi_n|^2 dx.$$

We show $\widetilde{\mu} = 1$. If $\widetilde{\mu} = 1$, we have a subsequence ϕ_{n_k} and ϕ such that $\phi_{n_k} \to \phi$ in L^p , $p \in [2, \infty]$. Thus, we have $||\phi||_{L^2} = 1$ and

$$\begin{split} I_{\infty,b(0)}(\phi) & \leq & \liminf_{k \to \infty} I_{\infty,b(0)}(\phi_{n_k}) \\ & \leq & \liminf_{k \to \infty} \left(I_{\alpha_{n_k}}(\phi_{n_k}) + \int |b(0) - b(\alpha_n^{-A}x)| |\phi_{n_k}|^{p+1} \, dx \right) \\ & \leq & \liminf_{k \to \infty} \left(I_{\alpha_n}(\psi_{b(0),1}) + \int |b(0) - b(\alpha_n^{-A}x)| |\phi_{n_k}|^{p+1} \, dx \right) \\ & \leq & I_{\infty,b(0)}(\psi_{b(0)}) + \liminf_{k \to \infty} \int |b(0) - b(\alpha_n^{-A}x)| (|\phi_{n_k}|^{p+1} + |\psi_{b(0),1}|^{p+1}) \, dx \\ & = & I_{\infty,b(0)}(\psi_{b(0),1}), \end{split}$$

where $A = \frac{2(p-1)}{5-p}$. Therefore, from the definition of $\psi_{b(0),1}$ and the uniqueness of the radial minimizer of $I_{\infty,b(0)}$, we see that $\phi_{n_k} \to \psi_{b(0),1}$ in $H^1(\mathbb{R})$.

Therefore, it suffices to show $\tilde{\mu} = 1$. Suppose $\tilde{\mu} < 1$. Then, by Lemma 3, there exist $\{v_k\}$, $\{w_{k,+}\}$ and $\{w_{k,-}\}$ and we have

$$\liminf_{k \to \infty} I_{\alpha_{n_k}}(\phi_{n_k}) \ge \limsup_{k \to \infty} \left(I_{\alpha_{n_k}}(v_k) + I_{\infty,1}(w_{k,+}) + I_{\infty,1}(w_{k,-}) \right).$$

We claim $\limsup_{k\to\infty}I_{\alpha_{n_k}}(v_k)\geq b(0)^{\frac{2A}{p-1}}\widetilde{\mu}^{1+A}J_{\infty}$, where $A=\frac{2(p-1)}{5-p}$. Indeed, since $|v_k|\leq |u_{n_k}|$, taking arbitrary $\varepsilon>0$, there exists $R_{\varepsilon}>0$ such that

$$\limsup_{k \to \infty} \int_{|x| > R_{\varepsilon}} |v_k|^2 \, dx < \varepsilon.$$

Therefore, we have

$$\lim \sup_{k \to \infty} I_{\alpha_{n_k}}(v_k) \geq \lim \sup_{k \to \infty} \left(I_{\infty,b(0)}(v_k) - \int_{|x| < R_{\epsilon}} |b(\alpha_{n_k}^{-A}x) - b(0)| |v_k|^{p+1} dx - \int_{|x| > R_{\epsilon}} |b(\alpha^{-A}x) - b(0)| |v_k|^{p+1} dx \right).$$

Further, since $\sup_k ||v_k||_{L^{\infty}} \le C_1 \sup_k ||v_k||_{H^1} \le C_2 \sup_k ||\phi_{n_k}||_{H^1} < C_3$, we have

$$\int_{|x|>R_{\varepsilon}} |b(\alpha^{-A}x) - b(0)||c_k|^{p+1} dx \le 2C_3^{p-1}\varepsilon,$$

and taking α_{n_k} sufficiently large, we have

$$\int_{|x| < R_{\varepsilon}} |b(\alpha_{n_k}^{-A} x) - b(0)| |v_k|^{p+1} dx \le \varepsilon \int_{\mathbb{R}} |v_k|^{p+1} dx \le C\varepsilon.$$

Therefore, we obtain

$$\liminf_{k\to\infty} I_{\alpha_{n_k}}(\phi_{n_k}) \ge \left(b(0)^{\frac{2A}{p-1}} \widetilde{\mu}^{1+A} + 2\left(\frac{1-\widetilde{\mu}}{2}\right)^{1+A}\right) J_{\infty}.$$

On the other hand, we have

$$\liminf_{k\to\infty} I_{\alpha_{n_k}}(\phi_{n_k}) \le \liminf_{k\to\infty} I_{\alpha_{n_k}}(\psi_{b(0)}) = b(0)^{\frac{2A}{p-1}} J_{\infty}.$$

Therefore, since $J_{\infty} < 0$, we have

$$b(0)^{\frac{2A}{p-1}} \le \frac{(1-\widetilde{\mu})^{1+A}}{2^A(1-\widetilde{\mu}^{1+A})}.$$

Since, $\frac{(1-\tilde{\mu})^{1+A}}{1-\tilde{\mu}^{1+A}} \leq 1$, we obtain

$$b(0) \leq 2^{-\frac{p-1}{2}}$$
.

However we have assumed $b(0) > 2^{-\frac{p-1}{2}}$. Therefore, this is a contradiction. \square

Proof of Theorem 2 (ii). Let $u_n \in \mathcal{G}_{\alpha_n}$ with $u_n > 0$ and $\alpha_n \to \infty$ as $n \to \infty$. Then, there exists $\phi_n \in \mathcal{I}_{\alpha_n,r}$ such that

$$\alpha_n^{1+\frac{p-1}{5-p}}\phi_n(\alpha_n^{\frac{2(p-1)}{5-p}}x)=u_n(x).$$

We first show $\tilde{\mu} = 0$. Suppose $\tilde{\mu} > 0$. Then as in the proof of Theorem 2 (i), using Lemma 3, we have

$$\lim_{k\to\infty} I_{\alpha_{n_k}}(\phi_n) \ge \left(b(0)^{\frac{2A}{p-1}} \widetilde{\mu}^{1+A} + 2\left(\frac{1-\widetilde{\mu}}{2}\right)^{1+A}\right) J_{\infty},$$

where $A = \frac{2(p-1)}{5-p}$. On the other hand, take $x_0 > 0$ to satisfy $b(x_0) = 1$ and set

$$\varphi_k(x) = t_k \left(\psi_{1,1/2}(x - \alpha_{n_k}^A x_0) + \psi_{1,1/2}(x + \alpha_{n_k}^A x_0) \right),$$

where ψ is the minimizer of $I_{\infty,1}$ under the constraint $||u||_{L^2}^2 = 1/2$ and $t_k > 1$, $t_k \to 1$ as $k \to \infty$ is taken so that $||\varphi_k||_{L^2} = 1$. By a simple calculation, we have

$$\lim_{k \to \infty} I_{\alpha_{n_k}}(\varphi_k) = 2^{-A} J_{\infty}. \tag{4.1}$$

Since $I_{\alpha_{n_k}}(\phi_{n_k}) \leq I_{\alpha_{n_k}}(\varphi_k)$ and $J_{\infty} < 0$, we have

$$b(0)^{\frac{2A}{p-1}} \widetilde{\mu}^{1+A} + 2\left(\frac{1-\widetilde{\mu}}{2}\right)^{1+A} \ge 2^{-A}. \tag{4.2}$$

However, (4.2) implies

$$b(0) \ge 2^{-\frac{p-1}{2}}$$
.

Thus, we have contradiction since we are assuming $b(0) < 2^{-\frac{p-1}{2}}$.

Therefore, we have $\widetilde{\mu} = 0$. We use Lemma 4. Suppose, $\mu = 0$. Then, by Lemma 4 (ii), we have $\liminf_{k\to\infty} I_{\alpha_{n_k}}(\phi_{n_k}) \geq 0$, so it contradicts to

$$\liminf_{k\to\infty}I_{\alpha_{n_k}}(\phi_{n_k})\leq \liminf_{k\to\infty}I_{\alpha_{n_k}}(\varphi_k)<0.$$

Suppose $0 < \mu < 1/2$. Then calculating as the proof of Theorem 2 (i) and using Lemma 4 instead of Lemma 3, we obtain

$$\liminf_{k \to \infty} I_{\alpha_{n_k}}(\phi_{n_k}) \ge \left(2\mu^{1+A} + 2\left(\frac{1-2\mu}{2}\right)^{1+A}\right) J_{\infty}.$$

However, this implies $\liminf_{k\to\infty} I_{\alpha_{n_k}}(\phi_{n_k}) > \lim_{k\to\infty} I_{\alpha_{n_k}}(\varphi_k)$ and we have a contradiction. Therefore, we have $\mu = 1/2$.

By Lemma 4, there exist ϕ and $y_k > 0$ such that $\chi_+(\cdot - y_k)\phi_{n_k}(\cdot - y_k) \to \phi$ in $L^p(\mathbb{R})$ for $p \in [2, \infty]$. Thus, we see that $||\chi_+(\cdot - y_k)\phi_{n_k}(\cdot - y_k)||_{L^2}^2 \to 1/2$. We claim $\chi_+(\cdot - y_k)\phi_{n_k}(\cdot - y_k) \to \psi_{1,1/2}$ in $H^1(\mathbb{R})$, where $\psi_{1,1/2}$ is the positive radial minimizer of $I_{\infty,1}$ under the constraint $||\phi||_{L^2}^2 = 1/2$. To show this, it suffices to show

$$I_{\infty,1}(\chi_+(\cdot - y_k)\phi_{n_k}(\cdot - y_k)) \to I_{\infty,1}(\psi_{1,1/2}) = 2^{-(1+A)}J_{\infty}.$$

Now, suppose there exists $\varepsilon_0 > 0$ such that

$$\frac{1}{p+1} \int_{\mathbb{R}} (1 - b(\alpha_{n_k}^{-A} x)) \phi_{n_k}^{p+1} dx \ge \varepsilon_0.$$

Then, we have

$$\lim_{k \to \infty} I_{\infty,1}(\varphi_k) = \lim_{k \to \infty} I_{\alpha_{n_k}}(\varphi_k)$$

$$\geq \liminf_{k \to \infty} I_{\alpha_{n_k}}(\phi_{n_k})$$

$$= \liminf_{k \to \infty} \left(I_{\infty,1}(\phi_{n_k}) + \frac{1}{p+1} \int_{\mathbb{R}} (1 - b(x/\alpha_{n_k}^A)) \phi_{n_k} dx \right)$$

$$\geq 2I_{\infty,1}(\psi_{1,1/2}) + \varepsilon_0$$

$$= \lim_{k \to \infty} I_{\infty,1}(\varphi_k) + \varepsilon_0.$$

Therefore, we have

$$\lim_{k \to \infty} \frac{1}{p+1} \int_{\mathbb{R}} (1 - b(x/\alpha_{n_k}^A)) \phi_{n_k}^{p+1} dx = 0.$$

Thus, since $\tilde{\mu} = 0$, we have

$$\begin{aligned} & \lim_{k \to \infty} \inf I_{\infty,1} (\chi_+(\cdot - y_k) \phi_{n_k}(\cdot - y_k)) = \lim_{k \to \infty} \inf I_{\infty,1} (\chi_+ \phi_{n_k}) \\ & = \lim_{k \to \infty} \inf \frac{1}{2} I_{\infty,1} (\phi_{n_k}) \\ & = \lim_{k \to \infty} \inf \frac{1}{2} \left(I_{\alpha_{n_k}} (\phi_{n_k}) + \frac{1}{p+1} \int_{\mathbb{R}} (1 - b(x/\alpha_{n_k}^A)) \phi_{n_k}^{p+1} dx \right) \\ & \leq \lim_{k \to \infty} \frac{1}{2} I_{\alpha_{n_k}} (\varphi_k) \\ & = I_{\infty,1} (\psi_{1,1/2}) \end{aligned}$$

Therefore, we see that $\chi_+(\cdot - y_k)\phi_{n_k}(\cdot - y_k) \to \phi$ in H^1 . Since $y_k \to \infty$, we see that ϕ_{n_k} cannot concentrate around some point.

The instability follows from the fact that $\phi_{n_k} \sim \psi_{1,1/2}(\cdot - y_k) + \psi_{1,1/2}(\cdot + y_k)$. We see that there exists two directions which is tangent to the hypersurface $\{\phi \in H^1(\mathbb{R}) \mid ||\phi||_{L^2} = \alpha\}$ and decreases the energy. Using this fact, by [6], we can show the linear instability of u_n and the instability follows from the linear instability.

References

- [1] T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. 85 (1982), no. 4, 549–561. MR MR677997 (84i:81015)
- [2] Thierry Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, New York University Courant Institute of Mathematical Sciences, New York, 2003. MR MR2002047 (2004j:35266)
- [3] Carlos Cid and Patricio Felmer, Orbital stability and standing waves for the nonlinear Schrödinger equation with potential, Rev. Math. Phys. 13 (2001), no. 12, 1529–1546. MR MR1869816 (2002i:35176)
- [4] Anne De Bouard and Reika Fukuizumi, Stability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, Ann. Henri Poincaré 6 (2005), no. 6, 1157-1177. MR MR2189380 (2007b:35295)
- [5] B. Gidas, Wei Ming Ni, and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in Rⁿ, Mathematical analysis and applications, Part A, Adv. in Math. Suppl. Stud., vol. 7, Academic Press, New York, 1981, pp. 369-402. MR MR634248 (84a:35083)
- [6] Manoussos Grillakis, Linearized instability for nonlinear Schrödinger and Klein-Gordon equations, Comm. Pure Appl. Math. 41 (1988), no. 6, 747– 774. MR MR948770 (89m:35192)
- [7] Manoussos Grillakis, Jalal Shatah. and Walter Strauss, Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal. 74 (1987), no. 1, 160–197. MR MR901236 (88g:35169)
- [8] Massimo Grossi, On the number of single-peak solutions of the nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002), no. 3, 261–280. MR MR1956951 (2003k:35228)
- [9] Man Kam Kwong, Uniqueness of positive solutions of $\Delta u u + u^p = 0$ in \mathbf{R}^n , Arch. Rational Mech. Anal. 105 (1989), no. 3, 243–266. MR MR969899 (90d:35015)
- [10] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 2, 109-145. MR MR778970 (87e:49035a)
- [11] ______, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 4, 223–283. MR MR778974 (87e:49035b)

- [12] Masaya Maeda, Instability of bound states of nonlinear Schrödinger equations with morse index equal to two, preprint.
- [13] _____, On the symmetry of the ground state of nonlinear Schrödinger equation with potential, preprint.
- [14] Walter A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), no. 2, 149-162. MR MR0454365 (56 #12616)