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A universal framework of the homogenization
problem of infinite dimensional diffusions

Sergio ALBEVERIO !  Michael ROCKNER 2 and Minoru W. YOSHIDA 3

Abstract

By generalizing the ccncrete formulations in [ABRY1,2], A universal frame work
of the homogenization problem of infinite dimensional diffusions is proposed. The
corresponding general structure is considered.

1 Probability space (O, B, i) on which the random co-
efficients are defined

Suppose that we are given the following:

{(61, B, M) }ieza: @ system of complete probability spaces, where d is a given natural
number.

(©,B,X):  the probability space that is the completion of (I, Ok, ®, Bx, [1x M), i-e.,
the completion of the direct product probability space.

(6,B,1): a complete prodability space (corresponding to a Gibbs state) defined as
follows: for VD CC Z¢ and for any bounded measurable function ¢ defined on Iken ©x
with some VI’ CC Z9, p satisfies

(EP¢, 1) = (9, 1),

where
E°p)6) = [ EP(arle)
o
= / (p(elD . HDr)TIlD(HID . ﬁDc)X(dﬁ’),

(2]

with )
TTLD(OID . opc) = ———-—-———(,’"UD(G’D‘GDC), Up = Z Uk,
Zp(fp-) keD
©3560+—0p € H Ok

keD
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is the natural projection, 6}, - Op- is the element §” € © such that

/! /

1
D — Yp, De — GD"

also, for each k € Z%, Uy is a given bounded measurable function of which support is in
H!k’—kls 1 O, where the number L (the range of interactions) does not depend on k, and
Zp(0pe) is the normalizing constant.

2 The ergodic flow

On (©, B, \) we are given an ergodic flow T} (which is also a map on (6, B, i), but is not
a measure preserving map on it) as follows:
Suppose that

IM; <oo and Vk € Z? there exists a di such that dy < M. (2.1)

For each x € [], R%* such that x = (x*)xezs with x* = (z¥,... k)
the map Ty on (O, B, \) is defined by
i)

T, 1 © — 6

that is a measure preserving transformation with respect to the measure \;
ii)

To = the identity,
for x,x’ e x € erzd R% Tiix = Tx o Ty,

where
x +x = (x* + x ) ez,

with

x* 4 x™* = (2 + x'l](, T+ x';‘k),
for

X = (x) ez, xk = (x'l‘,...,:cfjk),

x' = (xk)kEZ”v x'* = (Illl(v R ,I’L‘k),

and

0= (0%) ez, 0% = (0,...,0) € R%;
iii)
(x.0) € (J] R™) x ¢ — Tx(8) € ©

kezZ

is B( H R%) x B/B—measurable, where, H R is assumed to be the topological space

keZ4 kez"
with the direct product topclogy;
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iv) A function which is 7% invariant for all x € H R% is a constant function;

kezd
v) For D C Z4, let
HR""‘ 35X +— Xp € Hde
kezA keD
be the natural projection. If xp. = Op-, then
(Tu(@)ip- = 6p., V9€O, VDcCcCZ

3 The core

We assume that an existence of a core D. Namely, there exists D which is a dense subset
of both L?(P) and L'(P), and V¢ € D satisfies
(D-1) ¢ is a bounded measurable function having only a finite number of variables 6p
for some D CC Z4,
(D-2)

o(Tx; (0) € C*(][R* —R), W€,

keD

(cf. v) in the previous section) where we identify xp € []xcp R*™ with an x € ([T ez« R%)
of which projection to Hk D R% is xp,

(D-3) in (D-2) for each § = ©, all the partial derivatives of all orders of the function
©(T.(0)) (with the variables xp) are bounded and

Vo € D, IM < o0;  |Vip(Tx(0))| < M, V8 € O, ¥x, Yk € Z¢, (3.1)
where 9 5
V= (=, =)
zk T,
O

4 Probability space (2, F, P; ;) on which the infinite
dimensional diffusions are defined

keZ¢ 1<4,j<dyon
is a measurable function

Suppose that we are given a system of family of functions aw,
(6, B,Ti) such that for each k € Z? and each 1 < i,7 < dy, aij
on Oy and there exists M, € (0,00) and

2 < D af(bW)TiT, < M,, Vke€ 7%, YOy € Oy, Y(z1,...,xq) € R™.  (4.1)

1<4,5 <dy

We assume that
U, afy € D, ke€Z% 1<4,j<d
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Also, we assume that there exists a common Af < oo by which the evaluation (3.1) holds
for all ak. and Uk.

J
Finally, suppose that we are given a complete probability space (§2,F, P;F),

(t € R,) with a filtoration F,. On (§, F, P;F;) suppose that there exists a system

of independent 1-dimensional F;-adapted Brownian motion processes

{(B**(t))e20 }rezt, 1<i<dy -

Now, for each 8 € ©, let

X% = {(X%(1))e20 kez?, 1<i<dic-

be the unique solution of

t
XK () = XPRH(0) + /0 Y {5 (Txox ()
J

1<j<di
15)
—aly(Txono () (55 D Un(Txes)(9))))}ds
T3 nlwi<t
t
0 1<j<dx
where 1
(0%) = (2af)?,
and

XOK(t) = (XOXA(t), ..., XOkdu(r)),
also, by X%(t) we denote the vector
(XP¥(t))kezn € H R%.
kezd
Then, the random variable on (), F, P; F;) is the one taking values in

C([0.00) — [T R*™).

keZd

Through (X%(t)):>0 we define a © valued process such that

{Txe(t)(g)}zzn.

Proposition 4.1 The following hold:

Z) If TX"(O)(G) = Txo’(o)(el), P—a.s. w € Q._
then

(X°() = X°(0))es0 = (X7(t) — X¥(0))e20, P—as weq,
i) For
¢ = Txe)(0), (4.3)
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(TXO t)(e))t>0 = (T ,e'(t)(9/>)f>(), P—as we Q (44)

where XE (t)(8') is the diffusion defined by (4.2) with Xg (0) = 0 and replacing 0 by ¢ in
il.
By (4.4) such (Txe(t)(o))tzo are represented by

(Yo (130 = (Tpr (00
i4i)  The process (Yo (t))e>0) satisfies Yo (0) = 0’ and is a Markov process.
O

Definition 4.1 By Proposition 4.1, we define Markovian semi-groups corresponding to
(X°(8))e20 and (Y:(t))e>o0:
For bounded measurable f € C([],cp R% — R) with some dounded D CC Z¢,

(X f)(x) = EF(X(0) | X°(0) =x],  x e [[R%;
k

For ¢eD
(P;Y(P)(Y) = E[SO(TX"(f.)(H)) | TX"(O)(H) =yl, y € 6.

5 Key assumption and the result

As was done in [ABRY1,2], we assume the following:
There exist K < oo and v >> 0 such that

Slelgl(ptyeo)(Y)~ <p,p>| < Ke([Vel~ + lloll=), V9e€©, VoeD, (51)
Yy
where
IVllLe = sup V(T (6))]. lollLe = sup lp(0)].
0

Definition 5.1 For each k € Z% and i=1,...,dx, define an operator D** : D — D
such that

(Dkl )(y) aak ‘p(T )){x:(), (NS D, y € ©.

Proposition 5.1 For each k€ Z¢ i=1,....dx let
bry) = Y {(DMal)(y) — als(y)(D*( D U)(¥)}, y €O,
1< <d Ik—k/|<L
then -
() = / (0} V) (y)dt € L2(u).
JO
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g

Through the same discussions performed in [ABRY1,2], for the present general frame-
work we are also able to show the following (cf. [ABRY1,2] for the exact statement and
the terminologies)

Theorem 5.1 By taking a subsequence of the scaling process with the scaling parameter
€ >0 such that {eXe(é—z—)}tzo, for p—ae. 60€© it converges weakly to a Gaussian

process with a constant covariance matriz, characterized by a,?;, xf’k, kez%l<i,j<dy,
and 0 € ©, as €, | 0 where {€,}nen 1S the sequence of the parameter corresponding to
the subsequence of {¢X°(%)}:>o0.

O
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