0000000000
016720 20100 94-110 94

Logarithmic derivatives of densities for jump
processes

Atsushi TAKEUCHI

Abstract

The purpose of this paper is to study the sensitivity analysis for jump-type
stochastic differential equations under the condition on the Lévy measure, and the
Hormander type condition on the coefficients. Our approach is based on the mar-
tingale property via the Kolmogorov backward equation for the integro-differential
operator associated witk the equation.

1 Introduction

Malliavin introduced the stochastic calculus of variations in order to exhibit the probabilis-
tic proof of the hypoelliptic problem for differential operators (cf. [18]). The integration-
by-parts formula plays a key role in the Malliavin calculus, and the formula over a prob-
ability space can be also established via the Girsanov transform on Brownian motions
(cf. [3]). In [12], the Malliavin calculus on the Wiener space was applied to the Greeks
computations for an asset price dynamics.

Recently, various types on the Malliavin calculus for jump processes have been in-
troduced by many authors over the Poisson space, or the Wiener-Poisson space. See
[1,2,4,5,9, 10, 17, 19] for d=tails. The measure change technique for jump processes first
found by [4] enables us to obtain that the uniformly elliptic condition, or the Hérmander
type condition on the coefficients of stochastic differential equations yields the existence
of smooth densities for the solution. Here the Hormander type condition is the condition
on the linear subspace generated by the coefficients, the Lie brackets of them, and the
integrals of the jump term effects. See [16, 20] for details. Furthermore, there are a lot
of works in which the Malliavin calculus for jump processes are applied to the sensitiv-
ity analysis in mathematical finance (c¢f. [1, 7, 8, 10]). This can be also regarded as
the logarithmic derivatives of the density with respect to various parameters in certain
sense. Although the process discussed in those works has jumps, most of them are focused
on the effect only from the diffusion terms. In [21], the sensitivities for jump processes
determined by stochastic differential equations are studied under the uniformly elliptic
condition on the diffusion and the jump terms. Then, it is a natural question whether a

similar problem can be studied in the hypoelliptic situation.
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In this paper, we shall study the sensitivity analysis for the solution to the stochastic
differential equation with jumps via the martingale approach based upon the Kolmogorov
backward equation for the associated infinitesimal generator, in the hypoelliptic situa-
tion, that is, the case where the coefficients of the equation satisfy the Hormander type
condition. The result obtained in the present paper includes the effects from not only the
diffusion terms, but also the jump terms. Moreover, the equation can be of a pure-jump
type, and an infinite activity type.

The paper is organized as follows: Section 2 is devoted to the introduction of our
framework, and the criterion on the existence of smooth densities as stated in [16, 20].
In Section 3, the sensitivity analysis with respect to the initial point of the equation is
investigated in the hypoelliptic situation, which will be proved in Section 5. Some key
lemmas in order to prove the main result are given in Section 4, and the example is
exhibited in Section 6.

In the whole sequel, we shal denote the « X [3-zero matrix by 0,5 € R ® R®, and the
identity by I, € R ® R”. Cf denotes the family of k-times differentiable functions with
bounded derivatives of any orders more than 1. The symbols V, V;, Vx and Op indicate
the gradient operators. Define the mapping 7 : R ® R — R# by

m1(A) Ak
T(A) = : . m(A) = : 1<k<Y)
me(A) Ak

for A= (A;x)1<i<a1<k<e € RO RY

2 Preliminaries

Fix T > 0. Let (2, F.P) be a probability space, and dv the Lévy measure over Ry :=
R\ {0} such that

Assumption 1. (a) for any p > 1,

/ |6 dv + / |8|P dv < +o0,
191<1 Jig1>1

(b) there exists a constant 6 > 0 such that

lim inf /)‘5/ (16/p)° A1) dv >0,
N0 Rq
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(c) there exists a C''-density ¢(f) with respect to the Lebesgue measure over Rg such
that

lim |g(8)] =

|6] =400

Example 1. The Lévy measures of tempered stable processes, inverse Gaussian processes
and CGMY processes (cf. [6]) satisfy Assumption 1. O

Remark 1. In order to study the existence of (smooth) densities, the following condition
is assumed in [14, 19)].

(d) there erists 0 < a < 2 such that

lim inf p""/ 16> dv > 0.
01<p

JANY

We can check that the condition (d) implies (b) in Assumption 1. O

Let {W,},cjor) Pe a 1-dimensional Brownian motion with Wy = 0, and dJ a Poisson
random measure over [0,7] X Ry with the intensity dJ = dt dv. Denote by {]:t}tE[O,T] the
augmented filtration generated by {W,},, ) and dJ. For simplicity of notations, write
dJ = dJ — dJ and dJ = Ijg<1ydJ + Ije>1)dJ. Let ao(z), ai1(x) € Cy (R4 R?), and
bo(z) € C°(R* x Ro; R?) such that

inf inf Idet Vbe(a )| 0. lim be(x) =0,
z€R4 8€Ry 1610

where bg(x) = x + be(x). For x € R?. consider the R%valued process {z; (= 7)) }ieo,m)
determined by the stochastic differential equation (SDE):

dxy = ao(ay) dt + ay(ay) o dW) + bo(a-)dJ, o= . (2.1)

Ro
Under the conditions on the coefficients. there exists a unique solution to (2.1), and the
associated infinitesimal generator £ is

1
[:f = .Aof+ -2’A1A1f+ { Obg — ](IGRSI)BHf} dl/,
/Ry
where A; = a;(:t) - V and By = by(:) - V are vector fields over R%.
Fory, z € RY@R? with det y # 0. det z # 0. let {y: (= y"*) }1cpo.r @nd {2 (= 20%) bicjomy
be the R? ® R%valued processes determined by the linear SDEs: yp =y, 20 = z and

dy, = Vag(x,) y, dt + Vay () ye o dWy + Vbo(e-) Yo dJ, (2.2)
Ro
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dzy = —2 {Vao(mt) - / (VBo(22)) " (Vbo(z))? dl/} dt
191<1 (23)
— 2 Vay(r) o dW, — / 2t (Vﬁg(wt*))‘l Vbo(we—)dJ.

Ro
Then, for each t € [0,T], the mapping R? > x — xf € R? has a C'-modification such
that Vg af = y©' and yf‘z—lzt‘"’z = I;. For v € R?® R%, let {v, (= v""") };co.1) De the
R4 @ R4valued process defined by the following SDE: vy = v and

dve = Vag(zy) vy dt + Vag (1) vy o dWe + / Vb () ve_ dJ
Ro (2.4)

ta(xy) ar(x)* 20 di+ | Vbg(xe_) ba(we—) bo(x:-)* 27_dJ,
Ro

“where by () = (Vl—)g(lf))—l Oabg(x) 0. Then, it can be easily checked that

t
=g (oo [ o aed) a@) (s
ot 0 - _
+ / / 257 by ) by (a®_)* (z:f)*dj}.
0JRo

We shall introduce the criterion on the existence of smooth densities for solutions to

SDEs (cf. [16, 20]). Write € = {0,1} UR,, and define

ao(x) = uo(w) + %Alal(;zr), dp = ddgoy + ddpry + dv,
. ¥l(2) = V() () — Vip(x) ()

for , € CY(R% R%). Denote the families of R%valued functions on R?% by
Vo={ai, be; 0 =Ro}, Vi={pow;p€ Vi1, 0€0} (k>1),
and define
0o = lip=0)[G0, ] + L(o=1)[011. 2] + L(gero) {(Vge)_l (pobs) — 90} -

Fact 1 (cf. [16, 20]). Suppose that the measure dv satisfies Assumption 1. If the co-
efficients of (2.1) satisfy the Hérmander type conditions, that is, there exist a positive
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constant ¢ and a non-negatire integer n such that

lixgl\%)f 'y Z Z /ok {(v-ps, - po,p()/p)? A1} du®* >0 (2.5)

k=0 peV, V'~

for any © € R* and v € S%7!, then the probability law of x% has a density pr(x,Z) with
respect to the Lebesque measure over R? such that the function R® > & — pr(x,T) is
smooth.

3 Main result

In this section, we shall present the sensitivity formula with respect to x € R? For
z,v € R4 ® R? with det z # 1, write

x € x¢
X=|mnz) |, X=| n(ls) |. Xe(=XX)=]n((zF*)")
(V) 7(04,4) (v HY)

Define

Ao(X) = ”((/WS] 2 (Vbs(x)) " (Vba())? d’/)*) ’
\w(al(;zt)al(.zf) z +/|6151(Vb9(;17)) be(x) b () duz)

( ai(x)

Ad(X) = ——7r((z Vu,,-(;z‘r))*) (i =0.1),

\ m(Va,(x) )

{ be ()

Bo(X) = - ((z (Vhy(x)) ! ng(;zr))*)

\ W(ng(.-z:) v+ (Vha(2)) bolic) be()* z*)

Let N = d + 2d®. Then, the RV-valued process { X, (= XX)}
of the form: Xy = X and

te(0.T] satisfies the equation

dX, = (Ao(Xy) + Ao(X:))dt + A1(X,) 0o dW, + [ Be(X..)dJ.

Ro
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Moreover, for each t € [0, T], the mapping RY 3 X —— XX € R" has a C'-modification,

and its Jacobi matrix

1

vit 04,2 04 42
Y, :=Vx X = | Vor((z5%)*) Oney 7((277)") 0,2
Vo m(vy*") On(z+) T(v7*")  Or(w) m(vy*?)

is invertible, because of the condition on b: inf, ¢ |det VEa(x)I > 0. Denote the inverse

matrix of Y¥; by Z;, which can be computed as follows:

zf'z Od,c{z Od,d2
L2\ * T,2\* -1
Zy=| =Vom((25)*) {Onen m((2£7%)%)} O a2 1
~Vo (™) =y m(0f™)  {On) T(07*)}
0a,4 0442 0gq2
+ Odﬁ,d Od2,d2 0d2’d2

Oy MU ™) Vo ((27%)*) Oz Ogz a2
Let {W}te[o,ﬂ be the RY @ R"¥-valued process determined by the SDE: Vj = Oy, n and

dV, = (VAy(X.) + VAy(X,)) Vidt + VA(X,) Vi 0 dW,

+ | VBo(X, ) Vie dT + A1(X,) AL (Xy)* Z;dt 3.1)
JRg )

+ / VBe(X,.) Be(X,_) Bo(X,_)* Z}_dJ,
JRg

where By(X) = X + By(X), and By(X) = (VEQ(X))—1 09 Bg(X) 6. Then, the It6 formula
enables us to see that

t
V, = y;{/ ZoA1(X) A (X)) 2 ds
0
t o ~ _
+ / Zy Bo(X,.)Bo(X,_)' Z:_dJ }.
0 RO

Define V!, V2! and V;3! by

thl
Iy .
wlx;}’ ( 0242 4 ) N Vtzl

731
|4
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Denote by U the family of bounded domains and their complements in R?. Define the
classes Cro(R%) and §(R?) of R-valued functions by

Crg(R?) = {f € C'(RY); | f(«x)] < const. (1 + IJ,|)} ,

J(RY) = {f = Zakfk]/ik ;n €N, ax €R, fi € CLe(RY), Ar € u} .

k=1

Theorem 1. Suppose that the Hormander type condition (2.5) stated in Fact 1 is satisfied.
Then, for ¢ € § (R?), it holds that

V. (E[p(er)) = E [o(er) Tr| %] »

where I'r = (T4, ...,T4), my = (mk, ..., m}) and
T * T p 1
: D6[9(0) 0 bo(z:-)* 2;_] 5
my = 2 ap () dW, —// =2 dJ
T </ var() ) o Jao 9(0)
d

0% = [mrop'le + Y V2 or'ur)p-nare,s [Yrlax
a,3=1

d
+ Y [15'se V25 vyaras 07 yrls -
a,0=1

Remark 2. (1) Although a similar result to Theorem 1 can be also obtained via the
Girsanov transform approach (cf. [4, 16, 20]), or the Malliavin calculus on the
Wiener space (cf. [18]), most of them are paid attention to only the diffusion term.
Our formula in Theorem 1 is stated in terms of not only the diffusion term, but also

the jump term.

(2) Similarly to Theorem 1, the sensitivities in the other parameters which govern the
process can be studied. This will be discussed elsewhere.

4 Key lemmas

In this section, we shall prepare some key lemmas, which will play an important role in
the proof of Theorem 1. Write

. - X . LX Y - X, IN,ON,
Xe= XX, Yo=Yz, =20 V=i
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Let ® € C? (R") with compact support. For t € [0,7] and X € R, write Ut,X) =
E[®(X7_¢)| Xo = X]. Define the operator By by

Bol(X) 1= U(Be(X)) — T(X).

Then, the Kolmogorov backvrard equation (cf. [13]) implies that

Lemma 4.1 (cf. [21], Lemma 4.1). For ® € C'? (R") with compact support, the following
equality holds.

®(Xr) = E[®(X7)] + / ' VU (s, Xs) A1(X,)dW,

0 (4.1)

+/T Byl (s, Xs_)dJ.
0 JRy

Lemma 4.1 helps us to obrain the key equalities as stated below, which can be regarded

as the integration by parts formula.

Lemma 4.2. For ® € C? (R") with compact support, it holds that

E [VX(@(XT)) /OT ZSAI(XS)AI(XS)*Z;ds}

T *
=E [(ID(XT) (/ Zs A1(X,) dW’s>] )
0
Proof. Multiplying both sides of the equality (4.1) in Lemma 4.1 by (f(;r Zs A1(Xs) dWs)
we see that
T *
E [@(XT) ( / Zs A1(Xs) dHf';) J
Jo

T T *
:IE[ / VU (s, X,) A1(X,) dW, < / 25,41(Xs)dws)}
0 0

- /TE[VX(U(S,XS)) Zo AL(X,) AKX 27) ds
4]

(4.2)

*
7

T
=K ‘:VX(Q(XT)) / Zs A]()S'_g) Al(‘Xs)* Z_: dé‘} .
0
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Lemma 4.3. For ® € C? (R") with compact support, it holds that

T
IE[VXQ(XT) / /R Zs_Bg(Xs_)Bg(Xs_)*Z;‘_dJ]

(4.3)
o Dl9(0) 8 Bo(X,_)* 23]
= E[ Xr) //R 9(6) ‘“]

Proof. Write
T -~ ~
My = / / Z,_ Bo(X,-) Be(X,.)" Z:_dJ,
0 Ro
-~ T ~ -~ -~
MT=// Z. Bo(X,) Bo(X,)® 27 dJ.
0 JRy

Since

E [@(XT) MT] =E UOT/R U(s. X,) Zs Bo(X,) Bo(X,)* Z3 df} :

multiplying both sides of the equality (4.1) in Lemma 4.1 by Mr — M7 enables us to see
that

E [®(X1) My) = E [cp(XT) (My — Ny + MT)]
T
=E U BoU (s, X,) Zy Bo( X, )BO(XS)*Z;dJ‘}
0 JRy
T ~ ~ ~
2| [ v x) 28X Box) 2z dJ]
Ro
_]E[//U(s Bo(X,)) Zs Bo(X )Bg(X)Z;dj].
Ro
Taking the derivative in X € R" yields that the right hand side is equal to
T — ~ ~ ~
Vx (IE U / U(s, Be(Xs)) Zs Bo(X,) Bo(X,)* 22 dJD
0 JRg
T
- E [ / VU (s, Bs(X,)) VBa(Xs) Ba(Xs) Be(X)* Z2 dj}
0 JRo
- T _ - - "
+E U U(s, Bo( X)) Vx(Zs Bo(Xs) Bo(X,)* Z2) dJ]
0 JRo

T
_ _E [/ Bl s, X.) Dlg(60) 0 Ba(Xs)* 27 d(}ds}
0 Ro



+1EUT {BoU (s, X,) + U(s, Xo)} Vx(Zs Bo(Xs) Bo(X,)* 22) dJ

- [‘I’( 7) /T/R MO0 Pl ) 2 5 4w 0r) VM.

9(0)
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Here we have used the integration-by-parts formula via Assumption 1 (iii) in the second
equality, and (4.1) of Lemma 4.1 in the third equality. On the other hand, the left hand

side is equal to
VXE [®(X7)M7) = E[Vx®(X7) Mr] + E [®(X7) VxM7].

Therefore, we can get the assertion.

Combining Lemma 4.2 and Lemma 4.3, we have

Corollary 4.1. For ® € C? (R") with compact support, it holds that

E([Vx®(X7) Zr V7] = E[®(XT) M7].

- (/OT Z,,Al(Xt)dVi»",) / /RO 09[9(9)03"(;(‘ VZilys

5 Proof 'of Theorem 1

where

(4.4)

In this section, we shall prove Theorem 1. Since the probability law of 4% admits a smooth

density with respect to the Lebesgue measure over R? from Fact 1, it is sufficient to study

the case of ¢ € C? (R?) with compact support via the standard density argument as

stated in [7, 15, 21], instead of ¢ € F (R?).

Let ® € C? (RV) with compact support. Multiplying both sides of (4.4) in Corollary

4.1 by (Ig, Oga2, 0g2)* € R ® R” . we have

E [VO(Xr) (VAY, VA, VE)'] = E [®(X7) My (T4, Og2a2)* | 5]

=K [(I)(‘X’T) mr 'U;l IX.——-Y] .

Take ® (X) = p (&) [v7'27;4 (1 < j. k < d). Remark that, for 1 < o, 8 < d,

Ve ®(X) = V(@) [ 27 s
ey O(X) = = (#) [z o [v7 72 s,



Then, we have

Jj=1
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Otvla,s ®(X) = —(2) [0 07 [0 27

d
> E[[Vecxn) (v, v, vy |

d d
- Z {11«: {Z Vap(ar) [vr yr)ix ["’T“]a:}

=1 a=1
—E |@(xr) Y lyrla 7 yrlis [Vﬁllw-l)dw,j}
L 013—
—E W(TT Zhr L 8 o7 yrli [Vﬁ‘](ﬁ_l)d+,,,,] }I
a,B=1 X

—E |e(zr) Z [yT]o k I'U']_“lyT](ﬁ~1)d+a,ﬂ}
a,B=1
i d
—E |o(@r) Y r'low lor urlas VR )o-1ares
L a,B=1 X=X
Since V}! = vz, we can get
E[[Ve(er) yr]
= E [p(zr) [mrop'le] |
X=X
r d
+ E |@(er) Z [yT)o. [\"’?11,’7“yT](;a_l)dM,a:l _
o,3=1 X=X
+E IT z [?T ]Hn Ur UT];H.[ ,TB'I](ﬁ—l)d+a,ﬁ _
L a,3=1 X=X

=E [%‘(JTT) F;

X =Y}

which completes the proof.
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6 Example

Let = 1 and (7, 01, 02) € Rx (0, +00) X (0, +00). Suppose that the measure dv satisfies
Assumption 1. For ¢ € R, consider the R-valued Lévy process {(;(= ¢ ) }tejo,) given by

t
G=C+rt+a W +o / 6dJ. (6.1)
0 JRo

Let f € C™(R) with f’ # 0. For 5 € R, define the process {/},co 7 by

= n+/0 f(¢s) ds. (6.2)
Now, we are in position that
z=(¢,n)", a(x) = (7. ()", a(x) = (01,0)", be(z) = (026,0)".
Since f’ # 0, o1 > 0 and
poa1 () = la1, Gol(x) = (0,01 f'(€))",

the probability law of 2% = (¢}, n}+) admits a smooth density pr(x, Z) with respect to the
Lebesgue measure on R? from Fact 1. Our interest is to study the sensitivity for nr with
respect to ¢ € R.

In order to get our desired result, we have to compute V3!, V2! and V3! explicitly.
Define

w(v= [ woae, Fi- | (G ds,

t
G, =o03t+ / (0260)*dJ. H=o0?+ / (020)* dv,
0JR 161<1

t t
K’t — / / 0'2()2(1.], Lf. == / / 2(020)3d"]
0. ]R() 0 ]R()

Then we see that, for z, v € R? ® R? with det z # 0,

T,z% 1 _'17’» *
Zt’ = z B
0 1

oo (L OY, L G —GIFL L.
T\ R 1) T\ Fla, -FlGIFN )T
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Write
&L € £ry
X=|n@)|,. X=| n(l) |. Xe(=X )= = (")
7 (v) 7 (022) 7 (vg*")

Then, the process { X}, satisfies the following SDE: X = X and

dX, = (Ao(X:) + Ao(Xe))dt + Ar1(Xe) o dWy + | Be(X,-)dJ,
Ro

where A4;,(X) = (01,010)*, Ao(X) = (016, 2'1H, 0, 221 H, 0)" and

Ao(X) = (7, £(Q), =2"2F(€), 0. =22 ((), 0, 0, v f(C), 0, v £'({)) ",
Bg(X) = (029, 01,5, 211(029)2, 0, 221(0'20)2, 0)* .

Then, we have

<11
Y t 02,4 02,4

Dex = Onxlx = | o |
},;31 },;32 }/t33
where
021 021
1 0 ,
Y‘“:(Ft 1)»}’:21: —()Ft 0
0
0
y22 (Y1)t 0z OF[G]t 0
‘ 022 (};“*)* | _q ch]t . |
— 9, (FIGIF])) 0
Ge ~G[F), 0
yoo _ | FICl —FIGIF) 0 0 yan_ (Y 02
t 0 0 G —-G[F), Tt 0,, Y,

0 0 FlG]e —FIG[F]}
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Moreover, we see that

where

021 Oy,
1 0 ." *
@ 0) w=[an o |

0 0
0 0
thzz((zt“*)-l 022 ) g | —@PGL 0|
02 (217 ~(&F)[Gl: 0
2(0cF)|GIF)): 0
-G,  G[F), 0 0
go_ | ~FIGk FGIF]. 0 0 ZSS:( z} o)
t 0 0 -G, G[F); P 0, 2}
0 0 —F[Gl FIGIFI

Hence, we can get

11 _ 11 T 11 10 711\* g Gr "G[F]T
K YT/o “- ( 00 )(Z"‘) dci = (F[G]T —F{G[FHT)’

T 1 0 . T 10 .
v =y [z (z2) dG,+ v [ 2 (21)"dG,
0 0 0 0 0 0

02 02,
= | =(0:F)[G]r (O F)[G[F))r
0 0
31 a1 [T nf 10 11\* 3/ 32 T anf 10 11\*
VT = YT/ Zt— (Zf_) (16{‘1’ )T/ Zt_ (Zt—) th
0 00 0 0 o0

T 1 . s [T 1 .
vy [z (0 @z e v [z O ) (z1)aL,
0 00 ‘ 0 031 03,
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0 0
_ (OGN [Glr = ((0:F)G)) [G[F)r
0 0
— (OGN [G[Flr (OcHIGIF) [G[F)r
Lt —L[F]r
F{L]r —F[L[F]|r

—Gl@:P)Gllr GO F)[GF]llr
—FIG[(0:F)[Gllr  FUGIFDI(O:F)Gllr

From Theorem 1, we can calculate the weight I'r concretely as follows.

T 1 O5ly(0) 6% -
I'r = <0’1WT + 0’2/ / ie_[_!_/_(_)___]d,], O) -1);1 + ([V,Iz,l‘u;lyT];;,z, O) yr
0 Ro g(e)

2
+ ([U'Flvrzl]l,l, Z[‘”fl]z,j ["’?l]jn,z) uptyr.

=1
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